1
|
Hunt BJ, Pegoraro M, Marshall H, Mallon EB. A role for DNA methylation in bumblebee morphogenesis hints at female-specific developmental erasure. INSECT MOLECULAR BIOLOGY 2024; 33:481-492. [PMID: 38348493 DOI: 10.1111/imb.12897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 08/20/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, are crucial factors in animal development. In some mammals, almost all DNA methylation is erased during embryo development and re-established in a sex- and cell-specific manner. This erasure and re-establishment is thought to primarily be a vertebrate-specific trait. Insects are particularly interesting in terms of development as many species often undergo remarkable morphological changes en route to maturity, that is, morphogenesis. However, little is known about the role of epigenetic mechanisms in this process across species. We have used whole-genome bisulfite sequencing to track genome-wide DNA methylation changes through the development of an economically and environmentally important pollinator species, the bumblebee Bombus terrestris (Hymenoptera:Apidae Linnaeus). We find overall levels of DNA methylation vary throughout development, and we find developmentally relevant differentially methylated genes throughout. Intriguingly, we have identified a depletion of DNA methylation in ovaries/eggs and an enrichment of highly methylated genes in sperm. We suggest this could represent a sex-specific DNA methylation erasure event. To our knowledge, this is the first suggestion of possible developmental DNA methylation erasure in an insect species. This study lays the required groundwork for functional experimental work to determine if there is a causal nature to the DNA methylation differences identified. Additionally, the application of single-cell methylation sequencing to this system will enable more accurate identification of if or when DNA methylation is erased during development.
Collapse
Affiliation(s)
- Ben J Hunt
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mirko Pegoraro
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hollie Marshall
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Yi SV. Epigenetics Research in Evolutionary Biology: Perspectives on Timescales and Mechanisms. Mol Biol Evol 2024; 41:msae170. [PMID: 39235767 PMCID: PMC11376073 DOI: 10.1093/molbev/msae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Epigenetics research in evolutionary biology encompasses a variety of research areas, from regulation of gene expression to inheritance of environmentally mediated phenotypes. Such divergent research foci can occasionally render the umbrella term "epigenetics" ambiguous. Here I discuss several areas of contemporary epigenetics research in the context of evolutionary biology, aiming to provide balanced views across timescales and molecular mechanisms. The importance of epigenetics in development is now being assessed in many nonmodel species. These studies not only confirm the importance of epigenetic marks in developmental processes, but also highlight the significant diversity in epigenetic regulatory mechanisms across taxa. Further, these comparative epigenomic studies have begun to show promise toward enhancing our understanding of how regulatory programs evolve. A key property of epigenetic marks is that they can be inherited along mitotic cell lineages, and epigenetic differences that occur during early development can have lasting consequences on the organismal phenotypes. Thus, epigenetic marks may play roles in short-term (within an organism's lifetime or to the next generation) adaptation and phenotypic plasticity. However, the extent to which observed epigenetic variation occurs independently of genetic influences remains uncertain, due to the widespread impact of genetics on epigenetic variation and the limited availability of comprehensive (epi)genomic resources from most species. While epigenetic marks can be inherited independently of genetic sequences in some species, there is little evidence that such "transgenerational inheritance" is a general phenomenon. Rather, molecular mechanisms of epigenetic inheritance are highly variable between species.
Collapse
Affiliation(s)
- Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Marshall H, de la Filia AG, Cavalieri R, Mallon EB, Clark JM, Ross L. Lack of paternal silencing and ecotype-specific expression in head and body lice hybrids. Evol Lett 2024; 8:455-465. [PMID: 38818422 PMCID: PMC11134467 DOI: 10.1093/evlett/qrae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 06/01/2024] Open
Abstract
Paternal genome elimination (PGE) is a non-Mendelian inheritance system, described in numerous arthropod species, in which males develop from fertilized eggs, but their paternally inherited chromosomes are eliminated before or during spermatogenesis. Therefore, PGE males only transmit their maternally inherited set of chromosomes to their offspring. In addition to the elimination of paternal chromosomes, diverse PGE species have also repeatedly evolved the transcriptional silencing of the paternal genome, making males effectively haploid. However, it is unclear if this paternal chromosome silencing is mechanistically linked to the chromosome elimination or has evolved at a later stage, and if so, what drives the haploidization of males under PGE. In order to understand these questions, here we study the human louse, Pediculus humanus, which represents an ideal model system, as it appears to be the only instance of PGE where males eliminate, but not silence their paternal chromosomes, although the latter remains to be shown conclusively. In this study, we analyzed parent-of-origin allele-specific expression patterns in male offspring of crosses between head and body lice ecotypes. We show that hybrid adult males of P. humanus display biparental gene expression, which constitutes the first case of a species with PGE in which genetic activity of paternal chromosomes in the soma is not affected by embryonic silencing or (partial or complete) elimination. We did however also identify a small number of maternally biased genes (potentially imprinted genes), which may be involved in the elimination of paternal chromosomes during spermatogenesis. Finally, we have identified genes that show ecotype-specific expression bias. Given the low genetic diversity between ecotypes, this is suggestive for a role of epigenetic processes in ecotype differences.
Collapse
Affiliation(s)
- Hollie Marshall
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Cavalieri
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Eamonn B Mallon
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - John M Clark
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Peterson CR, Scott CB, Ghaffari R, Dixon G, Matz MV. Mixed Patterns of Intergenerational DNA Methylation Inheritance in Acropora. Mol Biol Evol 2024; 41:msae008. [PMID: 38243377 PMCID: PMC11079325 DOI: 10.1093/molbev/msae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
For sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors. If coral DNA methylation is transmissible across generations, this could potentially facilitate rapid acclimation to environmental change. We investigated methylation heritability in Acropora, a stony reef-building coral. Two Acropora millepora and two Acropora selago adults were crossed, producing eight offspring crosses (four hybrid, two of each species). We used whole-genome bisulfite sequencing to identify methylated loci and allele-specific alignments to quantify per-locus inheritance. If methylation is heritable, differential methylation (DM) between the parents should equal DM between paired offspring alleles at a given locus. We found a mixture of heritable and nonheritable loci, with heritable portions ranging from 44% to 90% among crosses. gBM was more heritable than intergenic methylation, and most loci had a consistent degree of heritability between crosses (i.e. the deviation between parental and offspring DM were of similar magnitude and direction). Our results provide evidence that coral methylation can be inherited but that heritability is heterogenous throughout the genome. Future investigations into this heterogeneity and its phenotypic implications will be important to understanding the potential capability of intergenerational environmental acclimation in reef building corals.
