1
|
Tong X, Yagan M, Hu R, Nevills S, Doss TD, Stein RW, Balamurugan AN, Gu G. Metabolic Stress Levels Influence the Ability of Myelin Transcription Factors to Regulate β-Cell Identity and Survival. Diabetes 2024; 73:1662-1672. [PMID: 39058602 PMCID: PMC11417441 DOI: 10.2337/db23-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
A hallmark of type 2 diabetes (T2D) is endocrine islet β-cell failure, which can occur via cell dysfunction, loss of identity, and/or death. How each is induced remains largely unknown. We used mouse β-cells deficient for myelin transcription factors (Myt TFs; including Myt1, -2, and -3) to address this question. We previously reported that inactivating all three Myt genes in pancreatic progenitor cells (MytPancΔ) caused β-cell failure and late-onset diabetes in mice. Their lower expression in human β-cells is correlated with β-cell dysfunction, and single nucleotide polymorphisms in MYT2 and MYT3 are associated with a higher risk of T2D. We now show that these Myt TF-deficient postnatal β-cells also dedifferentiate by reactivating several progenitor markers. Intriguingly, mosaic Myt TF inactivation in only a portion of islet β-cells did not result in overt diabetes, but this created a condition where Myt TF-deficient β-cells remained alive while activating several markers of Ppy-expressing islet cells. By transplanting MytPancΔ islets into the anterior eye chambers of immune-compromised mice, we directly show that glycemic and obesity-related conditions influence cell fate, with euglycemia inducing several Ppy+ cell markers and hyperglycemia and insulin resistance inducing additional cell death. These findings suggest that the observed β-cell defects in T2D depend not only on their inherent genetic/epigenetic defects but also on the metabolic load. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mahircan Yagan
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Ruiying Hu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Simone Nevills
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Teri D. Doss
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH
| | - Guoqiang Gu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
2
|
Li J, Simmons AJ, Hawkins CV, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Pilat JM, Jacobse J, McNamara KM, Allaman MM, Raffa GA, Gobert AP, Asim M, Goettel JA, Choksi YA, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. Identification and multimodal characterization of a specialized epithelial cell type associated with Crohn's disease. Nat Commun 2024; 15:7204. [PMID: 39169060 PMCID: PMC11339313 DOI: 10.1038/s41467-024-51580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis. Furthermore, we discover early and late LND subpopulations with different origins and developmental potential. A higher ratio of late-to-early LND cells correlates with better response to anti-TNF treatment. Our findings thus suggest a potential pathogenic role for LND cells in both Crohn's ileitis and colitis.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriella A Raffa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Dawn B Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Ken S Lau
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Li J, Simmons AJ, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. A Specialized Epithelial Cell Type Regulating Mucosal Immunity and Driving Human Crohn's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560293. [PMID: 37873404 PMCID: PMC10592875 DOI: 10.1101/2023.09.30.560293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder that may affect any part of gastrointestinal tract with extra-intestinal manifestations and associated immune dysregulation. To characterize heterogeneity in CD, we profiled single-cell transcriptomics of 170 samples from 65 CD patients and 18 non-inflammatory bowel disease (IBD) controls in both the terminal ileum (TI) and ascending colon (AC). Analysis of 202,359 cells identified a novel epithelial cell type in both TI and AC, featuring high expression of LCN2, NOS2, and DUOX2, and thus is named LND. LND cells, confirmed by high-resolution in-situ RNA imaging, were rarely found in non-IBD controls, but expanded significantly in active CD. Compared to other epithelial cells, genes defining LND cells were enriched in antimicrobial response and immunoregulation. Moreover, multiplexed protein imaging demonstrated that LND cell abundance was associated with immune infiltration. Cross-talk between LND and immune cells was explored by ligand-receptor interactions and further evidenced by their spatial colocalization. LND cells showed significant enrichment of expression specificity of IBD/CD susceptibility genes, revealing its role in immunopathogenesis of CD. Investigating lineage relationships of epithelial cells detected two LND cell subpopulations with different origins and developmental potential, early and late LND. The ratio of the late to early LND cells was related to anti-TNF response. These findings emphasize the pathogenic role of the specialized LND cell type in both Crohn's ileitis and Crohn's colitis and identify novel biomarkers associated with disease activity and treatment response.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Alan J. Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A. Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N. Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N. Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W. Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N. Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dawn B. Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L. Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N. Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S. Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A. Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T. Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN, USA
| | - Elizabeth A. Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - David A. Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Ken S. Lau
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Arceneaux D, Chen Z, Simmons AJ, Heiser CN, Southard-Smith AN, Brenan MJ, Yang Y, Chen B, Xu Y, Choi E, Campbell JD, Liu Q, Lau KS. A contamination focused approach for optimizing the single-cell RNA-seq experiment. iScience 2023; 26:107242. [PMID: 37496679 PMCID: PMC10366499 DOI: 10.1016/j.isci.2023.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/10/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Droplet-based single-cell RNA-seq (scRNA-seq) data are plagued by ambient contaminations caused by nucleic acid material released by dead and dying cells. This material is mixed into the buffer and is co-encapsulated with cells, leading to a lower signal-to-noise ratio. Although there exist computational methods to remove ambient contaminations post-hoc, the reliability of algorithms in generating high-quality data from low-quality sources remains uncertain. Here, we assess data quality before data filtering by a set of quantitative, contamination-based metrics that assess data quality more effectively than standard metrics. Through a series of controlled experiments, we report improvements that can minimize ambient contamination outside of tissue dissociation, via cell fixation, improved cell loading, microfluidic dilution, and nuclei versus cell preparation; many of these parameters are inaccessible on commercial platforms. We provide end-users with insights on factors that can guide their decision-making regarding optimizations that minimize ambient contamination, and metrics to assess data quality.
