1
|
Gao L, Rao MPN, Liu YH, Wang PD, Lian ZH, Abdugheni R, Jiang HC, Jiao JY, Shurigin V, Fang BZ, Li WJ. SALINITY-Induced Changes in Diversity, Stability, and Functional Profiles of Microbial Communities in Different Saline Lakes in Arid Areas. MICROBIAL ECOLOGY 2024; 87:135. [PMID: 39482450 PMCID: PMC11527964 DOI: 10.1007/s00248-024-02442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Saline lakes, characterized by high salinity and limited nutrient availability, provide an ideal environment for studying extreme halophiles and their biogeochemical processes. The present study examined prokaryotic microbial communities and their ecological functions in lentic sediments (with the salinity gradient and time series) using 16S rRNA amplicon sequencing and a metagenomic approach. Our findings revealed a negative correlation between microbial diversity and salinity. The notable predominance of Archaea in high-salinity lakes signified a considerable alteration in the composition of the microbial community. The results indicate that elevated salinity promotes homogeneous selection pressures, causing substantial alterations in microbial diversity and community structure, and simultaneously hindering interactions among microorganisms. This results in a notable decrease in the complexity of microbial ecological networks, ultimately influencing the overall ecological functional responses of microbial communities such as carbon fixation, sulfur, and nitrogen metabolism. Overall, our findings reveal salinity drives a notable predominance of Archaea, selects for species adapted to extreme conditions, and decreases microbial community complexity within saline lake ecosystems.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Manik Prabhu Narsing Rao
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, 3460000, Sede Talca, Talca, Chile
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Pan-Deng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Hong-Chen Jiang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
- Department of Microbiology and Biotechnology, Faculty of Biology, National University of Uzbekistan, 100174, Tashkent, Uzbekistan.
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Okabe S, Kamizono A, Zhang L, Kawasaki S, Kobayashi K, Oshiki M. Salinity Tolerance and Osmoadaptation Strategies in Four Genera of Anammox Bacteria: Brocadia, Jettenia, Kuenenia, and Scalindua. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5357-5371. [PMID: 38491939 DOI: 10.1021/acs.est.3c07324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The salinity tolerance and osmoadaptation strategies in four phylogenetically distant anammox species, Brocadia, Jettenia, Kuenenia, and Scalindua, were investigated by using highly enriched cell cultures. The first-emerged "Ca. Scalindua sp." showed optimum growth at 1.5-3% salinity and was tolerant to ∼10% salinity (a slight halophile). The second-emerged "Ca. Kuenenia stuttgartiensis" was tolerant to ∼6% salinity with optimum growth at 0.25-1.5% (a halotolerant). These early-emerged "Ca. Scalindua sp." and ″Ca. K. stuttgartiensis" rapidly accumulated K+ ions and simultaneously synthesized glutamate as a counterion. Subsequently, part of the glutamate was replaced by trehalose. In contrast, the late-emerged "Ca. B. sinica" and "Ca. J. caeni" were unable to accumulate sufficient amounts of K+─glutamate and trehalose, resulting in a significant decrease in activity even at 1-2% salinity (nonhalophiles). In addition, the external addition of glutamate may increase anammox activity at high salinity. The species-dependent salinity tolerance and osmoadaptation strategies were consistent with the genetic potential required for the biosynthesis and transport of these osmolytes and the evolutionary history of anammox bacteria: Scalindua first emerged in marine environments and then Kuenenia and other two species gradually expanded their habitat to estuaries, freshwater, and terrestrial environments, while Brocadia and Jettenia likely lost their ability to accumulate K+─glutamate.
Collapse
Affiliation(s)
- Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Akimichi Kamizono
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Lei Zhang
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Seiya Kawasaki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Kanae Kobayashi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Kadam P, Khisti M, Ravishankar V, Barvkar V, Dhotre D, Sharma A, Shouche Y, Zinjarde S. Recent advances in production and applications of ectoine, a compatible solute of industrial relevance. BIORESOURCE TECHNOLOGY 2024; 393:130016. [PMID: 37979886 DOI: 10.1016/j.biortech.2023.130016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Extremophilic bacteria growing in saline ecosystems are potential producers of biotechnologically important products including compatible solutes. Ectoine/hydroxyectoine are two such solutes that protect cells and associated macromolecules from osmotic, heat, cold and UV stress without interfering with cellular functions. Since ectoine is a high value product, overviewing strategies for improving yields become relevant. Screening of natural isolates, use of inexpensive substrates and response surface methodology approaches have been used to improve bioprocess parameters. In addition, genome mining exercises can aid in identifying hitherto unreported microorganisms with a potential to produce ectoine that can be exploited in the future. Application wise, ectoine has various biotechnological (protein protectant, membrane modulator, DNA protectant, cryoprotective agent, wastewater treatment) and biomedical (dermatoprotectant and in overcoming respiratory and hypersensitivity diseases) uses. The review summarizes current updates on the potential of microorganisms in the production of this industrially relevant metabolite and its varied applications.
Collapse
Affiliation(s)
- Pratik Kadam
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune,411007, India
| | - Mitesh Khisti
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune,411007, India
| | - Varun Ravishankar
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune,411007, India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune,411007, India
| | - Dhiraj Dhotre
- National Center for Microbial Resource (NCMR), National Center for Cell Science (NCCS), Pune,411007, India
| | - Avinash Sharma
- National Center for Microbial Resource (NCMR), National Center for Cell Science (NCCS), Pune,411007, India; School of Agriculture, Graphic Era Hill University, Dehradun, India
| | - Yogesh Shouche
- National Center for Microbial Resource (NCMR), National Center for Cell Science (NCCS), Pune,411007, India; SKAN Research Center, Bengaluru, India
| | - Smita Zinjarde
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune,411007, India.
| |
Collapse
|
4
|
Wang S, Narsing Rao MP, Quadri SR. Assessing the metabolism, phylogenomic, and taxonomic classification of the halophilic genus Halarchaeum. FEMS Microbiol Lett 2024; 371:fnae001. [PMID: 38192037 DOI: 10.1093/femsle/fnae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
In this study, a genomic approach was employed to evaluate the metabolic potentials and taxonomic classification of the halophilic genus Halarchaeum. Genomic analysis revealed that Halarchaeum members exhibit a predilection for amino acids as their primary energy source in high-salinity environments over carbohydrates. Genome analysis unveiled the presence of crucial genes associated with metabolic pathways, including the Embden-Meyerhof pathway, semi-phosphorylative Entner-Doudoroff pathway, and the urea cycle. Furthermore, the genomic analysis indicated that Halarchaeum members employ diverse mechanisms for osmotic regulation (encompassing both salt-in and salt-out strategies). Halarchaeum members also encode genes to alleviate acid and heat stress. The average nucleotide identity value between Halarchaeum solikamskense and Halarchaeum nitratireducens exceeded the established threshold (95%-96%) for defining distinct species. This high similarity suggests a close relationship between these two species, prompting the proposal to reclassify Halarchaeum solikamskense as a heterotypic synonym of Halarchaeum nitratireducens. The results of this study contribute to our knowledge of taxonomic classification and shed light on the adaptive strategies employed by Halarchaeum species in their specific ecological niches.