Collapse
Affiliation(s)
| | - Carly B Scott
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Rashin Ghaffari
- Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mikhail V Matz
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
de Carvalho CF, Slate J, Villoutreix R, Soria-Carrasco V, Riesch R, Feder JL, Gompert Z, Nosil P. DNA methylation differences between stick insect ecotypes. Mol Ecol 2023; 32:6809-6823. [PMID: 37864542 DOI: 10.1111/mec.17165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Epigenetic mechanisms, such as DNA methylation, can influence gene regulation and affect phenotypic variation, raising the possibility that they contribute to ecological adaptation. Beginning to address this issue requires high-resolution sequencing studies of natural populations to pinpoint epigenetic regions of potential ecological and evolutionary significance. However, such studies are still relatively uncommon, especially in insects, and are mainly restricted to a few model organisms. Here, we characterize patterns of DNA methylation for natural populations of Timema cristinae adapted to two host plant species (i.e. ecotypes). By integrating results from sequencing of whole transcriptomes, genomes and methylomes, we investigate whether environmental, host and genetic differences of these stick insects are associated with methylation levels of cytosine nucleotides in the CpG context. We report an overall genome-wide methylation level for T. cristinae of ~14%, with methylation being enriched in gene bodies and impoverished in repetitive elements. Genome-wide DNA methylation variation was strongly positively correlated with genetic distance (relatedness), but also exhibited significant host-plant effects. Using methylome-environment association analysis, we pinpointed specific genomic regions that are differentially methylated between ecotypes, with these regions being enriched for genes with functions in membrane processes. The observed association between methylation variation and genetic relatedness, and with the ecologically important variable of host plant, suggests a potential role for epigenetic modification in T. cristinae adaptation. To substantiate such adaptive significance, future studies could test whether methylation can be transmitted across generations and the extent to which it responds to experimental manipulation in field and laboratory studies.
Collapse
Affiliation(s)
| | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | | - Rüdiger Riesch
- University of Montpellier, CEFE, CNRS, EPHE, IRD, Montpellier, France
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, UK
| | - Jeffrey L Feder
- Department of Biology, Notre Dame University, South Bend, Indiana, USA
| | | | - Patrik Nosil
- School of Biosciences, University of Sheffield, Sheffield, UK
- University of Montpellier, CEFE, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
7
|
Bogan SN, Strader ME, Hofmann GE. Associations between DNA methylation and gene regulation depend on chromatin accessibility during transgenerational plasticity. BMC Biol 2023; 21:149. [PMID: 37365578 DOI: 10.1186/s12915-023-01645-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Epigenetic processes are proposed to be a mechanism regulating gene expression during phenotypic plasticity. However, environmentally induced changes in DNA methylation exhibit little-to-no association with differential gene expression in metazoans at a transcriptome-wide level. It remains unexplored whether associations between environmentally induced differential methylation and expression are contingent upon other epigenomic processes such as chromatin accessibility. We quantified methylation and gene expression in larvae of the purple sea urchin Strongylocentrotus purpuratus exposed to different ecologically relevant conditions during gametogenesis (maternal conditioning) and modeled changes in gene expression and splicing resulting from maternal conditioning as functions of differential methylation, incorporating covariates for genomic features and chromatin accessibility. We detected significant interactions between differential methylation, chromatin accessibility, and genic feature type associated with differential expression and splicing. RESULTS Differential gene body methylation had significantly stronger effects on expression among genes with poorly accessible transcriptional start sites while baseline transcript abundance influenced the direction of this effect. Transcriptional responses to maternal conditioning were 4-13 × more likely when accounting for interactions between methylation and chromatin accessibility, demonstrating that the relationship between differential methylation and gene regulation is partially explained by chromatin state. CONCLUSIONS DNA methylation likely possesses multiple associations with gene regulation during transgenerational plasticity in S. purpuratus and potentially other metazoans, but its effects are dependent on chromatin accessibility and underlying genic features.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA.
| | - Marie E Strader
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
- Department of Biology, Texas A&M University, College Station, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
| |
Collapse
|
8
|
de Carvalho CF. Epigenetic effects of climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101029. [PMID: 37028647 DOI: 10.1016/j.cois.2023.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Climate change has been causing severe modifications to the environment that are predicted to aggravate in the future, which create critical challenges for insects to cope. Populations can respond to the changes depending on the standing genetic variation. Additionally, they could potentially rely on epigenetic mechanisms as a source of phenotypic variation. These mechanisms can influence gene regulation and can respond to the external environment, being implicated in phenotypic plasticity. Thus, epigenetic variation could be advantageous in changing, unpredictable environments. However, little is known about causal relationships between epigenetic marks and insects' phenotypes, and whether the effects are truly beneficial to the fitness. Empirical studies are now urgent to better understand whether epigenetic variation can help or hinder insect populations facing climate change.
Collapse
Affiliation(s)
- Clarissa F de Carvalho
- Dep. de Ecologia e Biologia Evolutiva, Federal University of São Paulo, Diadema 09972-270, Brazil.
| |
Collapse
|
9
|
Marshall H, Nicholas MT, van Zweden JS, Wäckers F, Ross L, Wenseleers T, Mallon EB. DNA methylation is associated with codon degeneracy in a species of bumblebee. Heredity (Edinb) 2023; 130:188-195. [PMID: 36658299 PMCID: PMC10076500 DOI: 10.1038/s41437-023-00591-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Social insects display extreme phenotypic differences between sexes and castes even though the underlying genome can be almost identical. Epigenetic processes have been proposed as a possible mechanism for mediating these phenotypic differences. Using whole genome bisulfite sequencing of queens, males, and reproductive female workers we have characterised the sex- and caste-specific methylome of the bumblebee Bombus terrestris. We have identified a potential role for DNA methylation in histone modification processes which may influence sex and caste phenotypic differences. We also find differentially methylated genes generally show low levels of DNA methylation which may suggest a separate function for lowly methylated genes in mediating transcriptional plasticity, unlike highly methylated genes which are usually involved in housekeeping functions. We also examined the relationship between the underlying genome and the methylome using whole genome re-sequencing of the same queens and males. We find DNA methylation is enriched at zero-fold degenerate sites. We suggest DNA methylation may be acting as a targeted mutagen at these sites, providing substrate for selection via non-synonymous changes in the underlying genome. However, we did not see any relationship between DNA methylation and rates of positive selection in our samples. In order to fully assess a possible role for DNA methylation in adaptive processes a specifically designed study using natural population data is needed.
Collapse
Affiliation(s)
- H Marshall
- Department of Genetics and Genome Biology, The University of Leicester, Leicester, UK.
| | - M T Nicholas
- Department of Genetics and Genome Biology, The University of Leicester, Leicester, UK
| | - J S van Zweden
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - F Wäckers
- Biobest Belgium N.V., Westerlo, Belgium
- The Lancaster Environmental Centre, University of Lancaster, Lancaster, UK
| | - L Ross
- The Institute for Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - T Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - E B Mallon
- Department of Genetics and Genome Biology, The University of Leicester, Leicester, UK.
| |
Collapse
|
10
|
Fraser HB. Existing methods are effective at measuring natural selection on gene expression. Nat Ecol Evol 2022; 6:1836-1837. [PMID: 36344679 DOI: 10.1038/s41559-022-01889-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Wu X, Bhatia N, Grozinger CM, Yi SV. Comparative studies of genomic and epigenetic factors influencing transcriptional variation in two insect species. G3 GENES|GENOMES|GENETICS 2022; 12:6693626. [PMID: 36137211 PMCID: PMC9635643 DOI: 10.1093/g3journal/jkac230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Different genes show different levels of expression variability. For example, highly expressed genes tend to exhibit less expression variability. Genes whose promoters have TATA box and initiator motifs tend to have increased expression variability. On the other hand, DNA methylation of transcriptional units, or gene body DNA methylation, is associated with reduced gene expression variability in many species. Interestingly, some insect lineages, most notably Diptera including the canonical model insect Drosophila melanogaster, have lost DNA methylation. Therefore, it is of interest to determine whether genomic features similarly influence gene expression variability in lineages with and without DNA methylation. We analyzed recently generated large-scale data sets in D. melanogaster and honey bee (Apis mellifera) to investigate these questions. Our analysis shows that increased gene expression levels are consistently associated with reduced expression variability in both species, while the presence of TATA box is consistently associated with increased gene expression variability. In contrast, initiator motifs and gene lengths have weak effects limited to some data sets. Importantly, we show that a sequence characteristics indicative of gene body DNA methylation is strongly and negatively associate with gene expression variability in honey bees, while it shows no such association in D. melanogaster. These results suggest the evolutionary loss of DNA methylation in some insect lineages has reshaped the molecular mechanisms concerning the regulation of gene expression variability.
