1
|
Seyrek K, Espe J, Reiss E, Lavrik IN. The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System. Cells 2024; 13:1814. [PMID: 39513921 PMCID: PMC11545656 DOI: 10.3390/cells13211814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals. It has become clear that under certain cellular contexts, due to the various checkpoints, CD95 activation can trigger both apoptotic and non-apoptotic signals. The crosstalk of death and survival signals may occur at different levels of signal transduction. The strength of the CD95 stimulation, initial levels of anti-apoptotic proteins, and posttranslational modifications of the core DISC components have been proposed to be the most important factors in the life/death decisions at CD95. Successful therapeutic targeting of CD95 signaling pathways will require a better understanding of the crosstalk between CD95-induced apoptotic and cell survival pathways. In this review, in order to gain a systematic understanding of the crosstalk between CD95-mediated apoptosis and non-apoptotic signaling, we will discuss these issues in a step-by-step way.
Collapse
Affiliation(s)
| | | | | | - Inna N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.S.); (J.E.); (E.R.)
| |
Collapse
|
2
|
CD95 gene deletion may reduce clonogenic growth and invasiveness of human glioblastoma cells in a CD95 ligand-independent manner. Cell Death Dis 2022; 8:341. [PMID: 35906203 PMCID: PMC9338300 DOI: 10.1038/s41420-022-01133-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
CD95 (Fas/APO-1) is a multifunctional cell surface receptor with antithetic roles. First described to mediate cell death, interactions of CD95 with its natural ligand, CD95L, have also been described to induce tumor-promoting signaling leading to proliferation, invasion and stem cell maintenance, mainly in cancer cells that are resistant to CD95-mediated apoptosis. While activation of CD95-mediated apoptosis in cancer cells may not be clinically practicable due to toxicity, inhibition of tumor-promoting CD95 signaling holds therapeutic potential. In the present study, we characterized CD95 and CD95L expression in human glioma-initiating cells (GIC), a glioblastoma cell population with stem cell features, and investigated the consequences of CRISPR-Cas9-mediated CD95 or CD95L gene deletion. In vitro, GIC expressed CD95 but not CD95L and were sensitive to CD95-mediated apoptosis. Upon genetic deletion of CD95, GIC acquired resistance to CD95L-induced apoptosis but exhibited inferior clonogenic growth, sphere-forming capacity, and invasiveness compared with control cells, suggesting the existence of CD95L-independent constitutive CD95 signaling with tumor-promoting properties in GIC. In vivo, GIC expressed CD95 and a non-canonical form of CD95L lacking the CD95-binding region. CD95 genetic deletion did not prolong survival in immunocompromised GIC-bearing mice. Altogether, these data indicate that canonical CD95L may not be expressed in human GIC and suggest the existence of a CD95L-independent CD95-signaling pathway that maintains some malignancy traits of GIC. The lack of altered survival of tumor-bearing mice after genetic deletion of CD95 suggests that CD95 signaling is not essential to maintain the growth of human GIC xenografted into the brains of nude mice. The ligand-independent tumor-promoting role of constitutive CD95 in our GIC models in vitro highlights the complexity and challenges associated with targeting CD95 with therapeutic intent.
Collapse
|
3
|
Garmendia I, Redin E, Montuenga LM, Calvo A. YES1: a novel therapeutic target and biomarker in cancer. Mol Cancer Ther 2022; 21:1371-1380. [PMID: 35732509 DOI: 10.1158/1535-7163.mct-21-0958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
YES1 is a non-receptor tyrosine kinase that belongs to the SRC family of kinases (SFKs) and controls multiple cancer signaling pathways. YES1 is amplified and overexpressed in many tumor types, where it promotes cell proliferation, survival and invasiveness. Therefore, YES1 has been proposed as an emerging target in solid tumors. In addition, studies have shown that YES1 is a prognostic biomarker and a predictor of dasatinib activity. Several SFKs-targeting drugs have been developed and some of them have reached clinical trials. However, these drugs have encountered challenges to their utilization in the clinical practice in unselected patients due to toxicity and lack of efficacy. In the case of YES1, novel specific inhibitors have been developed and tested in preclinical models, with impressive antitumor effects. In this review, we summarize the structure and activation of YES1 and describe its role in cancer as a target and prognostic and companion biomarker. We also address the efficacy of SFKs inhibitors that are currently in clinical trials, highlighting the main hindrances for their clinical use. Current available information strongly suggests that inhibiting YES1 in tumors with high expression of this protein is a promising strategy against cancer.