Collapse
Affiliation(s)
- Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin 150086, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile
| | - Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar-91431 Northern Borders, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Liu X, Yao T, Chai J, Han J. Adsorption of Sodium Ions by Exopolysaccharides from Pseudomonas simiae MHR6 and Its Improvement of Na +/K + Homeostasis in Maize under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19949-19957. [PMID: 38018896 DOI: 10.1021/acs.jafc.3c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Exopolysaccharides (EPS) are macromolecular substances with environmentally beneficial properties. At present, some reports have focused on the effects of EPS on plants salt stress; however, few studies have carried out a deeper characterization of the EPS components involved in Na+ binding. We investigated the mechanism of Na+ adsorption by Pseudomonas simiae MHR6 EPS and the regulation of ion homeostasis in maize under salt stress. The results showed that NaCl at 6% significantly inhibited MHR6 growth but enhanced EPS secretion. The chemical composition of the EPS varied in response to an increased NaCl concentration, and the proportion of polysaccharides was consistently higher than that of proteins. The highest Na+ adsorption was observed for 6% NaCl. The FTIR, SEM, and EDX results further indicated that EPS effectively biosorbed Na+. Furthermore, adding EPS improved Na+/K+ homeostasis in maize under salt stress. These results suggest that MHR6 EPS has potential for future development and utilization as a plant growth biostimulant in saline-alkali land.
Collapse
Affiliation(s)
- Xiaoting Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Tuo Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Jiali Chai
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Jiangru Han
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| |
Collapse
|
6
|
Wang Z, Li Y, Gao X, Xing J, Wang R, Zhu D, Shen G. Comparative genomic analysis of Halomonas campaniensis wild-type and ultraviolet radiation-mutated strains reveal genomic differences associated with increased ectoine production. Int Microbiol 2023; 26:1009-1020. [PMID: 37067733 PMCID: PMC10622362 DOI: 10.1007/s10123-023-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Ectoine is a natural amino acid derivative and one of the most widely used compatible solutes produced by Halomonas species that affects both cellular growth and osmotic equilibrium. The positive effects of UV mutagenesis on both biomass and ectoine content production in ectoine-producing strains have yet to be reported. In this study, the wild-type H. campaniensis strain XH26 (CCTCCM2019776) was subjected to UV mutagenesis to increase ectoine production. Eight rounds of mutagenesis were used to generate mutated XH26 strains with different UV-irradiation exposure times. Ectoine extract concentrations were then evaluated among all strains using high-performance liquid chromatography analysis, alongside whole genome sequencing with the PacBio RS II platform and comparison of the wild-type strain XH26 and the mutant strain G8-52 genomes. The mutant strain G8-52 (CCTCCM2019777) exhibited the highest cell growth rate and ectoine yields among mutated strains in comparison with strain XH26. Further, ectoine levels in the aforementioned strain significantly increased to 1.51 ± 0.01 g L-1 (0.65 g g-1 of cell dry weight), representing a twofold increase compared to wild-type cells (0.51 ± 0.01 g L-1) when grown in culture medium for ectoine accumulation. Concomitantly, electron microscopy revealed that mutated strain G8-52 cells were obviously shorter than wild-type strain XH26 cells. Moreover, strain G8-52 produced a relatively stable ectoine yield (1.50 g L-1) after 40 days of continuous subculture. Comparative genomics analysis suggested that strain XH26 harbored 24 mutations, including 10 nucleotide insertions, 10 nucleotide deletions, and unique single nucleotide polymorphisms. Notably, the genes orf00723 and orf02403 (lipA) of the wild-type strain mutated to davT and gabD in strain G8-52 that encoded for 4-aminobutyrate-2-oxoglutarate transaminase and NAD-dependent succinate-semialdehyde dehydrogenase, respectively. Consequently, these genes may be involved in increased ectoine yields. These results suggest that continuous multiple rounds of UV mutation represent a successful strategy for increasing ectoine production, and that the mutant strain G8-52 is suitable for large-scale fermentation applications.
Collapse
Affiliation(s)
- Zhibo Wang
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Yongzhen Li
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Xiang Gao
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Jiangwa Xing
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Rong Wang
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Derui Zhu
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Guoping Shen
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China.
| |
Collapse
|
7
|
Isolation and Genomics of Futiania mangrovii gen. nov., sp. nov., a Rare and Metabolically Versatile Member in the Class Alphaproteobacteria. Microbiol Spectr 2023; 11:e0411022. [PMID: 36541777 PMCID: PMC9927469 DOI: 10.1128/spectrum.04110-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mangrove microorganisms are a major part of the coastal ecosystem and are directly associated with nutrient cycling. Despite their ecological significance, the collection of culturable mangrove microbes is limited due to difficulties in isolation and cultivation. Here, we report the isolation and genome sequence of strain FT118T, the first cultured representative of a previously uncultivated order UBA8317 within Alphaproteobacteria, based on the combined results of 16S rRNA gene similarity, phylogenomic, and average amino acid identity analyses. We propose Futianiales ord. nov. and Futianiaceae fam. nov. with Futiania as the type genus, and FT118T represents the type species with the name Futiania mangrovii gen. nov, sp. nov. The 16S rRNA gene sequence comparison reveals that this novel order is a rare member but has a ubiquitous distribution across various habitats worldwide, which is corroborated by the experimental confirmation that this isolate can physiologically adapt to a wide range of oxygen levels, temperatures, pH and salinity levels. Biochemical characterization, genomic annotation, and metatranscriptomic analysis of FT118T demonstrate that it is metabolically versatile and active in situ. Genomic analysis reveals adaptive features of Futianiales to fluctuating mangrove environments, including the presence of high- and low-affinity terminal oxidases, N-type ATPase, and the genomic capability of producing various compatible solutes and polyhydroxybutyrate, which possibly allow for the persistence of this novel order across various habitats. Collectively, these results expand the current culture collection of mangrove microorganisms, providing genomic insights of how this novel taxon adapts to fluctuating environments and the culture reference to unravel possible microbe-environment interactions. IMPORTANCE The rare biosphere constitutes an essential part of the microbial community and may drive nutrient cycling and other geochemical processes. However, the difficulty in microbial isolation and cultivation has hampered our understanding of the physiology and ecology of uncultured rare lineages. In this study, we successfully isolated a novel alphaproteobacterium, designated as FT118T, and performed a combination of phenotypic, phylogenetic, and phylogenomic analyses, confirming that this isolate represents the first cultured member of a previously uncultivated order UBA8317 within Alphaproteobacteria. It is a rare species with a ubiquitous distribution across different habitats. Genomic and metatranscriptomic analyses demonstrate that it is metabolically versatile and active in situ, suggesting its potential role in nutrient cycling despite being scarce. This work not only expands the current phylogeny of isolated Alphaproteobacteria but also provides genomic and culture reference to unravel microbial adaptation strategies in mangrove sediments and possible microbe-environment interactions.