Collapse
Affiliation(s)
| | - Neharika Bhatia
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, GA 30332, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, PA 16801, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, GA 30332, USA
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara , Santa Barbara, CA 93106, USA
| |
Collapse
|
12
|
Gupta A, Nair S. Heritable Epigenomic Modifications Influence Stress Resilience and Rapid Adaptations in the Brown Planthopper ( Nilaparvata lugens). Int J Mol Sci 2022; 23:8728. [PMID: 35955860 PMCID: PMC9368798 DOI: 10.3390/ijms23158728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
DNA methylation in insects is integral to cellular differentiation, development, gene regulation, genome integrity, and phenotypic plasticity. However, its evolutionary potential and involvement in facilitating rapid adaptations in insects are enigmatic. Moreover, our understanding of these mechanisms is limited to a few insect species, of which none are pests of crops. Hence, we studied methylation patterns in the brown planthopper (BPH), a major rice pest, under pesticide and nutritional stress, across its life stages. Moreover, as the inheritance of epigenetic changes is fundamentally essential for acclimation, adaptability, and evolution, we determined the heritability and persistence of stress-induced methylation marks in BPH across generations. Our results revealed that DNA methylation pattern(s) in BPH varies/vary with environmental cues and is/are insect life-stage specific. Further, our findings provide novel insights into the heritability of stress-induced methylation marks in BPH. However, it was observed that, though heritable, these marks eventually fade in the absence of the stressors, thereby suggesting the existence of fitness cost(s) associated with the maintenance of the stressed epigenotype. Furthermore, we demonstrate how 5-azacytidine-mediated disruption of BPH methylome influences expression levels of stress-responsive genes and, thereby, highlight demethylation/methylation as a phenomenon underlying stress resilience of BPH.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
13
|
Ren L, Zhang H, Luo M, Gao X, Cui J, Zhang X, Liu S. Heterosis of growth trait regulated by DNA methylation and miRNA in allotriploid fish. Epigenetics Chromatin 2022; 15:19. [PMID: 35597966 PMCID: PMC9123727 DOI: 10.1186/s13072-022-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background Heterosis of growth traits in allotriploid fish has benefited the production of aquaculture for many years, yet its genetic and molecular basis has remained obscure. Now, an allotriploid complex, including two triploids and their diploid inbred parents, has provided an excellent model for investigating the potential regulatory mechanisms of heterosis. Results Here, we performed a series of analyses on DNA methylation modification and miRNA expression in combination with gene expression in the allotriploid complex. We first established a model of cis- and trans-regulation related to DNA methylation and miRNA in allotriploids. Then, comparative analyses showed that DNA methylation contributed to the emergence of a dosage compensation effect, which reduced gene expression levels in the triploid to the diploid state. We detected 31 genes regulated by DNA methylation in the subgenomes of the allotriploids. Finally, the patterns of coevolution between small RNAs and their homoeologous targets were classified and used to predict the regulation of miRNA expression in the allotriploids. Conclusions Our results uncovered the regulatory network between DNA methylation and miRNAs in allotriploids, which not only helps us understand the regulatory mechanisms of heterosis of growth traits but also benefits the study and application of epigenetics in aquaculture. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00455-6.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Mengxue Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xueyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
15
|
Wu X, Galbraith DA, Chatterjee P, Jeong H, Grozinger CM, Yi SV. Lineage and Parent-of-Origin Effects in DNA Methylation of Honey Bees (Apis mellifera) Revealed by Reciprocal Crosses and Whole-Genome Bisulfite Sequencing. Genome Biol Evol 2021; 12:1482-1492. [PMID: 32597952 PMCID: PMC7502210 DOI: 10.1093/gbe/evaa133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Parent-of-origin methylation arises when the methylation patterns of a particular allele are dependent on the parent it was inherited from. Previous work in honey bees has shown evidence of parent-of-origin-specific expression, yet the mechanisms regulating such pattern remain unknown in honey bees. In mammals and plants, DNA methylation is known to regulate parent-of-origin effects such as genomic imprinting. Here, we utilize genotyping of reciprocal European and Africanized honey bee crosses to study genome-wide allele-specific methylation patterns in sterile and reproductive individuals. Our data confirm the presence of allele-specific methylation in honey bees in lineage-specific contexts but also importantly, though to a lesser degree, parent-of-origin contexts. We show that the majority of allele-specific methylation occurs due to lineage rather than parent-of-origin factors, regardless of the reproductive state. Interestingly, genes affected by allele-specific DNA methylation often exhibit both lineage and parent-of-origin effects, indicating that they are particularly labile in terms of DNA methylation patterns. Additionally, we re-analyzed our previous study on parent-of-origin-specific expression in honey bees and found little association with parent-of-origin-specific methylation. These results indicate strong genetic background effects on allelic DNA methylation and suggest that although parent-of-origin effects are manifested in both DNA methylation and gene expression, they are not directly associated with each other.
Collapse
Affiliation(s)
- Xin Wu
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - David A Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University
| | - Paramita Chatterjee
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Hyeonsoo Jeong
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
16
|
Feng JW, Lu Y, Shao L, Zhang J, Li H, Chen LL. Phasing analysis of the transcriptome and epigenome in a rice hybrid reveals the inheritance and difference in DNA methylation and allelic transcription regulation. PLANT COMMUNICATIONS 2021; 2:100185. [PMID: 34327321 PMCID: PMC8299081 DOI: 10.1016/j.xplc.2021.100185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/14/2021] [Accepted: 04/13/2021] [Indexed: 05/16/2023]
Abstract
Hybrids are always a focus of botanical research and have a high practical value in agricultural production. To better understand allele regulation and differences in DNA methylation in hybrids, we developed a phasing pipeline for hybrid rice based on two parental genomes (PP2PG), which is applicable for Iso-Seq, RNA-Seq, and Bisulfite sequencing (BS-Seq). Using PP2PG, we analyzed differences in gene transcription, alternative splicing, and DNA methylation in an allele-specific manner between parents and progeny or different progeny alleles. The phasing of Iso-Seq data provided a great advantage in separating the whole gene structure and producing a significantly higher separation ratio than RNA-Seq. The interaction of hybrid alleles was studied by constructing an allele co-expression network that revealed the dominant allele effect in the network. The expression variation between parents and the parental alleles in progeny showed tissue- or environment-specific patterns, which implied a preference for trans-acting regulation under different conditions. In addition, by comparing allele-specific DNA methylation, we found that CG methylation was more likely to be inherited than CHG and CHH methylation, and its enrichment in genic regions was connected to gene structure. In addition to an effective phasing pipeline, we also identified differentiation in OsWAK38 gene structure that may have led to the expansion of allele functions in hybrids. In summary, we developed a phasing pipeline and provided valuable insights into alternative splicing, interaction networks, trans-acting regulation, and the inheritance of DNA methylation in hybrid rice.