Collapse
Affiliation(s)
- Irati Garmendia
- INSERM UMRS1138. Centre de Recherche des Cordeliers, Paris, France
| | | | - Luis M Montuenga
- CIMA and Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Alfonso Calvo
- Center for Applied Medical Research (CIMA), Pamplona, Spain
| |
Collapse
|
4
|
Fas signaling in adipocytes promotes low-grade inflammation and lung metastasis of colorectal cancer through interaction with Bmx. Cancer Lett 2021; 522:93-104. [PMID: 34536556 DOI: 10.1016/j.canlet.2021.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Obesity is a global public health issue. Obesity-related chronic low-grade inflammation (meta-inflammation) can lead to aberrant adipokine release and promote cardiometabolic diseases and obesity-related tumors. However, the mechanisms involved in the initiation of inflammatory responses in obesity and obesity-related tumors as well as metastasis are not fully understood. In this study, we found that the increased tumor necrosis factor-alpha (TNF-α) in adipocytes promoted the lung metastasis of MC38 colon cancer cells via Fas signaling. The release of TNF-α and interleukin (IL)-6 by Fas signaling in adipocytes was caused by the activation of the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways mediated by the interaction of Fas with Bmx, a non-receptor tyrosine kinase. Moreover, the Fas/Bmx complex is involved in the inflammation of adipocytes via Fas at the Tyr189 site and SH2 domain of Bmx. This is the first study to report the interaction between Fas and Bmx in adipocyte inflammation, which may provide clues for the development of potential new treatment strategies for obesity-related diseases.
Collapse
|
5
|
Cardoso Alves L, Corazza N, Micheau O, Krebs P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J 2020; 288:5530-5554. [PMID: 33215853 DOI: 10.1111/febs.15637] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger nonapoptotic pathways in cancer and in nontransformed cells, that is, immune cells. Here, we review the current knowledge on noncanonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells are presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and nonapoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
Collapse
Affiliation(s)
| | - Nadia Corazza
- Institute of Pathology, University of Bern, Switzerland
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | |
Collapse
|
6
|
Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020; 160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.
Collapse
Affiliation(s)
- Qiangbing Yang
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Juntao Fang
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhiyong Lei
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Circulatory Health Laboratory, Utrecht University, Utrecht, the Netherlands
| | - Raymond Schiffelers
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Src Family Tyrosine Kinases in Intestinal Homeostasis, Regeneration and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082014. [PMID: 32717909 PMCID: PMC7464719 DOI: 10.3390/cancers12082014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/11/2023] Open
Abstract
Src, originally identified as an oncogene, is a membrane-anchored tyrosine kinase and the Src family kinase (SFK) prototype. SFKs regulate the signalling induced by a wide range of cell surface receptors leading to epithelial cell growth and adhesion. In the intestine, the SFK members Src, Fyn and Yes regulate epithelial cell proliferation and migration during tissue regeneration and transformation, thus implicating conserved and specific functions. In patients with colon cancer, SFK activity is a marker of poor clinical prognosis and a potent driver of metastasis formation. These tumorigenic activities are linked to SFK capacity to promote the dissemination and tumour-initiating capacities of epithelial tumour cells. However, it is unclear how SFKs promote colon tumour formation and metastatic progression because SFK-encoding genes are unfrequently mutated in human cancer. Here, we review recent findings on SFK signalling during intestinal homeostasis, regeneration and tumorigenesis. We also describe the key nongenetic mechanisms underlying SFK tumour activities in colorectal cancer, and discuss how these mechanisms could be exploited in therapeutic strategies to target SFK signalling in metastatic colon cancer.
Collapse
|
8
|
Sun D, Bai M, Jiang Y, Hu M, Wu S, Zheng W, Zhang Z. Roles of follicle stimulating hormone and its receptor in human metabolic diseases and cancer. Am J Transl Res 2020; 12:3116-3132. [PMID: 32774689 PMCID: PMC7407683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) play an important role in human metabolic diseases and cancer. Evidence showed that FSHR is not only distributed in ovary and testis but also in other cells or organs such as osteoclast, adipocytes, liver, pituitary cancer and so forth. Moreover, FSH is associated with lipogenesis, inflammation, insulin sensitivity, thermogenesis, skeletal metabolism, osteogenesis and ovarian cancer, all of which have been confirmed closely related to metabolic diseases or metabolic-related cancer. Therefore, FSH and FSHR may be potential therapeutic targets for metabolic diseases and metabolic-related cancer. Epidemiological researches revealed close relationship between FSH/FSHR and metabolic diseases or cancer. Experimental studies elucidated the underlying mechanism both in vivo and in vitro. We reviewed the recent researches and present an integrated framework of FSH/FSHR and metabolic diseases and cancer, which provides potential targets for the treatments of metabolic diseases and cancer.