Collapse
Affiliation(s)
- Deronisha Arceneaux
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zhengyi Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan J. Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody N. Heiser
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Austin N. Southard-Smith
- McDonnell Genome Institute and Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Yilin Yang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bob Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eunyoung Choi
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua D. Campbell
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S. Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Th17.1 cell driven sarcoidosis-like inflammation after anti-BCMA CAR T cells in multiple myeloma. Leukemia 2023; 37:650-658. [PMID: 36720972 PMCID: PMC9888347 DOI: 10.1038/s41375-023-01824-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Pseudo-progression and flare-up phenomena constitute a novel diagnostic challenge in the follow-up of patients treated with immune-oncology drugs. We present a case study on pulmonary flare-up after Idecabtagen Vicleucel (Ide-cel), a BCMA targeting CAR T-cell therapy, and used single-cell RNA-seq (scRNA-seq) to identify a Th17.1 driven autoimmune mechanism as the biological underpinning of this phenomenon. By integrating datasets of various lung pathological conditions, we revealed transcriptomic similarities between post CAR T pulmonary lesions and sarcoidosis. Furthermore, we explored a noninvasive PET based diagnostic approach and showed that tracers binding to CXCR4 complement FDG PET imaging in this setting, allowing discrimination between immune-mediated changes and true relapse after CAR T-cell treatment. In conclusion, our study highlights a Th17.1 driven autoimmune phenomenon after CAR T, which may be misinterpreted as disease relapse, and that imaging with multiple PET tracers and scRNA-seq could help in this diagnostic dilemma.
Collapse
|
6
|
Madadi Y, Sun J, Chen H, Williams R, Yousefi S. Detecting retinal neural and stromal cell classes and ganglion cell subtypes based on transcriptome data with deep transfer learning. Bioinformatics 2022; 38:4321-4329. [PMID: 35876552 PMCID: PMC9991888 DOI: 10.1093/bioinformatics/btac514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION To develop and assess the accuracy of deep learning models that identify different retinal cell types, as well as different retinal ganglion cell (RGC) subtypes, based on patterns of single-cell RNA sequencing (scRNA-seq) in multiple datasets. RESULTS Deep domain adaptation models were developed and tested using three different datasets. The first dataset included 44 808 single retinal cells from mice (39 cell types) with 24 658 genes, the second dataset included 6225 single RGCs from mice (41 subtypes) with 13 616 genes and the third dataset included 35 699 single RGCs from mice (45 subtypes) with 18 222 genes. We used four loss functions in the learning process to align the source and target distributions, reduce misclassification errors and maximize robustness. Models were evaluated based on classification accuracy and confusion matrix. The accuracy of the model for correctly classifying 39 different retinal cell types in the first dataset was ∼92%. Accuracy in the second and third datasets reached ∼97% and 97% in correctly classifying 40 and 45 different RGCs subtypes, respectively. Across a range of seven different batches in the first dataset, the accuracy of the lead model ranged from 74% to nearly 100%. The lead model provided high accuracy in identifying retinal cell types and RGC subtypes based on scRNA-seq data. The performance was reasonable based on data from different batches as well. The validated model could be readily applied to scRNA-seq data to identify different retinal cell types and subtypes. AVAILABILITY AND IMPLEMENTATION The code and datasets are available on https://github.com/DM2LL/Detecting-Retinal-Cell-Classes-and-Ganglion-Cell-Subtypes. We have also added the class labels of all samples to the datasets. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yeganeh Madadi
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
- University of Tehran, Tehran, Iran
| | - Jian Sun
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Williams
- Department of Genetics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Siamak Yousefi
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
7
|
Brown RE, Jacobse J, Anant SA, Blunt KM, Chen B, Vega PN, Jones CT, Pilat JM, Revetta F, Gorby AH, Stengel KR, Choksi YA, Palin K, Piazuelo MB, Washington MK, Lau KS, Goettel JA, Hiebert SW, Short SP, Williams CS. MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors. JCI Insight 2022; 7:e153045. [PMID: 35503250 PMCID: PMC9220854 DOI: 10.1172/jci.insight.153045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium-induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box-binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein-mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16-/- colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
Collapse
Affiliation(s)
- Rachel E. Brown
- Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Justin Jacobse
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Koral M. Blunt
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paige N. Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
| | - Chase T. Jones
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Frank Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Aidan H. Gorby
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology and
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kimmo Palin
- Department of Medical and Clinical Genetics
- Applied Tumor Genomics Research Program, Research Programs Unit, and
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ken S. Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology and
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology and
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher S. Williams
- Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Vega PN, Nilsson A, Kumar MP, Niitsu H, Simmons AJ, Ro J, Wang J, Chen Z, Joughin BA, Li W, McKinley ET, Liu Q, Roland JT, Washington MK, Coffey RJ, Lauffenburger DA, Lau KS. Cancer-Associated Fibroblasts and Squamous Epithelial Cells Constitute a Unique Microenvironment in a Mouse Model of Inflammation-Induced Colon Cancer. Front Oncol 2022; 12:878920. [PMID: 35600339 PMCID: PMC9114773 DOI: 10.3389/fonc.2022.878920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment plays a key role in the pathogenesis of colorectal tumors and contains various cell types including epithelial, immune, and mesenchymal cells. Characterization of the interactions between these cell types is necessary for revealing the complex nature of tumors. In this study, we used single-cell RNA-seq (scRNA-seq) to compare the tumor microenvironments between a mouse model of sporadic colorectal adenoma (Lrig1CreERT2/+;Apc2lox14/+) and a mouse model of inflammation-driven colorectal cancer induced by azoxymethane and dextran sodium sulfate (AOM/DSS). While both models develop tumors in the distal colon, we found that the two tumor types have distinct microenvironments. AOM/DSS tumors have an increased abundance of two populations of cancer-associated fibroblasts (CAFs) compared with APC tumors, and we revealed their divergent spatial association with tumor cells using multiplex immunofluorescence (MxIF) imaging. We also identified a unique squamous cell population in AOM/DSS tumors, whose origins were distinct from anal squamous epithelial cells. These cells were in higher proportions upon administration of a chemotherapy regimen of 5-Fluorouracil/Irinotecan. We used computational inference algorithms to predict cell-cell communication mediated by ligand-receptor interactions and downstream pathway activation, and identified potential mechanistic connections between CAFs and tumor cells, as well as CAFs and squamous epithelial cells. This study provides important preclinical insight into the microenvironment of two distinct models of colorectal tumors and reveals unique roles for CAFs and squamous epithelial cells in the AOM/DSS model of inflammation-driven cancer.