Collapse
Affiliation(s)
- Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Lin Shao
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Li
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Corresponding author
| |
Collapse
|
17
|
Olney KC, Gibson JD, Natri HM, Underwood A, Gadau J, Wilson MA. Lack of parent-of-origin effects in Nasonia jewel wasp: A replication and extension study. PLoS One 2021; 16:e0252457. [PMID: 34111141 PMCID: PMC8191985 DOI: 10.1371/journal.pone.0252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022] Open
Abstract
In diploid cells, the paternal and maternal alleles are, on average, equally expressed. There are exceptions from this: a small number of genes express the maternal or paternal allele copy exclusively. This phenomenon, known as genomic imprinting, is common among eutherian mammals and some plant species; however, genomic imprinting in species with haplodiploid sex determination is not well characterized. Previous work reported no parent-of-origin effects in the hybrids of closely related haplodiploid Nasonia vitripennis and Nasonia giraulti jewel wasps, suggesting a lack of epigenetic reprogramming during embryogenesis in these species. Here, we replicate the gene expression dataset and observations using different individuals and sequencing technology, as well as reproduce these findings using the previously published RNA sequence data following our data analysis strategy. The major difference from the previous dataset is that they used an introgression strain as one of the parents and we found several loci that resisted introgression in that strain. Our results from both datasets demonstrate a species-of-origin effect, rather than a parent-of-origin effect. We present a reproducible workflow that others may use for replicating the results. Overall, we reproduced the original report of no parent-of-origin effects in the haplodiploid Nasonia using the original data with our new processing and analysis pipeline and replicated these results with our newly generated data.
Collapse
Affiliation(s)
- Kimberly C. Olney
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Joshua D. Gibson
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Heini M. Natri
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Avery Underwood
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Juergen Gadau
- Institut fuer Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
- * E-mail:
| |
Collapse
|
18
|
de la Filia AG, Mongue AJ, Dorrens J, Lemon H, Laetsch DR, Ross L. Males That Silence Their Father's Genes: Genomic Imprinting of a Complete Haploid Genome. Mol Biol Evol 2021; 38:2566-2581. [PMID: 33706381 PMCID: PMC8136510 DOI: 10.1093/molbev/msab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally inherited chromosomes, while the paternally inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not only eliminated from sperm, but also heterochromatinized early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased toward the maternal genome. However, up to 70% of somatically expressed genes are to some degree paternally expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Mongue
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Dorrens
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah Lemon
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik R Laetsch
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Pozo MI, Hunt BJ, Van Kemenade G, Guerra-Sanz JM, Wäckers F, Mallon EB, Jacquemyn H. The effect of DNA methylation on bumblebee colony development. BMC Genomics 2021; 22:73. [PMID: 33482723 PMCID: PMC7821684 DOI: 10.1186/s12864-021-07371-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although around 1% of cytosines in bees' genomes are known to be methylated, less is known about methylation's effect on bee behavior and fitness. Chemically altered DNA methylation levels have shown clear changes in the dominance and reproductive behavior of workers in queen-less colonies, but the global effect of DNA methylation on caste determination and colony development remains unclear, mainly because of difficulties in controlling for genetic differences among experimental subjects in the parental line. Here, we investigated the effect of the methylation altering agent decitabine on the developmental rate of full bumblebee colonies. Whole genome bisulfite sequencing was used to assess differences in methylation status. RESULTS Our results showed fewer methylated loci in the control group. A total of 22 CpG loci were identified as significantly differentially methylated between treated and control workers with a change in methylation levels of 10% or more. Loci that were methylated differentially between groups participated in pathways including neuron function, oocyte regulation and metabolic processes. Treated colonies tended to develop faster, and therefore more workers were found at a given developmental stage. However, male production followed the opposite trend and it tended to be higher in control colonies. CONCLUSION Overall, our results indicate that altered methylation patterns resulted in an improved cooperation between workers, while there were no signs of abnormal worker dominance or caste determination.
Collapse
Affiliation(s)
- María I Pozo
- KU Leuven, Biology Department, Plant Population and Conservation Biology, B-3001, Heverlee, Belgium.
| | - Benjamin J Hunt
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | | | | | - Felix Wäckers
- Biobest Group, Research and Development, B-2260, Westerlo, Belgium
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Hans Jacquemyn
- KU Leuven, Biology Department, Plant Population and Conservation Biology, B-3001, Heverlee, Belgium
| |
Collapse
|
20
|
Yagound B, Remnant EJ, Buchmann G, Oldroyd BP. Intergenerational transfer of DNA methylation marks in the honey bee. Proc Natl Acad Sci U S A 2020; 117:32519-32527. [PMID: 33257552 PMCID: PMC7768778 DOI: 10.1073/pnas.2017094117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The evolutionary significance of epigenetic inheritance is controversial. While epigenetic marks such as DNA methylation can affect gene function and change in response to environmental conditions, their role as carriers of heritable information is often considered anecdotal. Indeed, near-complete DNA methylation reprogramming, as occurs during mammalian embryogenesis, is a major hindrance for the transmission of nongenetic information between generations. Yet it remains unclear how general DNA methylation reprogramming is across the tree of life. Here we investigate the existence of epigenetic inheritance in the honey bee. We studied whether fathers can transfer epigenetic information to their daughters through DNA methylation. We performed instrumental inseminations of queens, each with four different males, retaining half of each male's semen for whole genome bisulfite sequencing. We then compared the methylation profile of each father's somatic tissue and semen with the methylation profile of his daughters. We found that DNA methylation patterns were highly conserved between tissues and generations. There was a much greater similarity of methylomes within patrilines (i.e., father-daughter subfamilies) than between patrilines in each colony. Indeed, the samples' methylomes consistently clustered by patriline within colony. Samples from the same patriline had twice as many shared methylated sites and four times fewer differentially methylated regions compared to samples from different patrilines. Our findings indicate that there is no DNA methylation reprogramming in bees and, consequently, that DNA methylation marks are stably transferred between generations. This points to a greater evolutionary potential of the epigenome in invertebrates than there is in mammals.
Collapse
Affiliation(s)
- Boris Yagound
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Emily J Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Gabriele Buchmann
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, 14193 Berlin, Germany
| |
Collapse
|
21
|
Molecular and evolutionary processes generating variation in gene expression. Nat Rev Genet 2020; 22:203-215. [PMID: 33268840 DOI: 10.1038/s41576-020-00304-w] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Heritable variation in gene expression is common within and between species. This variation arises from mutations that alter the form or function of molecular gene regulatory networks that are then filtered by natural selection. High-throughput methods for introducing mutations and characterizing their cis- and trans-regulatory effects on gene expression (particularly, transcription) are revealing how different molecular mechanisms generate regulatory variation, and studies comparing these mutational effects with variation seen in the wild are teasing apart the role of neutral and non-neutral evolutionary processes. This integration of molecular and evolutionary biology allows us to understand how the variation in gene expression we see today came to be and to predict how it is most likely to evolve in the future.