Collapse
|
8
|
Lee JY, Kim DH. Genomic Analysis of Halotolerant Bacterial Strains Martelella soudanensis NC18 T and NC20. J Microbiol Biotechnol 2022; 32:1427-1434. [PMID: 36330756 PMCID: PMC9720073 DOI: 10.4014/jmb.2208.08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Two novel, halotolerant strains of Martelella soudanensis, NC18T and NC20, were isolated from deep subsurface sediment, deeply sequenced, and comparatively analyzed with related strains. Based on a phylogenetic analysis using 16S rRNA gene sequences, the two strains grouped with members of the genus Martelella. Here, we sequenced the complete genomes of NC18T and NC20 to understand the mechanisms of their halotolerance. The genome sizes and G+C content of the strains were 6.1 Mb and 61.8 mol%, respectively. Moreover, NC18T and NC20 were predicted to contain 5,849 and 5,830 genes, and 5,502 and 5,585 protein-coding genes, respectively. Both strains contain the identically predicted 6 rRNAs and 48 tRNAs. The harboring of halotolerant-associated genes revealed that strains NC18T and NC20 might tolerate high salinity through the accumulation of potassium ions in a "salt-in" strategy induced by K+ uptake protein (kup) and the K+ transport system (trkAH and kdpFABC). These two strains also use the ectoine transport system (dctPQM), the glycine betaine transport system (proVWX), and glycine betaine uptake protein (opu) to accumulate "compatible solutes," such as ectoine and glycine betaine, to protect cells from salt stress. This study reveals the halotolerance mechanism of strains NC18T and NC20 in high salt environments and suggests potential applications for these halotolerant and halophilic strains in environmental biotechnology.
Collapse
Affiliation(s)
- Jung-Yun Lee
- Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea,Department of Biological Science and Biotechnology, Microbiology and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dong-Hun Kim
- Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea,Corresponding author Phone: +82-42-868-3113 Fax: +82-42-868-3414 E-mail:
| |
Collapse
|
9
|
Nikitashina V, Stettin D, Pohnert G. Metabolic adaptation of diatoms to hypersalinity. PHYTOCHEMISTRY 2022; 201:113267. [PMID: 35671808 DOI: 10.1016/j.phytochem.2022.113267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are important primary producers and form the basis for the marine food web. As global climate changes, so do salinity levels that algae are exposed to. A metabolic response of algal cells partly alleviates the resulting osmotic stress. Some metabolites involved in the response are well studied, but the full metabolic implications of adaptation remain unclear. Improved analytical methodology provides an opportunity for additional insight. We can now follow responses to stress in major parts of the metabolome and derive comprehensive charts of the resulting metabolic re-wiring. In this study, we subjected three species of diatoms to high salinity conditions and compared their metabolome to controls in an untargeted manner. The three well-investigated species with sequenced genomes Phaeodactylum tricornutum, Thalassiosira pseudonana, and Skeletonema marinoi were selected for our survey. The microalgae react to salinity stress with common adaptations in the metabolome by amino acid up-regulation, production of saccharides, and inositols. But also species-specific dysregulation of metabolites is common. Several metabolites previously not connected with osmotic stress reactions are identified, including 4-hydroxyproline, pipecolinic acid, myo-inositol, threonic acid, and acylcarnitines. This expands our knowledge about osmoadaptation and calls for further functional characterization of metabolites and pathways in algal stress physiology.
Collapse
Affiliation(s)
- Vera Nikitashina
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Daniel Stettin
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
10
|
Lee HB, Jeong DH, Park JS. Accumulation patterns of intracellular salts in a new halophilic amoeboflagellate, Euplaesiobystra salpumilio sp. nov., (Heterolobosea; Discoba) under hypersaline conditions. Front Microbiol 2022; 13:960621. [PMID: 35992684 PMCID: PMC9389213 DOI: 10.3389/fmicb.2022.960621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Halophilic microbial eukaryotes are present in many eukaryotic lineages and major groups; however, our knowledge of their diversity is still limited. Furthermore, almost nothing is known about the intracellular accumulation of salts in most halophilic eukaryotes. Here, we isolate a novel halophilic microbial eukaryote from hypersaline water of 134 practical salinity units (PSU) in a solar saltern. This species is an amoeboflagellate (capable of the amoeba-flagellate-cyst transformation) in the heterolobosean group and belongs to the genus Euplaesiobystra based on morphological data and 18S rDNA sequences. However, the isolate is distinct from any of the described Euplaesiobystra species. Especially, it is the smallest Euplaesiobystra to date, has a distinct cytostome, and grows optimally at 75–100 PSU. Furthermore, the phylogenetic tree of the 18S rDNA sequences demonstrates that the isolate forms a strongly supported group, sister to Euplaesiobystra hypersalinica. Thus, we propose that the isolate, Euplaesiobystra salpumilio, is a novel species. E. salpumilio displays a significantly increased influx of the intracellular Na+ and K+ at 50, 100, and 150 PSU, compared to freshwater species. However, the intracellular retention of the Na+ and K+ at 150 PSU does not significantly differ from 100 PSU, suggesting that E. salpumilio can extrude the Na+ and K+ from cells under high-salinity conditions. Interestingly, actively growing E. salpumilio at 100 and 150 PSU may require more intracellular accumulation of Na+ than the no-growth but-viable state at 50 PSU. It seems that our isolate displays two salt metabolisms depending on the tested salinities. E. salpumilio shows a salt-in strategy for Na+ at lower salinity of 100 PSU, while it displays a salt-out strategy for Na+ at higher salinity of 150 PSU. Our results suggest that the novel halophilic E. salpumilio fundamentally uses a salt-out strategy at higher salinities, and the accumulation patterns of intracellular salts in this species are different from those in other halophilic microbial eukaryotes.
Collapse
|
11
|
l-Fucose Synthesis Using a Halo- and Thermophilic l-Fucose Isomerase from Polyextremophilic Halothermothrix orenii. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
l-Fucose isomerase (l-FucI)-mediated isomerization is a promising biotechnological approach for synthesizing various rare sugars of industrial significance, including l-fucose. Extremozymes that can retain their functional conformation under extreme conditions, such as high temperature and salinity, offer favorable applications in bioprocesses that accompany harsh conditions. To date, only one thermophilic l-FucI has been characterized for l-fucose synthesis. Here, we report l-FucI from Halothermothrix orenii (HoFucI) which exhibits both halophilic and thermophilic properties. When evaluated under various biochemical conditions, HoFucI exhibited optimal activities at 50–60 °C and pH 7 with 0.5–1 M NaCl in the presence of 1 mM Mn2+ as a cofactor. The results obtained here show a unique feature of HoFucI as a polyextremozyme, which facilitates the biotechnological production of l-fucose using this enzyme.
Collapse
|
12
|
Zhang T, Cui T, Cao Y, Li Y, Li F, Zhu D, Xing J. Whole genome sequencing of the halophilic Halomonas qaidamensis XH36, a novel species strain with high ectoine production. Antonie Van Leeuwenhoek 2022; 115:545-559. [PMID: 35243586 DOI: 10.1007/s10482-022-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/18/2022] [Indexed: 10/18/2022]
Abstract
Here, we report the whole genome of a novel halophilic Halomonas species strain XH36 with high ectoine production potential. The genome was 3,818,310 bp in size with a GC content of 51.97%, and contained 3533 genes, 61 tRNAs and 18 rRNAs. The phylogenetic analysis using the 16s rRNA genes, the UBCGs and the TYGS database indicated that XH36 belongs to a novel Halomonas species, which we named as Halomonas qaidamensis. Osmoadaptation related genes including Na(+) and K(+) transport and compatible solute accumulation were both present in the XH36 genome, the latter of which mainly contained ectoine, 5-hydroxyectoine and betaine. HPLC validation studies showed that H. qaidamensis XH36 accumulated ectoine to cope with salt stress, and the content of ectoine could be as high as 315 mg/g CDW under 3 mol/l NaCl. Our results show that XH36 is a new promising industrial strain for ectoine production, and the genomic analysis will guide us to better understand its salt-induced osmoadaptation mechanisms, and provide theoretical references for future application research of ectoine.