Collapse
Affiliation(s)
- Paige N. Vega
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Avlant Nilsson
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Manu P. Kumar
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hiroaki Niitsu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alan J. Simmons
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James Ro
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jiawei Wang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhengyi Chen
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Brian A. Joughin
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wei Li
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eliot T. McKinley
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joseph T. Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert J. Coffey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Douglas A. Lauffenburger
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ken S. Lau
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Dérian N, Pham HP, Nehar-Belaid D, Tchitchek N, Klatzmann D, Eric V, Six A. The Tsallis generalized entropy enhances the interpretation of transcriptomics datasets. PLoS One 2022; 17:e0266618. [PMID: 35446844 PMCID: PMC9022844 DOI: 10.1371/journal.pone.0266618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Identifying differentially expressed genes between experimental conditions is still the gold-standard approach to interpret transcriptomic profiles. Alternative approaches based on diversity measures have been proposed to complement the interpretation of such datasets but are only used marginally.
Methods
Here, we reinvestigated diversity measures, which are commonly used in ecology, to characterize mice pregnancy microenvironments based on a public transcriptome dataset. Mainly, we evaluated the Tsallis entropy function to explore the potential of a collection of diversity measures for capturing relevant molecular event information.
Results
We demonstrate that the Tsallis entropy function provides additional information compared to the traditional diversity indices, such as the Shannon and Simpson indices. Depending on the relative importance given to the most abundant transcripts based on the Tsallis entropy function parameter, our approach allows appreciating the impact of biological stimulus on the inter-individual variability of groups of samples. Moreover, we propose a strategy for reducing the complexity of transcriptome datasets using a maximation of the beta diversity.
Conclusions
We highlight that a diversity-based analysis is suitable for capturing complex molecular events occurring during physiological events. Therefore, we recommend their use through the Tsallis entropy function to analyze transcriptomics data in addition to differential expression analyses.
Collapse
Affiliation(s)
- Nicolas Dérian
- Sorbonne Université, INSERM, UMR-S 959, Immunology-Immunopathology- Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | | | - Djamel Nehar-Belaid
- Sorbonne Université, INSERM, UMR-S 959, Immunology-Immunopathology- Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, UMR-S 959, Immunology-Immunopathology- Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, UMR-S 959, Immunology-Immunopathology- Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Vicaut Eric
- APHP, Hôpitaux Saint-Louis Lariboisière, Univ Paris 07, Unité de recherche clinique, UMR 942, Paris, France
| | - Adrien Six
- Sorbonne Université, INSERM, UMR-S 959, Immunology-Immunopathology- Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
- * E-mail:
| |
Collapse
|
10
|
LeBlanc VG, Trinh DL, Aslanpour S, Hughes M, Livingstone D, Jin D, Ahn BY, Blough MD, Cairncross JG, Chan JA, Kelly JJP, Marra MA. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity. Cancer Cell 2022; 40:379-392.e9. [PMID: 35303420 DOI: 10.1016/j.ccell.2022.02.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Glioblastomas (GBMs) are aggressive brain tumors characterized by extensive inter- and intratumor heterogeneity. Patient-derived models, such as organoids and explants, have recently emerged as useful models to study such heterogeneity, although the extent to which they can recapitulate GBM genomic features remains unclear. Here, we analyze bulk exome and single-cell genome and transcriptome profiles of 12 IDH wild-type GBMs, including two recurrent tumors, and of patient-derived explants (PDEs) and gliomasphere (GS) lines derived from these tumors. We find that PDEs are genetically similar to, and variably retain gene expression characteristics of, their parent tumors. Notably, PDEs appear to exhibit similar levels of transcriptional heterogeneity compared with their parent tumors, whereas GS lines tend to be enriched for cells in a more uniform transcriptional state. The approaches and datasets introduced here will provide a valuable resource to help guide experiments using GBM-derived models, especially in the context of studying cellular heterogeneity.