Collapse
|
22
|
Lin ZJ, Wang X, Wang J, Tan Y, Tang X, Werren JH, Zhang D, Wang X. Comparative analysis reveals the expansion of mitochondrial DNA control region containing unusually high G-C tandem repeat arrays in Nasonia vitripennis. Int J Biol Macromol 2020; 166:1246-1257. [PMID: 33159940 DOI: 10.1016/j.ijbiomac.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
Insect mitochondrial DNA (mtDNA) ranges from 14 to 19 kbp, and the size difference is attributed to the AT-rich control region. Jewel wasps have a parasitoid lifestyle, which may affect mitochondria function and evolution. We sequenced, assembled, and annotated mitochondrial genomes in Nasonia and outgroup species. Gene composition and order are conserved within Nasonia, but they differ from other parasitoids by two large inversion events that were not reported before. We observed a much higher substitution rate relative to the nuclear genome and mitochondrial introgression between N. giraulti and N. oneida, which is consistent with previous studies. Most strikingly, N. vitripennis mtDNA has an extremely long control region (7665 bp), containing twenty-nine 217 bp tandem repeats and can fold into a super-cruciform structure. In contrast to tandem repeats commonly found in other mitochondria, these high-copy repeats are highly conserved (98.7% sequence identity), much longer in length (approximately 8 Kb), extremely GC-rich (50.7%), and CpG-rich (percent CpG 19.4% vs. 1.1% in coding region), resulting in a 23 kbp mtDNA beyond the typical size range in insects. These N. vitripennis-specific mitochondrial repeats are not related to any known sequences in insect mitochondria. Their evolutionary origin and functional consequences warrant further investigations.
Collapse
Affiliation(s)
- Zi Jie Lin
- Department of Chemistry, Columbus State University, Columbus, GA 31909, United States of America
| | - Xiaozhu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States of America
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, United States of America
| | - Xueming Tang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, United States of America
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States of America; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States of America; Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, United States of America; Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, United States of America.
| |
Collapse
|
23
|
Wang X, Kelkar YD, Xiong X, Martinson EO, Lynch J, Zhang C, Werren JH, Wang X. Genome Report: Whole Genome Sequence and Annotation of the Parasitoid Jewel Wasp Nasonia giraulti Laboratory Strain RV2X[u]. G3 (BETHESDA, MD.) 2020; 10:2565-2572. [PMID: 32571804 PMCID: PMC7407473 DOI: 10.1534/g3.120.401200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
Jewel wasps in the genus of Nasonia are parasitoids with haplodiploidy sex determination, rapid development and are easy to culture in the laboratory. They are excellent models for insect genetics, genomics, epigenetics, development, and evolution. Nasonia vitripennis (Nv) and N. giraulti (Ng) are closely-related species that can be intercrossed, particularly after removal of the intracellular bacterium Wolbachia, which serve as a powerful tool to map and positionally clone morphological, behavioral, expression and methylation phenotypes. The Nv reference genome was assembled using Sanger, PacBio and Nanopore approaches and annotated with extensive RNA-seq data. In contrast, Ng genome is only available through low coverage resequencing. Therefore, de novo Ng assembly is in urgent need to advance this system. In this study, we report a high-quality Ng assembly using 10X Genomics linked-reads with 670X sequencing depth. The current assembly has a genome size of 259,040,977 bp in 3,160 scaffolds with 38.05% G-C and a 98.6% BUSCO completeness score. 97% of the RNA reads are perfectly aligned to the genome, indicating high quality in contiguity and completeness. A total of 14,777 genes are annotated in the Ng genome, and 72% of the annotated genes have a one-to-one ortholog in the Nv genome. We reported 5 million Ng-Nv SNPs which will facility mapping and population genomic studies in Nasonia In addition, 42 Ng-specific genes were identified by comparing with Nv genome and annotation. This is the first de novo assembly for this important species in the Nasonia model system, providing a useful new genomic toolkit.
Collapse
Affiliation(s)
- Xiaozhu Wang
- Department of Pathobiology, Auburn University, AL 36849
| | | | - Xiao Xiong
- Department of Pathobiology, Auburn University, AL 36849
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, China
| | - Ellen O Martinson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Jeremy Lynch
- Department of Biological Science, University of Illinois at Chicago, IL 60607
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, China
| | - John H Werren
- Department of Biology, University of Rochester, NY 14627
| | - Xu Wang
- Department of Pathobiology, Auburn University, AL 36849,
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
- Alabama Agricultural Experiment Station, Auburn, AL 36849, and
- Department of Entomology and Plant Pathology, Auburn University, AL 36849
| |
Collapse
|
24
|
Marshall H, Jones ARC, Lonsdale ZN, Mallon EB. Bumblebee Workers Show Differences in Allele-Specific DNA Methylation and Allele-Specific Expression. Genome Biol Evol 2020; 12:1471-1481. [PMID: 32597949 PMCID: PMC7502211 DOI: 10.1093/gbe/evaa132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Allele-specific expression is when one allele of a gene shows higher levels of expression compared with the other allele, in a diploid organism. Recent work has identified allele-specific expression in a number of Hymenopteran species. However, the molecular mechanism which drives this allelic expression bias remains unknown. In mammals, DNA methylation is often associated with genes which show allele-specific expression. DNA methylation systems have been described in species of Hymenoptera, providing a candidate mechanism. Using previously generated RNA-Seq and whole-genome bisulfite sequencing from reproductive and sterile bumblebee (Bombus terrestris) workers, we have identified genome-wide allele-specific expression and allele-specific DNA methylation. The majority of genes displaying allele-specific expression are common between reproductive and sterile workers and the proportion of allele-specific expression bias generally varies between genetically distinct colonies. We have also identified genome-wide allele-specific DNA methylation patterns in both reproductive and sterile workers, with reproductive workers showing significantly more genes with allele-specific methylation. Finally, there is no significant overlap between genes showing allele-specific expression and allele-specific methylation. These results indicate that cis-acting DNA methylation does not directly drive genome-wide allele-specific expression in this species.
Collapse
Affiliation(s)
- Hollie Marshall
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Alun R C Jones
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Zoë N Lonsdale
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| |
Collapse
|
25
|
Lievers R, Kuperus P, Groot AT. DNA methylation patterns in the tobacco budworm, Chloridea virescens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103370. [PMID: 32251721 DOI: 10.1016/j.ibmb.2020.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is an important epigenetic modification that is prone to stochastic variation and is responsive to environmental factors. Yet changes in DNA methylation could persist across generations and thus play an important role in evolution. In this study, we used methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) to evaluate whether DNA methylation could contribute to the evolution of the sexual communication signal in the noctuid moth Chloridea virescens. We found that most DNA methylation was consistent across tissues, although some methylation sites were specifically found in pheromone glands. We also found significant DNA methylation differences among families and two pheromone phenotype selection lines, and these differences correlated with genetic variation. Most DNA methylation patterns were inherited, although some sites were subject to spontaneous de novo DNA methylation across generations. Thus, DNA methylation likely plays a role in a wide range of processes in moths. Together, our results present an important initial step towards understanding the potential role of DNA methylation in the evolution of sexual communication signals in moths.