Collapse
Affiliation(s)
- Tiantian Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Tianqi Cui
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Yaning Cao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Yongzhen Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Fenghui Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Derui Zhu
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Jiangwa Xing
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China.
| |
Collapse
|
13
|
Zhang B, Hou L, Qi H, Hou L, Zhang T, Zhao F, Miao M. An extremely streamlined macronuclear genome in the free-living protozoan Fabrea salina. Mol Biol Evol 2022; 39:6553891. [PMID: 35325184 PMCID: PMC9004412 DOI: 10.1093/molbev/msac062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ciliated protists are among the oldest unicellular organisms with a heterotrophic lifestyle and share a common ancestor with Plantae. Unlike any other eukaryotes, there are two distinct nuclei in ciliates with separate germline and somatic cell functions. Here, we assembled a near-complete macronuclear genome of Fabrea salina, which belongs to one of the oldest clades of ciliates. Its extremely minimized genome (18.35 Mb) is the smallest among all free-living heterotrophic eukaryotes and exhibits typical streamlined genomic features, including high gene density, tiny introns, and shrinkage of gene paralogs. Gene families involved in hypersaline stress resistance, DNA replication proteins, and mitochondrial biogenesis are expanded, and the accumulation of phosphatidic acid may play an important role in resistance to high osmotic pressure. We further investigated the morphological and transcriptomic changes in the macronucleus during sexual reproduction and highlighted the potential contribution of macronuclear residuals to this process. We believe that the minimized genome generated in this study provides novel insights into the genome streamlining theory and will be an ideal model to study the evolution of eukaryotic heterotrophs.
Collapse
Affiliation(s)
- Bing Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lina Hou
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongli Qi
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300392, China
| | - Lingling Hou
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiancheng Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Miao Miao
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 2022; 204:144. [PMID: 35044532 DOI: 10.1007/s00203-022-02757-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources. The diverse ecological microbial niches are attributed to the versatile, adaptable nature under fluctuating temperature, nutrient availability and pH of the microorganisms. These organisms have developed a series of mechanisms to face the environmental changes and thereby keep their role in mediate important ecosystem functions. The underlying mechanisms of adaptable microbial nature are thoroughly investigated at the cellular, genetic and molecular levels. The adaptation is mediated by a spectrum of processes like natural selection, genetic recombination, horizontal gene transfer, DNA damage repair and pleiotropy-like events. This review paper provides the fundamentals insight into the microbial adaptability besides highlighting the molecular network of microbial adaptation under different environmental conditions.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|
15
|
Menéndez-Serra M, Triadó-Margarit X, Casamayor EO. Ecological and Metabolic Thresholds in the Bacterial, Protist, and Fungal Microbiome of Ephemeral Saline Lakes (Monegros Desert, Spain). MICROBIAL ECOLOGY 2021; 82:885-896. [PMID: 33725151 DOI: 10.1007/s00248-021-01732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 05/20/2023]
Abstract
We studied the 16S and 18S rRNA genes of the bacterial, protist, and fungal microbiomes of 131 samples collected in 14 ephemeral small inland lakes located in the endorheic area of the Monegros Desert (NE Spain). The sampling covered different temporal flooding/desiccation cycles that created natural salinity gradients between 0.1% (w/v) and salt saturation. We aimed to test the hypothesis of a lack of competitive advantage for microorganisms using the "salt-in" strategy in highly fluctuating hypersaline environments where temperature and salinity transitions widely vary within short time periods, as in ephemeral inland lakes. Overall, 5653 bacterial zOTUs and 2658 eukaryal zOTUs were detected heterogeneously distributed with significant variations on taxonomy and general energy-yielding metabolisms and trophic strategies along the gradient. We observed a more diverse bacterial assembly than initially expected at extreme salinities and a lack of dominance of a few "salt-in" organisms. Microbial thresholds were unveiled for these highly fluctuating hypersaline environments with high selective pressures. We conclude that the extremely high dynamism observed in the ephemeral lakes of Monegros may have given a competitive advantage for more versatile ("salt-out") organisms compared to those better adapted to stable high salinities usually more common in solar salterns. Ephemeral inland saline lakes offered a well-suited natural framework for highly detailed evolutionary and ecological studies.
Collapse
Affiliation(s)
- Mateu Menéndez-Serra
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain
| | - Xavier Triadó-Margarit
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain.
| |
Collapse
|
16
|
Rybarski AE, Nitsche F, Soo Park J, Filz P, Schmidt P, Kondo R, Gb Simpson A, Arndt H. Revision of the phylogeny of Placididea (Stramenopiles): Molecular and morphological diversity of novel placidid protists from extreme aquatic environments. Eur J Protistol 2021; 81:125809. [PMID: 34673437 DOI: 10.1016/j.ejop.2021.125809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Recent studies suggested that the diversity of microbial eukaryotes in hypersaline environments is widely underestimated. Placidids are a group of heterotrophic stramenopile flagellates that are frequently found in these environments, but up to now only very few species were isolated and fully described, mostly from marine or brackish water sites. In this study, we extend the known diversity of Placididea by three new genera (Allegra, Haloplacidia, and Placilonga) compromising nine new species, isolated from athalassic, mostly hypersaline environments (Allegra dunaii, Allegra atacamiensis, Allegra hypersalina, Haloplacidia cosmopolita, Suigetsumonas keniensis) and marine waters (Placilonga atlantica, Placidia azorensis, Placidia abyssalis, Wobblia pacifica) including a description of their morphology and molecular phylogeny. In total, 36 strains were comparatively analysed. Studies from athalassic waters revealed an especially high number of different genotypes. A multigene analysis based on a ten genes dataset revealed a clear separation into marine, athalassic and brackish water clades. Several representatives were found to cope with hypersaline conditions from 20 to 250 PSU, even up to 284 PSU, suggesting that they may form a halotolerant group.
Collapse
Affiliation(s)
- Alexandra E Rybarski
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Frank Nitsche
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Jong Soo Park
- Department of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Paulina Filz
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Patricia Schmidt
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | | | - Hartmut Arndt
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany.
| |
Collapse
|
17
|
Pukale DD, Farrag M, Gudneppanavar R, Baumann HJ, Konopka M, Shriver LP, Leipzig ND. Osmoregulatory Role of Betaine and Betaine/γ-Aminobutyric Acid Transporter 1 in Post-Traumatic Syringomyelia. ACS Chem Neurosci 2021; 12:3567-3578. [PMID: 34550670 DOI: 10.1021/acschemneuro.1c00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Syringomyelia (SM) is primarily characterized by the formation of a fluid-filled cyst that forms in the parenchyma of the spinal cord following injury or other pathology. Recent omics studies in animal models have identified dysregulation of solute carriers, channels, transporters, and small molecules associated with osmolyte regulation during syrinx formation/expansion in the spinal cord. However, their connections to syringomyelia etiology are poorly understood. In this study, the biological functions of the potent osmolyte betaine and its associated solute carrier betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT1) were studied in SM. First, a rat post-traumatic SM model was used to demonstrate that the BGT1 was primarily expressed in astrocytes in the vicinity of syrinxes. In an in vitro system, we found that astrocytes uptake betaine through BGT1 to regulate cell size under hypertonic conditions. Treatment with BGT1 inhibitors, especially NNC 05-2090, demonstrated midhigh micromolar range potency in vitro that reversed the osmoprotective effects of betaine. Finally, the specificity of these BGT1 inhibitors in the CNS was demonstrated in vivo, suggesting feasibility for targeting betaine transport in SM. In summary, these data provide an enhanced understanding of the role of betaine and its associated solute carrier BGT1 in cell osmoregulation and implicates the active role of betaine and BGT1 in syringomyelia progression.