Collapse
Affiliation(s)
- Véronique G LeBlanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, V5Z 4S6 BC, Canada
| | - Diane L Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, V5Z 4S6 BC, Canada
| | - Shaghayegh Aslanpour
- Department of Clinical Neurosciences, University of Calgary, Calgary, T2N 2T9 AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4Z6 AB, Canada
| | - Martha Hughes
- Department of Clinical Neurosciences, University of Calgary, Calgary, T2N 2T9 AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4Z6 AB, Canada
| | - Dorothea Livingstone
- Department of Clinical Neurosciences, University of Calgary, Calgary, T2N 2T9 AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4Z6 AB, Canada
| | - Dan Jin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, V5Z 4S6 BC, Canada
| | - Bo Young Ahn
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4Z6 AB, Canada
| | - Michael D Blough
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4Z6 AB, Canada
| | - J Gregory Cairncross
- Department of Clinical Neurosciences, University of Calgary, Calgary, T2N 2T9 AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4Z6 AB, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4Z6 AB, Canada; Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, T2L 2K8 AB, Canada
| | - John J P Kelly
- Department of Clinical Neurosciences, University of Calgary, Calgary, T2N 2T9 AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4Z6 AB, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, V5Z 4S6 BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, V6H 3N1 BC, Canada.
| |
Collapse
|
11
|
Duque-Correa MA, Goulding D, Rodgers FH, Gillis JA, Cormie C, Rawlinson KA, Bancroft AJ, Bennett HM, Lotkowska ME, Reid AJ, Speak AO, Scott P, Redshaw N, Tolley C, McCarthy C, Brandt C, Sharpe C, Ridley C, Moya JG, Carneiro CM, Starborg T, Hayes KS, Holroyd N, Sanders M, Thornton DJ, Grencis RK, Berriman M. Defining the early stages of intestinal colonisation by whipworms. Nat Commun 2022; 13:1725. [PMID: 35365634 PMCID: PMC8976045 DOI: 10.1038/s41467-022-29334-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
Whipworms are large metazoan parasites that inhabit multi-intracellular epithelial tunnels in the large intestine of their hosts, causing chronic disease in humans and other mammals. How first-stage larvae invade host epithelia and establish infection remains unclear. Here we investigate early infection events using both Trichuris muris infections of mice and murine caecaloids, the first in-vitro system for whipworm infection and organoid model for live helminths. We show that larvae degrade mucus layers to access epithelial cells. In early syncytial tunnels, larvae are completely intracellular, woven through multiple live dividing cells. Using single-cell RNA sequencing of infected mouse caecum, we reveal that progression of infection results in cell damage and an expansion of enterocytes expressing of Isg15, potentially instigating the host immune response to the whipworm and tissue repair. Our results unravel intestinal epithelium invasion by whipworms and reveal specific host-parasite interactions that allow the whipworm to establish its multi-intracellular niche.
Collapse
Affiliation(s)
- María A Duque-Correa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK.
| | - David Goulding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Faye H Rodgers
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Mogrify Ltd, 25 Cambridge Science Park, Milton Road, Cambridge, CB4 0FW, UK
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Claire Cormie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Kate A Rawlinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Allison J Bancroft
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Hayley M Bennett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Magda E Lotkowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Anneliese O Speak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul Scott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Redshaw
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Charlotte Tolley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Catherine McCarthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Cordelia Brandt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Catherine Sharpe
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- InstilBio, UMIC Bio-Incubator, Manchester, M13 9XX, UK
| | - Caroline Ridley
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Prime Global Medical Communications, Knutsford, WA16 8GP, UK
| | - Judit Gali Moya
- Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Claudia M Carneiro
- Immunopathology Laboratory, NUPEB, Federal University of Ouro Preto, Campus Universitario Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Tobias Starborg
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, UK
| | - Kelly S Hayes
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mandy Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - David J Thornton
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
12
|
Chu SK, Zhao S, Shyr Y, Liu Q. Comprehensive evaluation of noise reduction methods for single-cell RNA sequencing data. Brief Bioinform 2022; 23:bbab565. [PMID: 35048125 PMCID: PMC8921632 DOI: 10.1093/bib/bbab565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
Normalization and batch correction are critical steps in processing single-cell RNA sequencing (scRNA-seq) data, which remove technical effects and systematic biases to unmask biological signals of interest. Although a number of computational methods have been developed, there is no guidance for choosing appropriate procedures in different scenarios. In this study, we assessed the performance of 28 scRNA-seq noise reduction procedures in 55 scenarios using simulated and real datasets. The scenarios accounted for multiple biological and technical factors that greatly affect the denoising performance, including relative magnitude of batch effects, the extent of cell population imbalance, the complexity of cell group structures, the proportion and the similarity of nonoverlapping cell populations, dropout rates and variable library sizes. We used multiple quantitative metrics and visualization of low-dimensional cell embeddings to evaluate the performance on batch mixing while preserving the original cell group and gene structures. Based on our results, we specified technical or biological factors affecting the performance of each method and recommended proper methods in different scenarios. In addition, we highlighted one challenging scenario where most methods failed and resulted in overcorrection. Our studies not only provided a comprehensive guideline for selecting suitable noise reduction procedures but also pointed out unsolved issues in the field, especially the urgent need of developing metrics for assessing batch correction on imperceptible cell-type mixing.
Collapse
Affiliation(s)
- Shih-Kai Chu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
13
|
Chen B, Scurrah CR, McKinley ET, Simmons AJ, Ramirez-Solano MA, Zhu X, Markham NO, Heiser CN, Vega PN, Rolong A, Kim H, Sheng Q, Drewes JL, Zhou Y, Southard-Smith AN, Xu Y, Ro J, Jones AL, Revetta F, Berry LD, Niitsu H, Islam M, Pelka K, Hofree M, Chen JH, Sarkizova S, Ng K, Giannakis M, Boland GM, Aguirre AJ, Anderson AC, Rozenblatt-Rosen O, Regev A, Hacohen N, Kawasaki K, Sato T, Goettel JA, Grady WM, Zheng W, Washington MK, Cai Q, Sears CL, Goldenring JR, Franklin JL, Su T, Huh WJ, Vandekar S, Roland JT, Liu Q, Coffey RJ, Shrubsole MJ, Lau KS. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 2021; 184:6262-6280.e26. [PMID: 34910928 PMCID: PMC8941949 DOI: 10.1016/j.cell.2021.11.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.