Collapse
Affiliation(s)
- Rik Lievers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands.
| | - Peter Kuperus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands; Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell strasse 8, 07745, Jena, Germany
| |
Collapse
|
26
|
Smith NMA, Yagound B, Remnant EJ, Foster CSP, Buchmann G, Allsopp MH, Kent CF, Zayed A, Rose SA, Lo K, Ashe A, Harpur BA, Beekman M, Oldroyd BP. Paternally-biased gene expression follows kin-selected predictions in female honey bee embryos. Mol Ecol 2020; 29:1523-1533. [PMID: 32220095 DOI: 10.1111/mec.15419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
Abstract
The Kinship Theory of Genomic Imprinting (KTGI) posits that, in species where females mate with multiple males, there is selection for a male to enhance the reproductive success of his offspring at the expense of other males and his mating partner. Reciprocal crosses between honey bee subspecies show parent-of-origin effects for reproductive traits, suggesting that males modify the expression of genes related to female function in their female offspring. This effect is likely to be greater in the Cape honey bee (Apis mellifera capensis), because a male's daughters have the unique ability to produce female offspring that can develop into reproductive workers or the next queen without mating. We generated reciprocal crosses between Capensis and another subspecies and used RNA-seq to identify transcripts that are over- or underexpressed in the embryos, depending on the parental origin of the gene. As predicted, 21 genes showed expression bias towards the Capensis father's allele in colonies with a Capensis father, with no such bias in the reciprocal cross. A further six genes showed a consistent bias towards expression of the father's allele across all eight colonies examined, regardless of the direction of the cross. Consistent with predictions of the KTGI, six of the 21 genes are associated with female reproduction. No gene consistently showed overexpression of the maternal allele.
Collapse
Affiliation(s)
- Nicholas M A Smith
- Behaviour and Genetics of Social Insects Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour and Genetics of Social Insects Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Charles S P Foster
- Evolutionary and Integrative Zoology Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Gabriele Buchmann
- Behaviour and Genetics of Social Insects Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Michael H Allsopp
- Honey Bee Research Section, ARC-Plant Protection Research Institute, Stellenbosch, South Africa
| | - Clement F Kent
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Amro Zayed
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Stephen A Rose
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Kitty Lo
- Statistics Research Group, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Alyson Ashe
- Molecular Biosciences, The University of Sydney, Sydney, NSW, Australia
| | - Brock A Harpur
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Madeleine Beekman
- Behaviour and Genetics of Social Insects Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Wang H, Sawai A, Toji N, Sugioka R, Shibata Y, Suzuki Y, Ji Y, Hayase S, Akama S, Sese J, Wada K. Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds. PLoS Biol 2019; 17:e3000476. [PMID: 31721761 PMCID: PMC6853299 DOI: 10.1371/journal.pbio.3000476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Learning of most motor skills is constrained in a species-specific manner. However, the proximate mechanisms underlying species-specific learned behaviors remain poorly understood. Songbirds acquire species-specific songs through learning, which is hypothesized to depend on species-specific patterns of gene expression in functionally specialized brain regions for vocal learning and production, called song nuclei. Here, we leveraged two closely related songbird species, zebra finch, owl finch, and their interspecific first-generation (F1) hybrids, to relate transcriptional regulatory divergence between species with the production of species-specific songs. We quantified genome-wide gene expression in both species and compared this with allele-specific expression in F1 hybrids to identify genes whose expression in song nuclei is regulated by species divergence in either cis- or trans-regulation. We found that divergence in transcriptional regulation altered the expression of approximately 10% of total transcribed genes and was linked to differential gene expression between the two species. Furthermore, trans-regulatory changes were more prevalent than cis-regulatory and were associated with synaptic formation and transmission in song nucleus RA, the avian analog of the mammalian laryngeal motor cortex. We identified brain-derived neurotrophic factor (BDNF) as an upstream mediator of trans-regulated genes in RA, with a significant correlation between individual variation in BDNF expression level and species-specific song phenotypes in F1 hybrids. This was supported by the fact that the pharmacological overactivation of BDNF receptors altered the expression of its trans-regulated genes in the RA, thus disrupting the learned song structures of adult zebra finch songs at the acoustic and sequence levels. These results demonstrate functional neurogenetic associations between divergence in region-specific transcriptional regulation and species-specific learned behaviors.
Collapse
Affiliation(s)
- Hongdi Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Azusa Sawai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Noriyuki Toji
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Rintaro Sugioka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuika Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yu Ji
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Satoru Akama
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Humanome Lab Inc., Tokyo, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
- Department of Biological Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Ren L, Li W, Qin Q, Dai H, Han F, Xiao J, Gao X, Cui J, Wu C, Yan X, Wang G, Liu G, Liu J, Li J, Wan Z, Yang C, Zhang C, Tao M, Wang J, Luo K, Wang S, Hu F, Zhao R, Li X, Liu M, Zheng H, Zhou R, Shu Y, Wang Y, Liu Q, Tang C, Duan W, Liu S. The subgenomes show asymmetric expression of alleles in hybrid lineages of Megalobrama amblycephala × Culter alburnus. Genome Res 2019; 29:1805-1815. [PMID: 31649058 PMCID: PMC6836732 DOI: 10.1101/gr.249805.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022]
Abstract
Hybridization drives rapid speciation by shaping novel genotypic and phenotypic profiles. Genomic incompatibility and transcriptome shock have been observed in hybrids, although this is rarer in animals than in plants. Using the newly sequenced genomes of the blunt snout bream (Megalobrama amblycephala [BSB]) and the topmouth culter (Culter alburnus [TC]), we focused on the sequence variation and gene expression changes in the reciprocal intergeneric hybrid lineages (F1-F3) of BSB × TC. A genome-wide transcriptional analysis identified 145-974 expressed recombinant genes in the successive generations of hybrid fish, suggesting the rapid emergence of allelic variation following hybridization. Some gradual changes of gene expression with additive and dominance effects and various cis and trans regulations were observed from F1 to F3 in the two hybrid lineages. These asymmetric patterns of gene expression represent the alternative strategies for counteracting deleterious effects of the subgenomes and improving adaptability of novel hybrids. Furthermore, we identified positive selection and additive expression patterns in transforming growth factor, beta 1b (tgfb1b), which may account for the morphological variations of the pharyngeal jaw in the two hybrid lineages. Our current findings provide insights into the evolution of vertebrate genomes immediately following hybridization.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Fengming Han
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaojing Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Guoliang Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guiming Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jia Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jiaming Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhong Wan
- School of Mathematics and Statistics, Central South University, Changsha 410083, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Rong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qinfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wei Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
29
|
Harris KD, Lloyd JPB, Domb K, Zilberman D, Zemach A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 2019; 12:62. [PMID: 31601251 PMCID: PMC6786280 DOI: 10.1186/s13072-019-0307-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation of active genes, also known as gene body methylation, is found in many animal and plant genomes. Despite this, the transcriptional and developmental role of such methylation remains poorly understood. Here, we explore the dynamic range of DNA methylation in honey bee, a model organism for gene body methylation. RESULTS Our data show that CG methylation in gene bodies globally fluctuates during honey bee development. However, these changes cause no gene expression alterations. Intriguingly, despite the global alterations, tissue-specific CG methylation patterns of complete genes or exons are rare, implying robust maintenance of genic methylation during development. Additionally, we show that CG methylation maintenance fluctuates in somatic cells, while reaching maximum fidelity in sperm cells. Finally, unlike universally present CG methylation, we discovered non-CG methylation specifically in bee heads that resembles such methylation in mammalian brain tissue. CONCLUSIONS Based on these results, we propose that gene body CG methylation can oscillate during development if it is kept to a level adequate to preserve function. Additionally, our data suggest that heightened non-CG methylation is a conserved regulator of animal nervous systems.