Collapse
Affiliation(s)
- Di Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong UniversityShanghai 200080, China
- Department of Obstetrics and Gynecology, Shanghai General HospitalShanghai 200080, China
| | - Mingzhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong UniversityShanghai 200080, China
- Department of Obstetrics and Gynecology, Shanghai General HospitalShanghai 200080, China
| | - Yanyu Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong UniversityShanghai 200080, China
- Department of Obstetrics and Gynecology, Shanghai First People’s Hospital, Baoshan BranchShanghai 201900, China
| | - Meiyan Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong UniversityShanghai 200080, China
- Department of Obstetrics and Gynecology, Shanghai First People’s Hospital, Baoshan BranchShanghai 201900, China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General HospitalShanghai 200080, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong UniversityShanghai 200080, China
- Department of Obstetrics and Gynecology, Shanghai First People’s Hospital, Baoshan BranchShanghai 201900, China
- Department of Obstetrics and Gynecology, Shanghai General HospitalShanghai 200080, China
| |
Collapse
|
9
|
Levoin N, Jean M, Legembre P. CD95 Structure, Aggregation and Cell Signaling. Front Cell Dev Biol 2020; 8:314. [PMID: 32432115 PMCID: PMC7214685 DOI: 10.3389/fcell.2020.00314] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023] Open
Abstract
CD95 is a pre-ligand-associated transmembrane (TM) receptor. The interaction with its ligand CD95L brings to a next level its aggregation and triggers different signaling pathways, leading to cell motility, differentiation or cell death. This diversity of biological responses associated with a unique receptor devoid of enzymatic property raises the question of whether different ligands exist, or whether the fine-tuned control of CD95 aggregation and conformation, its distribution within certain plasma membrane sub-domains or the pattern of post-translational modifications account for this such broad-range of cell signaling. Herein, we review how the different domains of CD95 and their post-translational modifications or the different forms of CD95L can participate in the receptor aggregation and induction of cell signaling. Understanding how CD95 response goes from cell death to cell proliferation, differentiation and motility is a prerequisite to reveal novel therapeutic options to treat chronic inflammatory disorders and cancers.
Collapse
Affiliation(s)
| | - Mickael Jean
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes, France
| | | |
Collapse
|
10
|
Seyrek K, Lavrik IN. Modulation of CD95-mediated signaling by post-translational modifications: towards understanding CD95 signaling networks. Apoptosis 2020; 24:385-394. [PMID: 31069559 DOI: 10.1007/s10495-019-01540-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD95 is a member of the death receptor family and is well-known to promote apoptosis. However, accumulating evidence indicates that in some context CD95 has not only the potential to induce apoptosis but also can trigger non-apoptotic signal leading to cell survival, proliferation, cancer growth and metastasis. Despite extensive investigations focused on alterations in the expression level of CD95 and associated signal molecules, very few studies, however, have investigated the effects of post-translational modifications such as glycosylation, phosphorylation, palmitoylation, nitrosylation and glutathionylation on CD95 function. Post-translational modifications of CD95 in mammalian systems are likely to play a more prominent role than anticipated in CD95 induced cell death. In this review we will focus on the alterations in CD95-mediated signaling caused by post-translational modifications of CD95.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
11
|
Lafont E. Stress Management: Death Receptor Signalling and Cross-Talks with the Unfolded Protein Response in Cancer. Cancers (Basel) 2020; 12:E1113. [PMID: 32365592 PMCID: PMC7281445 DOI: 10.3390/cancers12051113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout tumour progression, tumour cells are exposed to various intense cellular stress conditions owing to intrinsic and extrinsic cues, to which some cells are remarkably able to adapt. Death Receptor (DR) signalling and the Unfolded Protein Response (UPR) are two stress responses that both regulate a plethora of outcomes, ranging from proliferation, differentiation, migration, cytokine production to the induction of cell death. Both signallings are major modulators of physiological tissue homeostasis and their dysregulation is involved in tumorigenesis and the metastastic process. The molecular determinants of the control between the different cellular outcomes induced by DR signalling and the UPR in tumour cells and their stroma and their consequences on tumorigenesis are starting to be unravelled. Herein, I summarize the main steps of DR signalling in relation to its cellular and pathophysiological roles in cancer. I then highlight how the UPR and DR signalling control common cellular outcomes and also cross-talk, providing potential opportunities to further understand the development of malignancies.