Collapse
Affiliation(s)
- Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cherie' R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiangzhu Zhu
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hyeyon Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuan Zhou
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Austin N Southard-Smith
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James Ro
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynne D Berry
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hiroaki Niitsu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mirazul Islam
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Karin Pelka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan H Chen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Siranush Sarkizova
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew J Aguirre
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Aviv Regev
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kenta Kawasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jeremy A Goettel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Gastroenterology Division, University of Washington School of Medicine, Seattle, WA, USA
| | - Wei Zheng
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Franklin
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy Su
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Won Jae Huh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Martha J Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Heiser CN, Wang VM, Chen B, Hughey JJ, Lau KS. Automated quality control and cell identification of droplet-based single-cell data using dropkick. Genome Res 2021; 31:1742-1752. [PMID: 33837131 PMCID: PMC8494217 DOI: 10.1101/gr.271908.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
A major challenge for droplet-based single-cell sequencing technologies is distinguishing true cells from uninformative barcodes in data sets with disparate library sizes confounded by high technical noise (i.e., batch-specific ambient RNA). We present dropkick, a fully automated software tool for quality control and filtering of single-cell RNA sequencing (scRNA-seq) data with a focus on excluding ambient barcodes and recovering real cells bordering the quality threshold. By automatically determining data set-specific training labels based on predictive global heuristics, dropkick learns a gene-based representation of real cells and ambient noise, calculating a cell probability score for each barcode. Using simulated and real-world scRNA-seq data, we benchmarked dropkick against conventional thresholding approaches and EmptyDrops, a popular computational method, showing greater recovery of rare cell types and exclusion of empty droplets and noisy, uninformative barcodes. We show for both low- and high-background data sets that dropkick's weakly supervised model reliably learns which genes are enriched in ambient barcodes and draws a multidimensional boundary that is more robust to data set-specific variation than existing filtering approaches. dropkick provides a fast, automated tool for reproducible cell identification from scRNA-seq data that is critical to downstream analysis and compatible with popular single-cell Python packages.
Collapse
Affiliation(s)
- Cody N Heiser
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Victoria M Wang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Bob Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Jacob J Hughey
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
15
|
Taguchi YH, Turki T. Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis. Genes (Basel) 2021; 12:genes12091442. [PMID: 34573424 PMCID: PMC8468466 DOI: 10.3390/genes12091442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Analysis of single-cell multiomics datasets is a novel topic and is considerably challenging because such datasets contain a large number of features with numerous missing values. In this study, we implemented a recently proposed tensor-decomposition (TD)-based unsupervised feature extraction (FE) technique to address this difficult problem. The technique can successfully integrate single-cell multiomics data composed of gene expression, DNA methylation, and accessibility. Although the last two have large dimensions, as many as ten million, containing only a few percentage of nonzero values, TD-based unsupervised FE can integrate three omics datasets without filling in missing values. Together with UMAP, which is used frequently when embedding single-cell measurements into two-dimensional space, TD-based unsupervised FE can produce two-dimensional embedding coincident with classification when integrating single-cell omics datasets. Genes selected based on TD-based unsupervised FE are also significantly related to reasonable biological roles.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
- Correspondence: ; Tel.: +81-3-3817-1791
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
16
|
Wang S, Cai TT, Li H. Optimal Estimation of Wasserstein Distance on A Tree with An Application to Microbiome Studies. J Am Stat Assoc 2021; 116:1237-1253. [PMID: 36860698 PMCID: PMC9974173 DOI: 10.1080/01621459.2019.1699422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The weighted UniFrac distance, a plug-in estimator of the Wasserstein distance of read counts on a tree, has been widely used to measure the microbial community difference in microbiome studies. Our investigation however shows that such a plug-in estimator, although intuitive and commonly used in practice, suffers from potential bias. Motivated by this finding, we study the problem of optimal estimation of the Wasserstein distance between two distributions on a tree from the sampled data in the high-dimensional setting. The minimax rate of convergence is established. To overcome the bias problem, we introduce a new estimator, referred to as the moment-screening estimator on a tree (MET), by using implicit best polynomial approximation that incorporates the tree structure. The new estimator is computationally efficient and is shown to be minimax rate-optimal. Numerical studies using both simulated and real biological datasets demonstrate the practical merits of MET, including reduced biases and statistically more significant differences in microbiome between the inactive Crohn's disease patients and the normal controls.