Collapse
Affiliation(s)
- Keith D Harris
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - James P B Lloyd
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Katherine Domb
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Center, Norwich, UK.
| | - Assaf Zemach
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
30
|
Richard G, Le Trionnaire G, Danchin E, Sentis A. Epigenetics and insect polyphenism: mechanisms and climate change impacts. CURRENT OPINION IN INSECT SCIENCE 2019; 35:138-145. [PMID: 31557627 DOI: 10.1016/j.cois.2019.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Phenotypic plasticity is a ubiquitous process found in all living organisms. Polyphenism is an extreme case of phenotypic plasticity which shares a common scheme in insects such as honeybees, locusts or aphids: an initial perception of environmental stimuli, a neuroendocrine transmission of these signals to the target tissues, the activation of epigenetic mechanisms allowing the setup of alternative transcriptional programs responsible for the establishment of discrete phenotypes. Climate change can modulate the environmental stimuli triggering polyphenisms, and/or some epigenetics marks, thus modifying on the short and long terms the discrete phenotype proportions within populations. This might result in critical ecosystem changes.
Collapse
Affiliation(s)
- Gautier Richard
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany; IGEPP, INRA, Agrocampus Ouest, Univ Rennes, 35600 Le Rheu, France
| | | | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, IRD. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| | - Arnaud Sentis
- IRSTEA, Aix Marseille Univ., UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| |
Collapse
|
31
|
Yagound B, Smith NMA, Buchmann G, Oldroyd BP, Remnant EJ. Unique DNA Methylation Profiles Are Associated with cis-Variation in Honey Bees. Genome Biol Evol 2019; 11:2517-2530. [PMID: 31406991 PMCID: PMC6740151 DOI: 10.1093/gbe/evz177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is an important epigenetic modification that mediates diverse processes such as cellular differentiation, phenotypic plasticity, and genomic imprinting. Mounting evidence suggests that local DNA sequence variation can be associated with particular DNA methylation states, indicating that the interplay between genetic and epigenetic factors may contribute synergistically to the phenotypic complexity of organisms. Social insects such as ants, bees, and wasps have extensive phenotypic plasticity manifested in their different castes, and this plasticity has been associated with variation in DNA methylation. Yet, the influence of genetic variation on DNA methylation state remains mostly unknown. Here we examine the importance of sequence-specific methylation at the genome-wide level, using whole-genome bisulfite sequencing of the semen of individual honey bee males. We find that individual males harbor unique DNA methylation patterns in their semen, and that genes that are more variable at the epigenetic level are also more likely to be variable at the genetic level. DNA sequence variation can affect DNA methylation by modifying CG sites directly, but can also be associated with local variation in cis that is not CG-site specific. We show that covariation in sequence polymorphism and DNA methylation state contributes to the individual-specificity of epigenetic marks in social insects, which likely promotes their retention across generations, and their capacity to influence evolutionary adaptation.
Collapse
Affiliation(s)
- Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Nicholas M A Smith
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Gabriele Buchmann
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Emily J Remnant
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| |
Collapse
|
32
|
Glastad KM, Hunt BG, Goodisman MAD. Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:185-203. [PMID: 30285490 DOI: 10.1146/annurev-ento-011118-111914] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Epigenetic inheritance is fundamentally important to cellular differentiation and developmental plasticity. In this review, we provide an introduction to the field of molecular epigenetics in insects. Epigenetic information is passed across cell divisions through the methylation of DNA, the modification of histone proteins, and the activity of noncoding RNAs. Much of our knowledge of insect epigenetics has been gleaned from a few model species. However, more studies of epigenetic information in traditionally nonmodel taxa will help advance our understanding of the developmental and evolutionary significance of epigenetic inheritance in insects. To this end, we also provide a brief overview of techniques for profiling and perturbing individual facets of the epigenome. Doing so in diverse cellular, developmental, and taxonomic contexts will collectively help shed new light on how genome regulation results in the generation of diversity in insect form and function.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, Georgia 30223, USA;
| | - Michael A D Goodisman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
33
|
Jeong H, Wu X, Smith B, Yi SV. Genomic Landscape of Methylation Islands in Hymenopteran Insects. Genome Biol Evol 2018; 10:2766-2776. [PMID: 30239702 PMCID: PMC6195173 DOI: 10.1093/gbe/evy203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 01/31/2023] Open
Abstract
Recent genome-wide DNA methylation analyses of insect genomes accentuate an intriguing contrast compared with those in mammals. In mammals, most CpGs are heavily methylated, with the exceptions of clusters of hypomethylated sites referred to as CpG islands. In contrast, DNA methylation in insects is localized to a small number of CpG sites. Here, we refer to clusters of methylated CpGs as “methylation islands (MIs),” and investigate their characteristics in seven hymenopteran insects with high-quality bisulfite sequencing data. Methylation islands were primarily located within gene bodies. They were significantly overrepresented in exon–intron boundaries, indicating their potential roles in splicing. Methylated CpGs within MIs exhibited stronger evolutionary conservation compared with those outside of MIs. Additionally, genes harboring MIs exhibited higher and more stable levels of gene expression compared with those that do not harbor MIs. The effects of MIs on evolutionary conservation and gene expression are independent and stronger than the effect of DNA methylation alone. These results indicate that MIs may be useful to gain additional insights into understanding the role of DNA methylation in gene expression and evolutionary conservation in invertebrate genomes.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Xin Wu
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Brandon Smith
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Soojin V Yi
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
34
|
Signor SA, Nuzhdin SV. The Evolution of Gene Expression in cis and trans. Trends Genet 2018; 34:532-544. [PMID: 29680748 PMCID: PMC6094946 DOI: 10.1016/j.tig.2018.03.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
There is abundant variation in gene expression between individuals, populations, and species. The evolution of gene regulation and expression within and between species is thought to frequently contribute to adaptation. Yet considerable evidence suggests that the primary evolutionary force acting on variation in gene expression is stabilizing selection. We review here the results of recent studies characterizing the evolution of gene expression occurring in cis (via linked polymorphisms) or in trans (through diffusible products of other genes) and their contribution to adaptation and response to the environment. We review the evidence for buffering of variation in gene expression at the level of both transcription and translation, and the possible mechanisms for this buffering. Lastly, we summarize unresolved questions about the evolution of gene regulation.