Collapse
Affiliation(s)
- Elodie Lafont
- Inserm U1242, Université de Rennes, 35042 Rennes, France;
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| |
Collapse
|
12
|
Gülcüler Balta GS, Monzel C, Kleber S, Beaudouin J, Balta E, Kaindl T, Chen S, Gao L, Thiemann M, Wirtz CR, Samstag Y, Tanaka M, Martin-Villalba A. 3D Cellular Architecture Modulates Tyrosine Kinase Activity, Thereby Switching CD95-Mediated Apoptosis to Survival. Cell Rep 2019; 29:2295-2306.e6. [DOI: 10.1016/j.celrep.2019.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 08/14/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
|
13
|
Rossin A, Miloro G, Hueber AO. TRAIL and FasL Functions in Cancer and Autoimmune Diseases: Towards an Increasing Complexity. Cancers (Basel) 2019; 11:cancers11050639. [PMID: 31072029 PMCID: PMC6563024 DOI: 10.3390/cancers11050639] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL/TNFSF10) and Fas Ligand (FasL/TNFSF6), two major cytokines of the TNF (Tumor Necrosis Factor) superfamily, exert their main functions from the immune system compartment. Mice model studies revealed that TRAIL and FasL-mediated signalling both control the homeostasis of the immune cells, mainly from the lymphoid lineage, and function on cytotoxic cells as effector proteins to eliminate the compromised cells. The first clues in the physiological functions of TRAIL arose from the analysis of TRAIL deficient mice, which, even though they are viable and fertile, are prone to cancer and autoimmune diseases development, revealing TRAIL as an important safeguard against autoimmunity and cancer. The naturally occurring gld (generalized lymphoproliferative disease) and lpr (lymphoproliferation) mutant mice develop lymphadenopathy and lupus-like autoimmune disease. The discovery that they are mutated in the fasl and the fas receptor gene, respectively, demonstrates the critical role of the FasL/Fas system in lymphocyte homeostasis and autoimmunity. This review summarizes the state of current knowledge regarding the key death and non-death immune functions that TRAIL and FasL play in the initiation and progression of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Aurélie Rossin
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France.
| | - Giorgia Miloro
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France.
| | | |
Collapse
|
14
|
Wallach D. The Tumor Necrosis Factor Family: Family Conventions and Private Idiosyncrasies. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028431. [PMID: 28847899 DOI: 10.1101/cshperspect.a028431] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tumor necrosis factor (TNF) cytokine family and the TNF/nerve growth factor (NGF) family of their cognate receptors together control numerous immune functions, as well as tissue-homeostatic and embryonic-development processes. These diverse functions are dictated by both shared and distinct features of family members, and by interactions of some members with nonfamily ligands and coreceptors. The spectra of their activities are further expanded by the occurrence of the ligands and receptors in both membrane-anchored and soluble forms, by "re-anchoring" of soluble forms to extracellular matrix components, and by signaling initiation via intracellular domains (IDs) of both receptors and ligands. Much has been learned about shared features of the receptors as well as of the ligands; however, we still have only limited knowledge of the mechanistic basis for their functional heterogeneity and for the differences between their functions and those of similarly acting cytokines of other families.