Collapse
Affiliation(s)
- Shulei Wang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - T Tony Cai
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
17
|
Macedonia MC, Drewes JL, Markham NO, Simmons AJ, Roland JT, Vega PN, Scurrah CR, Coffey RJ, Shrubsole MJ, Sears CL, Lau KS. Clinically adaptable polymer enables simultaneous spatial analysis of colonic tissues and biofilms. NPJ Biofilms Microbiomes 2020; 6:33. [PMID: 32973205 PMCID: PMC7518420 DOI: 10.1038/s41522-020-00143-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial influences on host cells depend upon the identities of the microbes, their spatial localization, and the responses they invoke on specific host cell populations. Multimodal analyses of both microbes and host cells in a spatially resolved fashion would enable studies into these complex interactions in native tissue environments, potentially in clinical specimens. While techniques to preserve each of the microbial and host cell compartments have been used to examine tissues and microbes separately, we endeavored to develop approaches to simultaneously analyze both compartments. Herein, we established an original method for mucus preservation using Poloxamer 407 (also known as Pluronic F-127), a thermoreversible polymer with mucus-adhesive characteristics. We demonstrate that this approach can preserve spatially-defined compartments of the mucus bi-layer in the colon and the bacterial communities within, compared with their marked absence when tissues were processed with traditional formalin-fixed paraffin-embedded (FFPE) pipelines. Additionally, antigens for antibody staining of host cells were preserved and signal intensity for 16S rRNA fluorescence in situ hybridization (FISH) was enhanced in poloxamer-fixed samples. This in turn enabled us to integrate multimodal analysis using a modified multiplex immunofluorescence (MxIF) protocol. Importantly, we have formulated Poloxamer 407 to polymerize and cross-link at room temperature for use in clinical workflows. These results suggest that the fixative formulation of Poloxamer 407 can be integrated into biospecimen collection pipelines for simultaneous analysis of microbes and host cells.
Collapse
Affiliation(s)
- Mary C Macedonia
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia L Drewes
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas O Markham
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cherie' R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J Coffey
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Martha J Shrubsole
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
- Division of Epidemiology, Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
18
|
Brubaker DK, Kumar MP, Chiswick EL, Gregg C, Starchenko A, Vega PN, Southard-Smith AN, Simmons AJ, Scoville EA, Coburn LA, Wilson KT, Lau KS, Lauffenburger DA. An interspecies translation model implicates integrin signaling in infliximab-resistant inflammatory bowel disease. Sci Signal 2020; 13:13/643/eaay3258. [PMID: 32753478 DOI: 10.1126/scisignal.aay3258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anti-tumor necrosis factor (anti-TNF) therapy resistance is a major clinical challenge in inflammatory bowel disease (IBD), due, in part, to insufficient understanding of disease-site, protein-level mechanisms. Although proteomics data from IBD mouse models exist, data and phenotype discrepancies contribute to confounding translation from preclinical animal models of disease to clinical cohorts. We developed an approach called translatable components regression (TransComp-R) to overcome interspecies and trans-omic discrepancies between mouse models and human subjects. TransComp-R combines mouse proteomic data with patient pretreatment transcriptomic data to identify molecular features discernable in the mouse data that are predictive of patient response to therapy. Interrogating the TransComp-R models revealed activated integrin pathway signaling in patients with anti-TNF-resistant colonic Crohn's disease (cCD) and ulcerative colitis (UC). As a step toward validation, we performed single-cell RNA sequencing (scRNA-seq) on biopsies from a patient with cCD and analyzed publicly available immune cell proteomics data to characterize the immune and intestinal cell types contributing to anti-TNF resistance. We found that ITGA1 was expressed in T cells and that interactions between these cells and intestinal cell types were associated with resistance to anti-TNF therapy. We experimentally showed that the α1 integrin subunit mediated the effectiveness of anti-TNF therapy in human immune cells. Thus, TransComp-R identified an integrin signaling mechanism with potential therapeutic implications for overcoming anti-TNF therapy resistance. We suggest that TransComp-R is a generalizable framework for addressing species, molecular, and phenotypic discrepancies between model systems and patients to translationally deliver relevant biological insights.
Collapse
Affiliation(s)
- Douglas K Brubaker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA.,Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Manu P Kumar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evan L Chiswick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cecil Gregg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Austin N Southard-Smith
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Islam M, Chen B, Spraggins JM, Kelly RT, Lau KS. Use of Single-Cell -Omic Technologies to Study the Gastrointestinal Tract and Diseases, From Single Cell Identities to Patient Features. Gastroenterology 2020; 159:453-466.e1. [PMID: 32417404 PMCID: PMC7484006 DOI: 10.1053/j.gastro.2020.04.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/29/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
Single cells are the building blocks of tissue systems that determine organ phenotypes, behaviors, and functions. Understanding the differences between cell types and their activities might provide us with insights into normal tissue physiology, development of disease, and new therapeutic strategies. Although -omic level single-cell technologies are a relatively recent development that have been used only in research settings, these approaches might eventually be used in the clinic. We review the prospects of applying single-cell genome, transcriptome, epigenome, proteome, and metabolome analyses to gastroenterology and hepatology research. Combining data from multi-omic platforms coupled to rapid technological development could lead to new diagnostic, prognostic, and therapeutic approaches.