Collapse
Affiliation(s)
- Dipak D. Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Mahmoud Farrag
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
| | | | - Hannah J. Baumann
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Michael Konopka
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Leah P. Shriver
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
18
|
Li PS, Kong WL, Wu XQ. Salt Tolerance Mechanism of the Rhizosphere Bacterium JZ-GX1 and Its Effects on Tomato Seed Germination and Seedling Growth. Front Microbiol 2021; 12:657238. [PMID: 34168626 PMCID: PMC8217874 DOI: 10.3389/fmicb.2021.657238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Salinity is one of the strongest abiotic factors in nature and has harmful effects on plants and microorganisms. In recent years, the degree of soil salinization has become an increasingly serious problem, and the use of plant growth-promoting rhizobacteria has become an option to improve the stress resistance of plants. In the present study, the salt tolerance mechanism of the rhizosphere bacterium Rahnella aquatilis JZ-GX1 was investigated through scanning electron microscopy observations and analysis of growth characteristics, compatible solutes, ion distribution and gene expression. In addition, the effect of JZ-GX1 on plant germination and seedling growth was preliminarily assessed through germination experiments. R. aquatilis JZ-GX1 was tolerant to 0-9% NaCl and grew well at 3%. Strain JZ-GX1 promotes salt tolerance by stimulating the production of exopolysaccharides, and can secrete 60.6983 mg/L of exopolysaccharides under the high salt concentration of 9%. Furthermore, the accumulation of the compatible solute trehalose in cells as the NaCl concentration increased was shown to be the primary mechanism of resistance to high salt concentrations in JZ-GX1. Strain JZ-GX1 could still produce indole-3-acetic acid (IAA) and siderophores and dissolve inorganic phosphorus under salt stress, characteristics that promote the ability of plants to resist salt stress. When the salt concentration was 100 mmol/L, strain JZ-GX1 significantly improved the germination rate, germination potential, fresh weight, primary root length and stem length of tomato seeds by 10.52, 125.56, 50.00, 218.18, and 144.64%, respectively. Therefore, R. aquatilis JZ-GX1 is a moderately halophilic bacterium with good growth-promoting function that has potential for future development as a microbial agent and use in saline-alkali land resources.
Collapse
Affiliation(s)
- Pu-Sheng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
19
|
Lv H, Kim M, Park S, Baek K, Oh H, Polle JE, Jin E. Comparative transcriptome analysis of short-term responses to salt and glycerol hyperosmotic stress in the green alga Dunaliella salina. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Ando N, Barquera B, Bartlett DH, Boyd E, Burnim AA, Byer AS, Colman D, Gillilan RE, Gruebele M, Makhatadze G, Royer CA, Shock E, Wand AJ, Watkins MB. The Molecular Basis for Life in Extreme Environments. Annu Rev Biophys 2021; 50:343-372. [PMID: 33637008 DOI: 10.1146/annurev-biophys-100120-072804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.
Collapse
Affiliation(s)
- Nozomi Ando
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | - Eric Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Audrey A Burnim
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Amanda S Byer
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Daniel Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York 14853, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Everett Shock
- GEOPIG, School of Earth & Space Exploration, School of Molecular Sciences, Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77845, USA.,Department of Chemistry, Texas A&M University, College Station, Texas 77845, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, Texas 77845, USA
| | - Maxwell B Watkins
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
21
|
Kumar S, Paul D, Bhushan B, Wakchaure GC, Meena KK, Shouche Y. Traversing the "Omic" landscape of microbial halotolerance for key molecular processes and new insights. Crit Rev Microbiol 2020; 46:631-653. [PMID: 32991226 DOI: 10.1080/1040841x.2020.1819770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-2005, the biology of the salt afflicted habitats is predominantly studied employing high throughput "Omic" approaches comprising metagenomics, transcriptomics, metatranscriptomics, metabolomics, and proteomics. Such "Omic-based" studies have deciphered the unfamiliar details about microbial salt-stress biology. The MAGs (Metagenome-assembled genomes) of uncultured halophilic microbial lineages such as Nanohaloarchaea and haloalkaliphilic members within CPR (Candidate Phyla Radiation) have been reconstructed from diverse hypersaline habitats. The study of MAGs of such uncultured halophilic microbial lineages has unveiled the genomic basis of salt stress tolerance in "yet to culture" microbial lineages. Furthermore, functional metagenomic approaches have been used to decipher the novel genes from uncultured microbes and their possible role in microbial salt-stress tolerance. The present review focuses on the new insights into microbial salt-stress biology gained through different "Omic" approaches. This review also summarizes the key molecular processes that underlie microbial salt-stress response, and their role in microbial salt-stress tolerance has been confirmed at more than one "Omic" levels.
Collapse
Affiliation(s)
- Satish Kumar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.,ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Bharat Bhushan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Kamlesh K Meena
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| |
Collapse
|
22
|
Qu Z, Weinisch L, Fan X, Katzenmeier S, Stoeck T, Filker S. Morphological, Phylogenetic and Ecophysiological Characterization of a New Ciliate, Platynematum rossellomorai n. sp. (Oligohymenophorea, Scuticociliatia), Detected in a Hypersaline Pond on Mallorca, Spain. Protist 2020; 171:125751. [PMID: 32890795 DOI: 10.1016/j.protis.2020.125751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/29/2022]
Abstract
With highly specialized morphology and unexplored functional capacities, ciliates from extreme habitats are drawing increasing attention. During a microbial investigation of a solar saltern pond (salinity 240‰) on Mallorca, Spain, a previously unknown scuticociliate, Platynematum rossellomorai n. sp. was isolated, cultured and studied using a tripartite approach consisting of a morphological description, a molecular analysis and an ecophysiological characterization. The ciliate has distinct morphological characteristics and its main diagnostic features include a large anteriorly positioned oral area (occupying almost half of the body length), two caudal cilia and a small number of somatic kineties. However, due to the most important generic feature of Cinetochilidae, the consistency of the arrangement of the adoral membranes, the ciliate is classified as a new member of the genus Platynematum. Its 18S rRNA gene sequence shows a sequence similarity of 91.0% to the closest deposited relative, Platynematum salinarum, and a phylogenetic analysis reveals a close relationship to other members of the family Cinetochilidae Perty, 1852. Growth experiments identify the ciliate as a borderline halophile, with a tolerance range between 180 and 280‰ salinity. The ciliate apparently accumulates the compatible solutes glycine betaine and ectoine to counterbalance osmotic stress, however, other osmoregulatory mechanisms are not excluded.
