1
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01036-1. [PMID: 39313573 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Dang T, Yu J, Cao Z, Zhang B, Li S, Xin Y, Yang L, Lou R, Zhuang M, Shui W. Endogenous cell membrane interactome mapping for the GLP-1 receptor in different cell types. Nat Chem Biol 2024:10.1038/s41589-024-01714-1. [PMID: 39227725 DOI: 10.1038/s41589-024-01714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
The GLP-1 receptor, one of the most successful drug targets for the treatment of type 2 diabetes and obesity, is known to engage multiple intracellular signaling proteins. However, it remains less explored how the receptor interacts with proteins on the cell membrane. Here, we present a ligand-based proximity labeling approach to interrogate the native cell membrane interactome for the GLP-1 receptor after agonist simulation. Our study identified several unreported putative cell membrane interactors for the endogenous receptor in either a pancreatic β cell line or a neuronal cell line. We further uncovered new regulators of GLP-1 receptor-mediated signaling and insulinotropic responses in β cells. Additionally, we obtained a time-resolved cell membrane interactome map for the receptor in β cells. Therefore, our study provides a new approach that is generalizable to map endogenous cell membrane interactomes for G-protein-coupled receptors to decipher the molecular basis of their cell-type-specific functional regulation.
Collapse
Affiliation(s)
- Ting Dang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Lingang Laboratory, Shanghai, China
| | - Zhihe Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingjie Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shanshan Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ye Xin
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
3
|
Aghayeva A, Gok Yurtseven D, Hasanoglu Akbulut N, Eyigor O. Immunohistochemical determination of the excitatory and inhibitory axonal endings contacting NUCB2/nesfatin-1 neurons. Neuropeptides 2024; 103:102401. [PMID: 38157780 DOI: 10.1016/j.npep.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Nesfatin-1 is an anorexigenic peptide suppressing food intake and is synthesized and secreted by neurons located in the hypothalamus. Our study was aimed to demonstrate the effect of excitatory and inhibitory neurotransmitters on NUCB2/nesfatin-1 neurons. In this context, dual peroxidase immunohistochemistry staining was performed using NUCB2/nesfatin-1 primary antibody with each of the primary antibodies of vesicular transporter proteins applied as markers for neurons using glutamate, acetylcholine, and GABA as neurotransmitters. In double labeling applied on floating sections, the NUCB2/nesfatin-1 reaction was determined in brown color with diaminobenzidine, while vesicular carrier proteins were marked in black. Slides were analyzed to determine the ratio of nesfatin-1 neurons in the three hypothalamic nucleus in contact with a relevant vesicular carrier protein. The ratios of NUCB2/nesfatin-1 neurons with the innervation were compared among neurotransmitters. In addition, possible gender differences between males and females were examined. The difference in the number of VGLUT2-contacting NUCB2/nesfatin-1 neurons was significantly higher in males when compared to females. When both genders were compared in different nuclei, it was seen that there was no statistical significance in terms of the percentage of NUCB2/nesfatin-1 neuron apposition with VGLUT3. The statistical evaluation showed that number of NUCB2/nesfatin-1 neurons receiving GABAergic innervation is higher in males when compared to females (*p ≤ 0.05; p = 0.045). When the axonal contact of vesicular neurotransmitter transporter proteins was compared between the neurotransmitters, it was determined that the most prominent innervation is GABAergic. In the supraoptic region, no contacts of VAChT-containing axons were found on NUCB2/nesfatin-1 neurons in both female and male subjects. In conclusion, it is understood that both excitatory and inhibitory neurons can innervate the NUCB2/nesfatin-1 neurons and the glutamatergic system is effective in the excitatory innervation while the GABAergic system plays a role in the inhibitory mechanism.
Collapse
Affiliation(s)
- Aynura Aghayeva
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Duygu Gok Yurtseven
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Nursel Hasanoglu Akbulut
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Ozhan Eyigor
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye.
| |
Collapse
|
4
|
Croizier S, Bouret SG. Molecular Control of the Development of Hypothalamic Neurons Involved in Metabolic Regulation. J Chem Neuroanat 2022; 123:102117. [DOI: 10.1016/j.jchemneu.2022.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
|
5
|
Bouret SG. Developmental programming of hypothalamic melanocortin circuits. Exp Mol Med 2022; 54:403-413. [PMID: 35474338 PMCID: PMC9076880 DOI: 10.1038/s12276-021-00625-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
The melanocortin system plays a critical role in the central regulation of food intake and energy balance. This system consists of neurons producing pro-opiomelanocortin (POMC), melanocortin receptors (MC4Rs), and the endogenous antagonist agouti-related peptide (AgRP). Pomc and Mc4r deficiency in rodents and humans causes early onset of obesity, whereas a loss of Agrp function is associated with leanness. Accumulating evidence shows that many chronic diseases, including obesity, might originate during early life. The melanocortin system develops during a relatively long period beginning during embryonic life with the birth of POMC and AgRP neurons and continuing postnatally with the assembly of their neuronal circuitry. The development of the melanocortin system requires the tight temporal regulation of molecular factors, such as transcription factors and axon guidance molecules, and cellular mechanisms, such as autophagy. It also involves a complex interplay of endocrine and nutritional factors. The disruption of one or more of these developmental factors can lead to abnormal maturation and function of the melanocortin system and has profound metabolic consequences later in life.
Collapse
Affiliation(s)
- Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, UMR-S 1172, Lille, 59000, France.
- University of Lille, FHU 1,000 Days for Health, Lille, 59000, France.
| |
Collapse
|
6
|
Furigo IC, Dearden L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front Endocrinol (Lausanne) 2022; 13:1078955. [PMID: 36619540 PMCID: PMC9813846 DOI: 10.3389/fendo.2022.1078955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.
Collapse
Affiliation(s)
- Isadora C. Furigo
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories, Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Laura Dearden,
| |
Collapse
|
7
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
8
|
Identification of genetic loci affecting body mass index through interaction with multiple environmental factors using structured linear mixed model. Sci Rep 2021; 11:5001. [PMID: 33654129 PMCID: PMC7925554 DOI: 10.1038/s41598-021-83684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
Multiple environmental factors could interact with a single genetic factor to affect disease phenotypes. We used Struct-LMM to identify genetic variants that interacted with environmental factors related to body mass index (BMI) using data from the Korea Association Resource. The following factors were investigated: alcohol consumption, education, physical activity metabolic equivalent of task (PAMET), income, total calorie intake, protein intake, carbohydrate intake, and smoking status. Initial analysis identified 7 potential single nucleotide polymorphisms (SNPs) that interacted with the environmental factors (P value < 5.00 × 10-6). Of the 8 environmental factors, PAMET score was excluded for further analysis since it had an average Bayes Factor (BF) value < 1 (BF = 0.88). Interaction analysis using 7 environmental factors identified 11 SNPs (P value < 5.00 × 10-6). Of these, rs2391331 had the most significant interaction (P value = 7.27 × 10-9) and was located within the intron of EFNB2 (Chr 13). In addition, the gene-based genome-wide association study verified EFNB2 gene significantly interacting with 7 environmental factors (P value = 5.03 × 10-10). BF analysis indicated that most environmental factors, except carbohydrate intake, contributed to the interaction of rs2391331 on BMI. Although the replication of the results in other cohorts is warranted, these findings proved the usefulness of Struct-LMM to identify the gene-environment interaction affecting disease.
Collapse
|