Collapse
Affiliation(s)
- David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
15
|
The tyrosine phosphorylated pro-survival form of Fas intensifies the EGF-induced signal in colorectal cancer cells through the nuclear EGFR/STAT3-mediated pathway. Sci Rep 2018; 8:12424. [PMID: 30127519 PMCID: PMC6102278 DOI: 10.1038/s41598-018-30804-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Tyrosine phosphorylation of Fas (TNFRSF6/CD95) in its death domain turns off Fas-mediated apoptosis, turns on the pro-survival signal, and has implications in different cancers types. We show here that Fas in its pro-survival state, phosphorylated at Y291 (pY291-Fas), functionally interacts with the epidermal growth factor receptor (EGFR), a key cancer-driving protein and major therapeutic target. Using an evolution-guided pY291-Fas proxy, RNA interference, and site-specific phospho-protein detection, we show that pY291-Fas significantly intensifies EGFR signaling in anti-EGFR-resistant colorectal cancer cells via the Yes-1/STAT3-mediated pathway. The pY291-Fas is essential for the EGF-induced formation of the Fas-mediated nuclear EGFR/STAT3 signaling complex consisting of Fas, EGFR, Yes-1, Src, and STAT3. The pY291-Fas accumulates in the nucleus upon EGF treatment and promotes the nuclear localization of phospho-EGFR and phospho-STAT3, the expression of cyclin D1, the activation of STAT3-mediated Akt and MAPK pathways, and cell proliferation and migration. This novel cancer-promoting function of phosphorylated Fas in the nuclear EGFR signaling constitutes the foundation for developing pro-survival-Fas targeted anti-cancer therapies to overcome disease recurrence in patients with anti-EGFR resistant cancer.
Collapse
|
16
|
Narla G, Sangodkar J, Ryder CB. The impact of phosphatases on proliferative and survival signaling in cancer. Cell Mol Life Sci 2018; 75:2695-2718. [PMID: 29725697 PMCID: PMC6023766 DOI: 10.1007/s00018-018-2826-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.
Collapse
Affiliation(s)
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
17
|
Site-Specific Detection of Tyrosine Phosphorylated CD95 Following Protein Separation by Conventional and Phospho-Protein Affinity SDS-PAGE. Methods Mol Biol 2018; 1557:173-188. [PMID: 28078592 DOI: 10.1007/978-1-4939-6780-3_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Phosphorylation of two tyrosines in the death domain of CD95 is a critical mechanism in determining the receptor's choices between cell death and survival signals. Recently, site-specific monoclonal antibodies against phosphorylated tyrosines of CD95 have been generated and used to successfully detect each phosphorylated death domain tyrosine of CD95 directly and separately by immunoblotting. Here we provide detailed protocols and useful tips for a successful site-specific detection of phosphorylated death domain tyrosine of CD95 following a protein separation by sizes (conventional SDS-PAGE) and by degrees of phosphorylation (phospho-protein affinity, mobility shift SDS-PAGE).
Collapse
|
18
|
Choi S, Cornall R, Lesourne R, Love PE. THEMIS: Two Models, Different Thresholds. Trends Immunol 2017; 38:622-632. [PMID: 28697966 DOI: 10.1016/j.it.2017.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 11/17/2022]
Abstract
THEMIS, a recently identified T-lineage-restricted protein, is the founding member of a large metazoan protein family. Gene inactivation studies have revealed a critical requirement for THEMIS during thymocyte positive selection, implicating THEMIS in signaling downstream of the T cell antigen receptor (TCR), but the mechanistic underpinnings of THEMIS function have remained elusive. A previous model posited that THEMIS prevents thymocytes from inappropriately crossing the positive/negative selection threshold by dampening TCR signaling. However, new data suggest an alternative model where THEMIS enhances TCR signaling enabling thymocytes to reach the threshold for positive selection, avoiding death by neglect. We review the data supporting each model and conclude that the preponderance of evidence favors an enhancing function for THEMIS in TCR signaling.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Cornall
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Balomenos D, Shokri R, Daszkiewicz L, Vázquez-Mateo C, Martínez-A C. On How Fas Apoptosis-Independent Pathways Drive T Cell Hyperproliferation and Lymphadenopathy in lpr Mice. Front Immunol 2017; 8:237. [PMID: 28344578 PMCID: PMC5344898 DOI: 10.3389/fimmu.2017.00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
Fas induces massive apoptosis in T cells after repeated in vitro T cell receptor (TCR) stimulation and is critical for lymphocyte homeostasis in Fas-deficient (lpr) mice. Although the in vitro Fas apoptotic mechanism has been defined, there is a large conceptual gap between this in vitro phenomenon and the pathway that leads to in vivo development of lymphadenopathy and autoimmunity. A striking abnormality in lpr mice is the excessive proliferation of CD4+ and CD8+ T cells, and more so of the double-negative TCR+CD4−CD8−B220+ T cells. The basis of lpr T cell hyperproliferation remains elusive, as it cannot be explained by Fas-deficient apoptosis. T cell-directed p21 overexpression reduces hyperactivation/hyperproliferation of all lpr T cell subtypes and lymphadenopathy in lpr mice. p21 controls expansion of repeatedly stimulated T cells without affecting apoptosis. These results confirm a direct link between hyperactivation/hyperproliferation, autoreactivity, and lymphadenopathy in lpr mice and, with earlier studies, suggest that Fas apoptosis-independent pathways control lpr T cell hyperproliferation. lpr T cell hyperproliferation could be an indirect result of the defective apoptosis of repeatedly stimulated lpr T cells. Nonetheless, in this perspective, we argue for an alternative setting, in which lack of Fas would directly cause lpr T cell hyperactivation/hyperproliferation in vivo. We propose that Fas/Fas ligand (FasL) acts as an activation inhibitor of recurrently stimulated T cells, and that its disruption causes overexpansion of T cells in lpr mice. Research to define the underlying mechanism of this Fas/FasL effect could resolve the phenotype of lpr mice and lead to therapeutics for related human syndromes.