Collapse
Affiliation(s)
- Zhishuai Qu
- Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Lea Weinisch
- Department of Molecular Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Sven Katzenmeier
- Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sabine Filker
- Department of Molecular Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
23
|
Fatima T, Mishra I, Verma R, Arora NK. Mechanisms of halotolerant plant growth promoting Alcaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress. 3 Biotech 2020; 10:361. [PMID: 32832323 PMCID: PMC7392994 DOI: 10.1007/s13205-020-02348-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the present study halotolerant bacteria were isolated from saline soil (EC ~ 11.9). Based on salt tolerance and plant growth promoting characteristics isolate AF7 was selected for further study. It was identified as Alcaligenes sp. on the basis of protein profiling and 16S rRNA sequence homology. Interestingly, AF7 showed diverse PGP characters at different salinity levels. While phosphate solubilization activity was expressed up to 300 mM NaCl, siderophore production was shown up to 700 mM, zinc solubilization up to 1000 mM and indole acetic acid (IAA), gibberellic acid (GA) and exopolysaccharides (EPS) production were depicted till 1400 mM. Correlative and regression analysis suggested positive relation between IAA, GA, EPS, siderophore production and zinc solubilization capability of AF7 and salinity up to 300 mM NaCl. EPS was found to be the most significant response and there was 263% increment in presence of 300 mM NaCl when compared to non-saline control. Analysis also showed that while growth promoting attributes were significant up to a threshold salinity level, further increasing the stress deviates the mechanism towards survival involving proline, antioxidant and hydroxyl scavenging activities. Combination of halotolerant AF7 and EPS showed more than twofold increase in the vegetative growth parameters of rice at ~ 170 mM NaCl (EC 9 dS/m). The study shows the mechanisms/metabolites of the plant growth promoting bacterium (PGPB) AF7 prominently involved during the salinity stress. Study also proves that novel bioformulations can be developed by integrative use of EPS and salt tolerant-PGPB which can be effective for saline soils.
Collapse
Affiliation(s)
- Tahmish Fatima
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Isha Mishra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Renu Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Naveen Kumar Arora
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
24
|
Santoferrara L, Burki F, Filker S, Logares R, Dunthorn M, McManus GB. Perspectives from Ten Years of Protist Studies by High-Throughput Metabarcoding. J Eukaryot Microbiol 2020; 67:612-622. [PMID: 32498124 DOI: 10.1111/jeu.12813] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023]
Abstract
During the last decade, high-throughput metabarcoding became routine for analyzing protistan diversity and distributions in nature. Amid a multitude of exciting findings, scientists have also identified and addressed technical and biological limitations, although problems still exist for inference of meaningful taxonomic and ecological knowledge based on short DNA sequences. Given the extensive use of this approach, it is critical to settle our understanding on its strengths and weaknesses and to synthesize up-to-date methodological and conceptual trends. This article summarizes key scientific and technical findings, and identifies current and future directions in protist research that uses metabarcoding.
Collapse
Affiliation(s)
- Luciana Santoferrara
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.,Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sabine Filker
- Department of Molecular Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Micah Dunthorn
- Department of Eukaryotic Microbiology, University of Duisburg-Essen, Essen, Germany
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
25
|
Hillier HT, Altermark B, Leiros I. The crystal structure of the tetrameric DABA-aminotransferase EctB, a rate-limiting enzyme in the ectoine biosynthesis pathway. FEBS J 2020; 287:4641-4658. [PMID: 32112674 DOI: 10.1111/febs.15265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023]
Abstract
l-2,4-diaminobutyric acid (DABA) aminotransferases can catalyze the formation of amines at the distal ω-position of substrates, and is the intial and rate-limiting enzyme in the biosynthesis pathway of the cytoprotecting molecule (S)-2-methyl-1,4,5,6-tetrahydro-4-pyrimidine carboxylic acid (ectoine). Although there is an industrial interest in the biosynthesis of ectoine, the DABA aminotransferases remain poorly characterized. Herein, we present the crystal structure of EctB (2.45 Å), a DABA aminotransferase from Chromohalobacter salexigens DSM 3043, a well-studied organism with respect to osmoadaptation by ectoine biosynthesis. We investigate the enzyme's oligomeric state to show that EctB from C. salexigens is a tetramer of two functional dimers, and suggest conserved recognition sites for dimerization that also includes the characteristic gating loop that helps shape the active site of the neighboring monomer. Although ω-transaminases are known to have two binding pockets to accommodate for their dual substrate specificity, we herein provide the first description of two binding pockets in the active site that may account for the catalytic character of DABA aminotransferases. Furthermore, our biochemical data reveal that the EctB enzyme from C. salexigens is a thermostable, halotolerant enzyme with a broad pH tolerance which may be linked to its tetrameric state. Put together, this study creates a solid foundation for a deeper structural understanding of DABA aminotransferases and opening up for future downstream studies of EctB's catalytic character and its redesign as a better catalyst for ectoine biosynthesis. In summary, we believe that the EctB enzyme from C. salexigens can serve as a benchmark enzyme for characterization of DABA aminotransferases. DATABASE: Structural data are available in PDB database under the accession number 6RL5.
Collapse
Affiliation(s)
- Heidi Therese Hillier
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Ingar Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Qiu W, Li J, Wei Y, Fan F, Jiang J, Liu M, Han X, Tian C, Zhang S, Zhuo R. Genome sequencing of Aspergillus glaucus 'CCHA' provides insights into salt-stress adaptation. PeerJ 2020; 8:e8609. [PMID: 32140304 PMCID: PMC7045888 DOI: 10.7717/peerj.8609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Aspergillus, as a genus of filamentous fungi, has members that display a variety of different behavioural strategies, which are affected by various environmental factors. The decoded genomic sequences of many species vary greatly in their evolutionary similarities, encouraging studies on the functions and evolution of the Aspergillus genome in complex natural environments. Here, we present the 26 Mb de novo assembled high-quality reference genome of Aspergillus glaucus 'China Changchun halophilic Aspergillus' (CCHA), which was isolated from the surface of plants growing near a salt mine in Jilin, China, based on data from whole-genome shotgun sequencing using Illumina Solexa technology. The sequence, coupled with data from comprehensive transcriptomic survey analyses, indicated that the redox state and transmembrane transport might be critical molecular mechanisms for the adaptation of A. glaucus 'CCHA' to the high-salt environment of the saltern. The isolation of salt tolerance-related genes, such as CCHA-2114, and their overexpression in Escherichia coli demonstrated that A. glucus 'CCHA' is an excellent organism for the isolation and identification of salt tolerant-related genes. These data expand our understanding of the evolution and functions of fungal and microbial genomes, and offer multiple target genes for crop salt-tolerance improvement through genetic engineering.