Collapse
Affiliation(s)
- Mirazul Islam
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bob Chen
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
20
|
Southard-Smith AN, Simmons AJ, Chen B, Jones AL, Ramirez Solano MA, Vega PN, Scurrah CR, Zhao Y, Brenan MJ, Xuan J, Shrubsole MJ, Porter EB, Chen X, Brenan CJH, Liu Q, Quigley LNM, Lau KS. Dual indexed library design enables compatibility of in-Drop single-cell RNA-sequencing with exAMP chemistry sequencing platforms. BMC Genomics 2020; 21:456. [PMID: 32616006 PMCID: PMC7331155 DOI: 10.1186/s12864-020-06843-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background The increasing demand of single-cell RNA-sequencing (scRNA-seq) experiments, such as the number of experiments and cells queried per experiment, necessitates higher sequencing depth coupled to high data quality. New high-throughput sequencers, such as the Illumina NovaSeq 6000, enables this demand to be filled in a cost-effective manner. However, current scRNA-seq library designs present compatibility challenges with newer sequencing technologies, such as index-hopping, and their ability to generate high quality data has yet to be systematically evaluated. Results Here, we engineered a dual-indexed library structure, called TruDrop, on top of the inDrop scRNA-seq platform to solve these compatibility challenges, such that TruDrop libraries and standard Illumina libraries can be sequenced alongside each other on the NovaSeq. On scRNA-seq libraries, we implemented a previously-documented countermeasure to the well-described problem of index-hopping, demonstrated significant improvements in base-calling accuracy on the NovaSeq, and provided an example of multiplexing twenty-four scRNA-seq libraries simultaneously. We showed favorable comparisons in transcriptional diversity of TruDrop compared with prior inDrop libraries. Conclusions Our approach enables cost-effective, high throughput generation of sequencing data with high quality, which should enable more routine use of scRNA-seq technologies.
Collapse
Affiliation(s)
- Austin N Southard-Smith
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bob Chen
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cherie' R Scurrah
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yue Zhao
- RootPath Genomics, Inc., Cambridge, MA, USA
| | | | | | - Martha J Shrubsole
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Xi Chen
- RootPath Genomics, Inc., Cambridge, MA, USA
| | | | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA. .,Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
21
|
Abstract
Biological systems are dynamic and display heterogeneity at all levels. Ubiquitous heterogeneity, here called for poikilosis, is an integral and important property of organisms and in molecules, systems and processes within them. Traditionally, heterogeneity in biology and experiments has been considered as unwanted noise, here poikilosis is shown to be the normal state. Acceptable variation ranges are called as lagom. Non-lagom, variations that are too extensive, have negative effects, which influence interconnected levels and once the variation is large enough cause a disease and can lead even to death. Poikilosis has numerous applications and consequences e.g. for how to design, analyze and report experiments, how to develop and apply prediction and modelling methods, and in diagnosis and treatment of diseases. Poikilosis-aware new and practical definitions are provided for life, death, senescence, disease, and lagom. Poikilosis is the first new unifying theory in biology since evolution and should be considered in every scientific study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden
| |
Collapse
|
22
|
Abstract
Biological systems are dynamic and display heterogeneity at all levels. Ubiquitous heterogeneity, here called for poikilosis, is an integral and important property of organisms and in molecules, systems and processes within them. Traditionally, heterogeneity in biology and experiments has been considered as unwanted noise, here poikilosis is shown to be the normal state. Acceptable variation ranges are called as lagom. Non-lagom, variations that are too extensive, have negative effects, which influence interconnected levels and once the variation is large enough cause a disease and can lead even to death. Poikilosis has numerous applications and consequences e.g. for how to design, analyze and report experiments, how to develop and apply prediction and modelling methods, and in diagnosis and treatment of diseases. Poikilosis-aware new and practical definitions are provided for life, death, senescence, disease, and lagom. Poikilosis is the first new unifying theory in biology since evolution and should be considered in every scientific study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden
| |
Collapse
|
23
|
Seweryn MT, Pietrzak M, Ma Q. Application of information theoretical approaches to assess diversity and similarity in single-cell transcriptomics. Comput Struct Biotechnol J 2020; 18:1830-1837. [PMID: 32728406 PMCID: PMC7371753 DOI: 10.1016/j.csbj.2020.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 02/09/2023] Open
Abstract
Single-cell transcriptomics offers a powerful way to reveal the heterogeneity of individual cells. To date, many information theoretical approaches have been proposed to assess diversity and similarity, and characterize the latent heterogeneity in transcriptome data. Diversity implies gene expression variations and can facilitate the identification of signature genes; while, similarity unravels co-expression patterns for cell type clustering. In this review, we summarized 16 measures of information theory used for evaluating diversity and similarity in single-cell transcriptomic data, provide references and shed light on selected theoretical properties when there is a need to select proper measurements in general cases. We further provide an R package assembling discussed approaches to improve the researchers own single-cell transcriptome study. At last, we prospected further applications of diversity and similarity measures in support of depicting heterogeneity in single-cell multi-omics data.
Collapse
Affiliation(s)
- Michal T. Seweryn
- Center for Medical Genomics, Jagiellonian University, Cracow, Poland
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus OH, United States
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus OH, United States
| |
Collapse
|
24
|
Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4 + T cells to cytokines. Nat Commun 2020; 11:1801. [PMID: 32286271 PMCID: PMC7156481 DOI: 10.1038/s41467-020-15543-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Naïve CD4+ T cells coordinate the immune response by acquiring an effector phenotype in response to cytokines. However, the cytokine responses in memory T cells remain largely understudied. Here we use quantitative proteomics, bulk RNA-seq, and single-cell RNA-seq of over 40,000 human naïve and memory CD4+ T cells to show that responses to cytokines differ substantially between these cell types. Memory T cells are unable to differentiate into the Th2 phenotype, and acquire a Th17-like phenotype in response to iTreg polarization. Single-cell analyses show that T cells constitute a transcriptional continuum that progresses from naïve to central and effector memory T cells, forming an effectorness gradient accompanied by an increase in the expression of chemokines and cytokines. Finally, we show that T cell activation and cytokine responses are influenced by the effectorness gradient. Our results illustrate the heterogeneity of T cell responses, furthering our understanding of inflammation. Cytokines critically control the differentiation and functions of activated naïve and memory T cells. Here the authors show, using multi-omics and single-cell analyses, that naïve and memory T cells exhibit distinct cytokine responses, in which an ‘effectorness gradient’ is depicted by a transcriptional continuum, which shapes the downstream genetic programs.