Collapse
Affiliation(s)
- Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
35
|
Glastad KM, Arsenault SV, Vertacnik KL, Geib SM, Kay S, Danforth BN, Rehan SM, Linnen CR, Kocher SD, Hunt BG. Variation in DNA Methylation Is Not Consistently Reflected by Sociality in Hymenoptera. Genome Biol Evol 2018; 9:1687-1698. [PMID: 28854636 PMCID: PMC5522706 DOI: 10.1093/gbe/evx128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content. Here, we test this hypothesis using direct, nucleotide-level measures of DNA methylation across nine species of Hymenoptera. In doing so, we generated new DNA methylomes for three species of interest, including one solitary and one facultatively eusocial halictid bee and a sawfly. We demonstrate that the strength of correlation between CpG content and DNA methylation varies widely among hymenopteran taxa, highlighting shortcomings in the utility of CpG content as a proxy for DNA methylation in comparative studies of taxa with sparse DNA methylomes. We observed strikingly high levels of DNA methylation in the sawfly relative to other investigated hymenopterans. Analyses of molecular evolution suggest the relatively distinct sawfly DNA methylome may be associated with positive selection on functional DNMT3 domains. Sawflies are an outgroup to all ants, bees, and wasps, and no sawfly species are eusocial. We find no evidence that either global expansions or variation within individual ortholog groups in DNA methylation are consistently associated with the evolution of social behavior.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, University of Pennsylvania
| | | | | | - Scott M Geib
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
| | - Sasha Kay
- Department of Entomology, University of Georgia
| | | | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| | | | - Sarah D Kocher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| | | |
Collapse
|
36
|
Kay S, Skowronski D, Hunt BG. Developmental DNA methyltransferase expression in the fire ant Solenopsis invicta. INSECT SCIENCE 2018; 25:57-65. [PMID: 27774769 DOI: 10.1111/1744-7917.12413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/01/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
DNA methylation is accomplished in animals by 2 classes of enzymes known as DNA methyltransferases, DNMT3 and DNMT1, which perform de novo methylation and maintenance methylation, respectively. Several studies of hymenopteran eusocial insects suggest that DNA methylation is capable of influencing developmental plasticity. However, fundamental questions remain about the patterning of DNA methylation during the course of insect development. In this study, we performed quantitative real-time PCR (qPCR) on transcripts from the single-copy orthologs of DNMT1 and DNMT3 in the red imported fire ant, Solenopsis invicta. In particular, we assessed the expression of S. invicta Dnmt1 and Dnmt3 mRNA during 7 stages of worker development, among behaviorally distinct adults, and among male and female gonads. Dnmt3 was most highly expressed during embryonic development, whereas Dnmt1 was similarly expressed throughout the course of development. Moreover, Dnmt1 and Dnmt3 were highly expressed in testes and ovaries. Neither Dnmt was significantly differentially expressed among heads of behaviorally distinct adult castes. Our results support the hypothesis that extensive patterning of DNA methylation occurs during gametogenesis and embryogenesis in the insect order Hymenoptera.
Collapse
Affiliation(s)
- Sasha Kay
- Department of Entomology, University of Georgia, Griffin, Georgia, USA
| | - Daniel Skowronski
- Department of Entomology, University of Georgia, Griffin, Georgia, USA
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
37
|
Shirk PD, Furlong RB, Dolan A, Werren JH. Functional characterization of the transcriptional regulatory elements of three highly expressed constitutive genes in the jewel wasp, Nasonia vitripennis. INSECT MOLECULAR BIOLOGY 2017; 26:743-751. [PMID: 28753244 DOI: 10.1111/imb.12333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The jewel wasp, Nasonia vitripennis Ashmead (Hymenoptera: Pteromalidae), is an easily reared parasitoid that is providing an ever increasingly malleable model for examining the biology and genetics of Hymenoptera. Utilizing genomic and transcriptome resources, 5' upstream transcriptional regulatory sequences (TREs) from three highly expressed genes were identified and cloned. Criteria for TRE selection included the presence of an adjacent gene 5' of the translation initiation site. One gene was methylated whereas the other two were nonmethylated. Each TRE, heat-shock protein 70 (hsp70), activator of 90 kDa hsp ATPase protein 1 (hsp90A), and lipid storage droplet surface-binding protein 1 (lsdp) was linked with enhanced green fluorescent protein (EGFP) coding sequence and cloned into both pDP9e somatic and piggyBac germline transformation vectors. EGFP expression patterns under control of each TRE were compared with patterns of DsRed fluorescence produced from the transformation vector cassette. Functional activity of each TRE was observed in cultured Spodoptera frugiperda 9 (Sf9) cells and Drosophila melanogaster as well as in N. vitripennis embryos demonstrating that all three sequences had functional transcriptional regulatory activity in three different insect orders. Identification and functional characterization of these three TREs will provide critical and necessary resources for further genetic analyses of N. vitripennis, Hymenoptera and other insects.
Collapse
Affiliation(s)
- P D Shirk
- USDA-ARS Center for Medical Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - R B Furlong
- USDA-ARS Center for Medical Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - A Dolan
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
38
|
Lonsdale Z, Lee K, Kiriakidu M, Amarasinghe H, Nathanael D, O’Connor CJ, Mallon EB. Allele specific expression and methylation in the bumblebee, Bombus terrestris. PeerJ 2017; 5:e3798. [PMID: 28929021 PMCID: PMC5600721 DOI: 10.7717/peerj.3798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
The social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect allele specific methylation and expression.
Collapse
Affiliation(s)
- Zoë Lonsdale
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Kate Lee
- Bioinformatics and Biostatistics Support Hub (B/BASH), University of Leicester, Leicester, United Kingdom
| | - Maria Kiriakidu
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Harindra Amarasinghe
- Academic Unit of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Despina Nathanael
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Eamonn B. Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
39
|
Abstract
The classic model for the evolution of novel gene function is through gene duplication followed by evolution of a new function by one of the copies (neofunctionalization) [1, 2]. However, other modes have also been found, such as novel genes arising from non-coding DNA, chimeric fusions, and lateral gene transfers from other organisms [3-7]. Here we use the rapid turnover of venom genes in parasitoid wasps to study how new gene functions evolve. In contrast to the classic gene duplication model, we find that a common mode of acquisition of new venom genes in parasitoid wasps is co-option of single-copy genes from non-venom progenitors. Transcriptome and proteome sequencing reveal that recruitment and loss of venom genes occur primarily by rapid cis-regulatory expression evolution in the venom gland. Loss of venom genes is primarily due to downregulation of expression in the gland rather than gene death through coding sequence degradation. While the majority of venom genes have specialized expression in the venom gland, recent losses of venom function occur primarily among genes that show broader expression in development, suggesting that they can more readily switch functional roles. We propose that co-option of single-copy genes may be a common but relatively understudied mechanism of evolution for new gene functions, particularly under conditions of rapid evolutionary change.
Collapse
Affiliation(s)
- Ellen O Martinson
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | | | - Ching-Ho Chang
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
40
|
Galbraith DA, Yi SV, Grozinger CM. Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects. Integr Comp Biol 2016; 56:1206-1214. [DOI: 10.1093/icb/icw111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|