Collapse
Affiliation(s)
- Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Feiyu Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shihong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Omara AMA, Sharaf AEMM, El-Hela AA, Shahin AAM, El-Bialy HAA, El-Fouly MZ. Optimizing ectoine biosynthesis using response surface methodology and osmoprotectant applications. Biotechnol Lett 2020; 42:1003-1017. [PMID: 32062816 DOI: 10.1007/s10529-020-02833-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Numerous applications of compatible salts (osmolytes) as ectoine in food and pharmaceutical industries have been intensively increased nowadays. Decreasing the cost of industrial production of ectoine using low-cost cultivation media and improving the yield through modeling procedures are the main scopes of the present study. METHODS Three statistical design experiments have been successfully applied for screening the parameters affecting the production process, studying the relations among parameters and optimizing the production using response surface methodology. RESULTS A novel semi-synthetic medium based on hydrolyzed corn gluten meal has been developed to cultivate moderate halophilic bacterial strains; Vibrio sp. CS1 and Salinivibrio costicola SH3, and support ectoine synthesis under salinity stress. Two regression equations describe the production process in the new medium have been formulated for each bacterial strain. Response surface optimizer of the central composite model predicts the maximum ectoine production is achieved at incubation time; 63.7 h, pH; 7.47 and salinity; 7.27% for Vibrio sp. CS1 whereas these variables should be adjusted at 56.95 h, 7.089 and 10.34%; on the same order regarding Salinivibrio costicola SH3. In application studies, 50 µg ectoine decreases RBCs hemolysis due to streptolysin O toxin by 21.7% within ten minutes. In addition, 2% ectoine succeeds to increase the viability of lactic acid bacteria in Yogurt as a classic example of functional food during the storage period (7 days). CONCLUSION The present study emphasizes on modeling the process of ectoine production by halophilic bacteria as well as its activity as a cryoprotectant agent.
Collapse
Affiliation(s)
- Ahmed M A Omara
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | | | | | - Azza A M Shahin
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Heba Abd Alla El-Bialy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.
| | - Mohie Z El-Fouly
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
28
|
Richter AA, Kobus S, Czech L, Hoeppner A, Zarzycki J, Erb TJ, Lauterbach L, Dickschat JS, Bremer E, Smits SHJ. The architecture of the diaminobutyrate acetyltransferase active site provides mechanistic insight into the biosynthesis of the chemical chaperone ectoine. J Biol Chem 2020; 295:2822-2838. [PMID: 31969391 DOI: 10.1074/jbc.ra119.011277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/19/2020] [Indexed: 12/17/2022] Open
Abstract
Ectoine is a solute compatible with the physiologies of both prokaryotic and eukaryotic cells and is widely synthesized by bacteria as an osmotic stress protectant. Because it preserves functional attributes of proteins and macromolecular complexes, it is considered a chemical chaperone and has found numerous practical applications. However, the mechanism of its biosynthesis is incompletely understood. The second step in ectoine biosynthesis is catalyzed by l-2,4-diaminobutyrate acetyltransferase (EctA; EC 2.3.1.178), which transfers the acetyl group from acetyl-CoA to EctB-formed l-2,4-diaminobutyrate (DAB), yielding N-γ-acetyl-l-2,4-diaminobutyrate (N-γ-ADABA), the substrate of ectoine synthase (EctC). Here, we report the biochemical and structural characterization of the EctA enzyme from the thermotolerant bacterium Paenibacillus lautus (Pl). We found that (Pl)EctA forms a homodimer whose enzyme activity is highly regiospecific by producing N-γ-ADABA but not the ectoine catabolic intermediate N-α-acetyl-l-2,4-diaminobutyric acid. High-resolution crystal structures of (Pl)EctA (at 1.2-2.2 Å resolution) (i) for its apo-form, (ii) in complex with CoA, (iii) in complex with DAB, (iv) in complex with both CoA and DAB, and (v) in the presence of the product N-γ-ADABA were obtained. To pinpoint residues involved in DAB binding, we probed the structure-function relationship of (Pl)EctA by site-directed mutagenesis. Phylogenomics shows that EctA-type proteins from both Bacteria and Archaea are evolutionarily highly conserved, including catalytically important residues. Collectively, our biochemical and structural findings yielded detailed insights into the catalytic core of the EctA enzyme that laid the foundation for unraveling its reaction mechanism.
Collapse
Affiliation(s)
- Alexandra A Richter
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, D-35043 Marburg, Germany; SYNMIKRO Research Center, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Stefanie Kobus
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Laura Czech
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, D-35043 Marburg, Germany; SYNMIKRO Research Center, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Tobias J Erb
- SYNMIKRO Research Center, Philipps-University Marburg, D-35043 Marburg, Germany; Department of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-University Bonn, D-53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-University Bonn, D-53121 Bonn, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, D-35043 Marburg, Germany; SYNMIKRO Research Center, Philipps-University Marburg, D-35043 Marburg, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany; Institute of Biochemistry, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
29
|
Fenizia S, Thume K, Wirgenings M, Pohnert G. Ectoine from Bacterial and Algal Origin Is a Compatible Solute in Microalgae. Mar Drugs 2020; 18:E42. [PMID: 31935955 PMCID: PMC7024275 DOI: 10.3390/md18010042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023] Open
Abstract
Osmoregulation in phytoplankton is attributed to several highly polar low-molecular-weight metabolites. A widely accepted model considers dimethylsulfoniopropionate (DMSP) as the most important and abundant osmotically active metabolite. Using an optimized procedure for the extraction and detection of highly polar metabolites, we expand the group of phytoplankton osmolytes by identifying ectoine in several microalgae. Ectoine is known as a bacterial compatible solute, but, to the best of our knowledge, was never considered as a phytoplankton-derived product. Given the ability of microalgae to take up zwitterions, such as DMSP, we tested the hypothesis that the algal ectoine is derived from associated bacteria. We therefore analyzed methanol extracts of xenic and axenic cultures of two different species of microalgae and could detect elevated concentrations of ectoine in those that harbor associated bacteria. However, also microalgae without an associated microbiome contain ectoine in smaller amounts, pointing towards a dual origin of this metabolite in the algae from their own biosynthesis as well as from uptake. We also tested the role of ectoine in the osmoadaptation of microalgae. In the model diatoms Thalassiosira weissflogii and Phaeodactylum tricornutum, elevated amounts of ectoine were found when cultivated in seawater with salinities of 50 PSU compared to the standard culture conditions of 35 PSU. Therefore, we add ectoine to the family of osmoadaptive metabolites in phytoplankton and prove a new, potentially synergistic metabolic interplay of bacteria and algae.
Collapse
Affiliation(s)
- Simona Fenizia
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany; (S.F.); (K.T.); (M.W.)
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Kathleen Thume
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany; (S.F.); (K.T.); (M.W.)
| | - Marino Wirgenings
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany; (S.F.); (K.T.); (M.W.)
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany; (S.F.); (K.T.); (M.W.)
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
30
|
Weinisch L, Kirchner I, Grimm M, Kühner S, Pierik AJ, Rosselló-Móra R, Filker S. Glycine Betaine and Ectoine Are the Major Compatible Solutes Used by Four Different Halophilic Heterotrophic Ciliates. MICROBIAL ECOLOGY 2019; 77:317-331. [PMID: 30051173 DOI: 10.1007/s00248-018-1230-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
One decisive factor controlling the distribution of organisms in their natural habitats is the cellular response to environmental factors. Compared to prokaryotes, our knowledge about salt adaptation strategies of microbial eukaryotes is very limited. We, here, used a recently introduced approach (implementing proton nuclear magnetic resonance spectroscopy) to investigate the presence of compatible solutes in halophilic, heterotrophic ciliates. Therefore, we isolated four ciliates from solar salterns, which were identified as Cyclidium glaucoma, Euplotes sp., Fabrea salina, and Pseudocohnilembus persalinus based on their 18S rRNA gene signatures and electron microscopy. The results of 1H-NMR spectroscopy revealed that all four ciliates employ the "low-salt-in" strategy by accumulating glycine betaine and ectoine as main osmoprotectants. We recorded a linear increase of these compatible solutes with increasing salinity of the external medium. Ectoine in particular stands out as its use as compatible solute was thought to be exclusive to prokaryotes. However, our findings and those recently made on two other heterotroph species call for a re-evaluation of this notion. The observation of varying relative proportions of compatible solutes within the four ciliates points to slight differences in haloadaptive strategies by regulatory action of the ciliates. Based on this finding, we provide an explanatory hypothesis for the distribution of protistan diversity along salinity gradients.