Collapse
|
25
|
Uncovering axes of variation among single-cell cancer specimens. Nat Methods 2020; 17:302-310. [PMID: 31932777 DOI: 10.1038/s41592-019-0689-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023]
Abstract
While several tools have been developed to map axes of variation among individual cells, no analogous approaches exist for identifying axes of variation among multicellular biospecimens profiled at single-cell resolution. For this purpose, we developed 'phenotypic earth mover's distance' (PhEMD). PhEMD is a general method for embedding a 'manifold of manifolds', in which each datapoint in the higher-level manifold (of biospecimens) represents a collection of points that span a lower-level manifold (of cells). We apply PhEMD to a newly generated drug-screen dataset and demonstrate that PhEMD uncovers axes of cell subpopulational variation among a large set of perturbation conditions. Moreover, we show that PhEMD can be used to infer the phenotypes of biospecimens not directly profiled. Applied to clinical datasets, PhEMD generates a map of the patient-state space that highlights sources of patient-to-patient variation. PhEMD is scalable, compatible with leading batch-effect correction techniques and generalizable to multiple experimental designs.
Collapse
|
26
|
Min J, Vega PN, Engevik AC, Williams JA, Yang Q, Patterson LM, Simmons AJ, Bliton RJ, Betts JW, Lau KS, Magness ST, Goldenring JR, Choi E. Heterogeneity and dynamics of active Kras-induced dysplastic lineages from mouse corpus stomach. Nat Commun 2019; 10:5549. [PMID: 31804471 PMCID: PMC6895174 DOI: 10.1038/s41467-019-13479-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Dysplasia is considered a key transition state between pre-cancer and cancer in gastric carcinogenesis. However, the cellular or phenotypic heterogeneity and mechanisms of dysplasia progression have not been elucidated. We have established metaplastic and dysplastic organoid lines, derived from Mist1-Kras(G12D) mouse stomach corpus and studied distinct cellular behaviors and characteristics of metaplastic and dysplastic organoids. We also examined functional roles for Kras activation in dysplasia progression using Selumetinib, a MEK inhibitor, which is a downstream mediator of Kras signaling. Here, we report that dysplastic organoids die or show altered cellular behaviors and diminished aggressive behavior in response to MEK inhibition. However, the organoids surviving after MEK inhibition maintain cellular heterogeneity. Two dysplastic stem cell (DSC) populations are also identified in dysplastic cells, which exhibited different clonogenic potentials. Therefore, Kras activation controls cellular dynamics and progression to dysplasia, and DSCs might contribute to cellular heterogeneity in dysplastic cell lineages.
Collapse
Affiliation(s)
- Jimin Min
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Janice A Williams
- Cell Imaging Share Resource, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Qing Yang
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Loraine M Patterson
- Center for GI Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - R Jarrett Bliton
- UNC Departments of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joshua W Betts
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Scott T Magness
- Center for GI Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Departments of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- University of North Carolina Chapel Hill/ North Carolina State University joint Departments of Biomedical Engineering, Chapel Hill, NC, 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Nashville VA Medical Center, Nashville, TN, 37232, USA
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
27
|
Ahmed NY, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity. Front Mol Neurosci 2019; 12:204. [PMID: 31551706 PMCID: PMC6736589 DOI: 10.3389/fnmol.2019.00204] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic neurons comprise a small population of cells in the striatum but have fundamental roles in fine tuning brain function, and in the etiology of neurological and psychiatric disorders such as Parkinson’s disease (PD) or schizophrenia. The process of developmental cell specification underlying neuronal identity and function is an area of great current interest. There has been significant progress in identifying the developmental origins, commonalities in molecular markers, and physiological properties of the cholinergic neurons. Currently, we are aware of a number of key factors that promote cholinergic fate during development. However, the extent of cholinergic cell diversity is still largely underestimated. New insights into the biological basis of their specification indicate that cholinergic neurons may be far more diverse than previously thought. This review article, highlights the physiological features and the synaptic properties that segregate cholinergic cell subtypes. It provides an accurate picture of cholinergic cell diversity underlying their organization and function in neuronal networks. This review article, also discusses current challenges in deciphering the logic of the cholinergic cell heterogeneity that plays a fundamental role in the control of neural processes in health and disease.
Collapse
Affiliation(s)
- Noorya Yasmin Ahmed
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Rhys Knowles
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nathalie Dehorter
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
28
|
Wang T, Johnson TS, Shao W, Lu Z, Helm BR, Zhang J, Huang K. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Genome Biol 2019; 20:165. [PMID: 31405383 PMCID: PMC6691531 DOI: 10.1186/s13059-019-1764-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
To fully utilize the power of single-cell RNA sequencing (scRNA-seq) technologies for identifying cell lineages and bona fide transcriptional signals, it is necessary to combine data from multiple experiments. We present BERMUDA (Batch Effect ReMoval Using Deep Autoencoders), a novel transfer-learning-based method for batch effect correction in scRNA-seq data. BERMUDA effectively combines different batches of scRNA-seq data with vastly different cell population compositions and amplifies biological signals by transferring information among batches. We demonstrate that BERMUDA outperforms existing methods for removing batch effects and distinguishing cell types in multiple simulated and real scRNA-seq datasets.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN, USA
| | - Travis S Johnson
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Shao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zixiao Lu
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Bryan R Helm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Regenstrief Institute, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|