Collapse
Affiliation(s)
- Dimitrios Balomenos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| | - Rahman Shokri
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| | - Lidia Daszkiewicz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| | - Cristina Vázquez-Mateo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| |
Collapse
|
20
|
Characterization of a new fungal immunomodulatory protein, FIP-dsq2 from Dichomitus squalens. J Biotechnol 2017; 246:45-51. [PMID: 28202377 DOI: 10.1016/j.jbiotec.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/15/2016] [Accepted: 02/09/2017] [Indexed: 11/20/2022]
Abstract
FIP-dsq2, a new immunomodulatory protein, was identified in Basidiomycota Dichomitus squalens by gene mining. FIP-dsq2 contained 111 amino acids with a molecular weight of 12.51kDa. FIP-dsq2 had a homology range of 51-65% to the reported FIPs. The predicted 3-dimensional model had more similar identical folding patterns in LZ-8 than for FIP-fve. Evolutionary analysis indicated substantial phylogenetic differences were existed with the other FIPs. Overexpression of a 14.07kDa soluble recombinant FIP-dsq2 (rFIP-dsq2) was achieved in Rosetta (pGEX-6P-1) and the purified recombinant protein was homodimer verified by gel filtration chromatography analysis. Antitumour ability of rFIP-dsq2 to human lung adenocarcinoma A549 cells was between LZ-8 and FIP-fve. The cytotoxic effect of rFIP-dsq2 in A549 cancer cells was dose-dependent and the half-maximal inhibitory concentration (IC50) was 15.08μg/mL. Furthermore, rFIP-dsq2 at 8μg/mL could significantly induce apoptosis and interrupt migration in A549 cells. In addition, the antitumour-mechanism exploration suggested that rFIP-dsq2 inhibited A549 proliferation uniquely via apoptotic cell death pathway. The results stated that rFIP-dsq2 was a promising candidate for use in future lung cancer therapy.
Collapse
|
21
|
Abstract
This work aimed at building a 3D model of trimeric apo CD95. By combining different molecular modeling approaches and experimental information, we have been able to obtain a consensual organization of the complex. Our strategy permitted the construction of a plausible trimer, and to sketch the interface between protomers. The final model will guide further experimental investigations and understanding of CD95 structure and functions.
Collapse
Affiliation(s)
- Nicolas Levoin
- Bioprojet-Biotech, 4 rue du Chesnay Beauregard, 5762, Saint Gregoire, France.
| |
Collapse
|
22
|
Chakrabandhu K, Hueber AO. Fas Versatile Signaling and Beyond: Pivotal Role of Tyrosine Phosphorylation in Context-Dependent Signaling and Diseases. Front Immunol 2016; 7:429. [PMID: 27799932 PMCID: PMC5066474 DOI: 10.3389/fimmu.2016.00429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
The Fas/FasL system is known, first and foremost, as a potent apoptosis activator. While its proapoptotic features have been studied extensively, evidence that the Fas/FasL system can elicit non-death signals has also accumulated. These non-death signals can promote survival, proliferation, migration, and invasion of cells. The key molecular mechanism that determines the shift from cell death to non-death signals had remained unclear until the recent identification of the tyrosine phosphorylation in the death domain of Fas as the reversible signaling switch. In this review, we present the connection between the recent findings regarding the control of Fas multi-signals and the context-dependent signaling choices. This information can help explain variable roles of Fas signaling pathway in different pathologies.
Collapse
|