Collapse
Affiliation(s)
- Lea Weinisch
- Department of Molecular Ecology, University of Technology Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Isabell Kirchner
- Department of Ecology, University of Technology Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Maria Grimm
- Department of Ecology, University of Technology Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Steffen Kühner
- Department of Molecular Ecology, University of Technology Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Antonio J Pierik
- Department of Biochemistry, University of Technology Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), 07190, Esporles, Illes Balears, Spain
| | - Sabine Filker
- Department of Molecular Ecology, University of Technology Kaiserslautern, 67663, Kaiserslautern, Germany.
| |
Collapse
|
31
|
Illuminating the catalytic core of ectoine synthase through structural and biochemical analysis. Sci Rep 2019; 9:364. [PMID: 30674920 PMCID: PMC6344544 DOI: 10.1038/s41598-018-36247-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022] Open
Abstract
Ectoine synthase (EctC) is the signature enzyme for the production of ectoine, a compatible solute and chemical chaperone widely synthesized by bacteria as a cellular defense against the detrimental effects of osmotic stress. EctC catalyzes the last step in ectoine synthesis through cyclo-condensation of the EctA-formed substrate N-gamma-acetyl-L-2,4-diaminobutyric acid via a water elimination reaction. We have biochemically and structurally characterized the EctC enzyme from the thermo-tolerant bacterium Paenibacillus lautus (Pl). EctC is a member of the cupin superfamily and forms dimers, both in solution and in crystals. We obtained high-resolution crystal structures of the (Pl)EctC protein in forms that contain (i) the catalytically important iron, (ii) iron and the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid, and (iii) iron and the enzyme reaction product ectoine. These crystal structures lay the framework for a proposal for the EctC-mediated water-elimination reaction mechanism. Residues involved in coordinating the metal, the substrate, or the product within the active site of ectoine synthase are highly conserved among a large group of EctC-type proteins. Collectively, the biochemical, mutational, and structural data reported here yielded detailed insight into the structure-function relationship of the (Pl)EctC enzyme and are relevant for a deeper understanding of the ectoine synthase family as a whole.
Collapse
|
32
|
Gonzalez-Ordenes F, Cea PA, Fuentes-Ugarte N, Muñoz SM, Zamora RA, Leonardo D, Garratt RC, Castro-Fernandez V, Guixé V. ADP-Dependent Kinases From the Archaeal Order Methanosarcinales Adapt to Salt by a Non-canonical Evolutionarily Conserved Strategy. Front Microbiol 2018; 9:1305. [PMID: 29997580 PMCID: PMC6028617 DOI: 10.3389/fmicb.2018.01305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/29/2018] [Indexed: 11/13/2022] Open
Abstract
Halophilic organisms inhabit hypersaline environments where the extreme ionic conditions and osmotic pressure have driven the evolution of molecular adaptation mechanisms. Understanding such mechanisms is limited by the common difficulties encountered in cultivating such organisms. Within the Euryarchaeota, for example, only the Halobacteria and the order Methanosarcinales include readily cultivable halophilic species. Furthermore, only the former have been extensively studied in terms of their component proteins. Here, in order to redress this imbalance, we investigate the halophilic adaptation of glycolytic enzymes from the ADP-dependent phosphofructokinase/glucokinase family (ADP-PFK/GK) derived from organisms of the order Methanosarcinales. Structural analysis of proteins from non-halophilic and halophilic Methanosarcinales shows an almost identical composition and distribution of amino acids on both the surface and within the core. However, these differ from those observed in Halobacteria or Eukarya. Proteins from Methanosarcinales display a remarkable increase in surface lysine content and have no reduction to the hydrophobic core, contrary to the features ubiquitously observed in Halobacteria and which are thought to be the main features responsible for their halophilic properties. Biochemical characterization of recombinant ADP-PFK/GK from M. evestigatum (halophilic) and M. mazei (non-halophilic) shows the activity of both these extant enzymes to be only moderately inhibited by salt. Nonetheless, its activity over time is notoriously stabilized by salt. Furthermore, glycine betaine has a protective effect against KCl inhibition and enhances the thermal stability of both enzymes. The resurrection of the last common ancestor of ADP-PFK/GK from Methanosarcinales shows that the ancestral enzyme displays an extremely high salt tolerance and thermal stability. Structure determination of the ancestral protein reveals unique traits such as an increase in the Lys and Glu content at the protein surface and yet no reduction to the volume of the hydrophobic core. Our results suggest that the halophilic character is an ancient trait in the evolution of this protein family and that proteins from Methanosarcinales have adapted to highly saline environments by a non-canonical strategy, different from that currently proposed for Halobacteria. These results open up new avenues for the search and development of novel salt tolerant biocatalysts.
Collapse
Affiliation(s)
- Felipe Gonzalez-Ordenes
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo A Cea
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Nicolás Fuentes-Ugarte
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián M Muñoz
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ricardo A Zamora
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Leonardo
- São Carlos Institute of Physics, University of São Paulo at São Carlos, São Paulo, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo at São Carlos, São Paulo, Brazil
| | - Victor Castro-Fernandez
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
34
|
Abstract
The cellular adjustment of Bacteria and Archaea to high-salinity habitats is well studied and has generally been classified into one of two strategies. These are to accumulate high levels either of ions (the “salt-in” strategy) or of physiologically compliant organic osmolytes, the compatible solutes (the “salt-out” strategy). Halophilic protists are ecophysiological important inhabitants of salt-stressed ecosystems because they are not only very abundant but also represent the majority of eukaryotic lineages in nature. However, their cellular osmostress responses have been largely neglected. Recent reports have now shed new light on this issue using the geographically widely distributed halophilic heterotrophic protists Halocafeteria seosinensis, Pharyngomonas kirbyi, and Schmidingerothrix salinarum as model systems. Different approaches led to the joint conclusion that these unicellular Eukarya use the salt-out strategy to cope successfully with the persistent high salinity in their habitat. They accumulate various compatible solutes, e.g., glycine betaine, myo-inositol, and ectoines. The finding of intron-containing biosynthetic genes for ectoine and hydroxyectoine, their salt stress–responsive transcription in H. seosinensis, and the production of ectoine and its import by S. salinarum come as a considerable surprise because ectoines have thus far been considered exclusive prokaryotic compatible solutes. Phylogenetic considerations of the ectoine/hydroxyectoine biosynthetic genes of H. seosinensis suggest that they have been acquired via lateral gene transfer by these bacterivorous Eukarya from ectoine/hydroxyectoine-producing food bacteria that populate the same habitat.
Collapse
Affiliation(s)
- Laura Czech
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|