1
|
Lall D, Glaser MM, Higgs PI. Myxococcus xanthus fruiting body morphology is important for spore recovery after exposure to environmental stress. Appl Environ Microbiol 2024; 90:e0166024. [PMID: 39365039 PMCID: PMC11497814 DOI: 10.1128/aem.01660-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores. Myxococcus xanthus are ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium, Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions.
Collapse
Affiliation(s)
- Dave Lall
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maike M. Glaser
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Penelope I. Higgs
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Ruff SE, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells. PLoS Biol 2024; 22:e3002638. [PMID: 38990824 PMCID: PMC11239054 DOI: 10.1371/journal.pbio.3002638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 07/13/2024] Open
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single-cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing 8 new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nanoscale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal noncanonical amino acid tagging (BONCAT), we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Virginia Edgcomb
- Woods Hole Oceanographic Institution, Falmouth, Massachusetts, United States of America
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
3
|
França TC, Saïdi F, Ajamian A, Islam ST, LaPlante SR. Molecular Dynamics of Outer Membrane-Embedded Polysaccharide Secretion Porins Reveals Closed Resting-State Surface Gates Targetable by Virtual Fragment Screening for Drug Hotspot Identification. ACS OMEGA 2024; 9:13217-13226. [PMID: 38524450 PMCID: PMC10955716 DOI: 10.1021/acsomega.3c09970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Recent advances in iterative neural network analyses (e.g., AlphaFold2 and RoseTTA fold) have been revolutionary for protein 3D structure prediction, especially for difficult-to-manipulate α-helical/β-barrel integral membrane proteins. These model structures are calculated based on the coevolution of amino acids within the protein of interest and similarities to existing protein structures; the local effects of the membrane on folding and stability of the calculated model structures are not considered. We recently reported the discovery, 3D modeling, and characterization of 18-β-stranded outer-membrane (OM) WzpX, WzpS, and WzpB β-barrel secretion porins for the exopolysaccharide (EPS), major spore coat polysaccharide (MASC), and biosurfactant polysaccharide (BPS) pathways (respectively) in the Gram-negative social predatory bacterium Myxococcus xanthus DZ2. However, information was not obtained regarding the dynamic behavior of surface-gating WzpX/S/B loop domains or on potential treatments to inactivate these porins. Herein, we developed a molecular dynamics (MD) protocol to study the core stability and loop dynamism of neural network-based integral membrane protein structure models embedded in an asymmetric OM bilayer, using the M. xanthus WzpX, WzpS, and WzpB proteins as test candidates. This was accomplished through integration of the CHARMM-graphical user interface (GUI) and Molecular Operating Environment (MOE) workflows to allow for a rapid simulation system setup and facilitate data analysis. In addition to serving as a method of model structure validation, our molecular dynamics simulations revealed a minimal movement of extracellular WzpX/S/B loops in the absence of an external stimulus as well as druggable cavities between the loops. Virtual screening of a commercial fragment library against these cavities revealed putative fragment-binding hotspots on the cell-surface face of each β-barrel, along with key interacting residues, and identified promising hits for the design of potential binders capable of plugging the β-barrels and inhibiting polysaccharide secretion.
Collapse
Affiliation(s)
- Tanos
C. C. França
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Santé Biotechnologie, Université
du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, QC G1V 0A6, Canada
- Laboratory
of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Department
of Chemistry, Faculty of Science, University
of Hradec Kralove, Rokitanskeho
62, 50003 Hradec
Kralove, Czech Republic
| | - Fares Saïdi
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Santé Biotechnologie, Université
du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Alain Ajamian
- Chemical
Computing Group, Montreal, Quebec H3A 2R7, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Santé Biotechnologie, Université
du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Steven R. LaPlante
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Santé Biotechnologie, Université
du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Emil Ruff S, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacterial consortia are metabolically differentiated and not clonal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568837. [PMID: 38076927 PMCID: PMC10705294 DOI: 10.1101/2023.11.27.568837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| | | | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
5
|
Dinet C, Mignot T. Unorthodox regulation of the MglA Ras-like GTPase controlling polarity in Myxococcus xanthus. FEBS Lett 2023; 597:850-864. [PMID: 36520515 DOI: 10.1002/1873-3468.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Motile cells have developed a large array of molecular machineries to actively change their direction of movement in response to spatial cues from their environment. In this process, small GTPases act as molecular switches and work in tandem with regulators and sensors of their guanine nucleotide status (GAP, GEF, GDI and effectors) to dynamically polarize the cell and regulate its motility. In this review, we focus on Myxococcus xanthus as a model organism to elucidate the function of an atypical small Ras GTPase system in the control of directed cell motility. M. xanthus cells direct their motility by reversing their direction of movement through a mechanism involving the redirection of the motility apparatus to the opposite cell pole. The reversal frequency of moving M. xanthus cells is controlled by modular and interconnected protein networks linking the chemosensory-like frizzy (Frz) pathway - that transmits environmental signals - to the downstream Ras-like Mgl polarity control system - that comprises the Ras-like MglA GTPase protein and its regulators. Here, we discuss how variations in the GTPase interactome landscape underlie single-cell decisions and consequently, multicellular patterns.
Collapse
Affiliation(s)
- Céline Dinet
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France
| |
Collapse
|
6
|
Islam ST, Jolivet NY, Cuzin C, Belgrave AM, My L, Fleuchot B, Faure LM, Mahanta U, Kezzo AA, Saïdi F, Sharma G, Fiche JB, Bratton BP, Herrou J, Nollmann M, Shaevitz JW, Durand E, Mignot T. Unmasking of the von Willebrand A-domain surface adhesin CglB at bacterial focal adhesions mediates myxobacterial gliding motility. SCIENCE ADVANCES 2023; 9:eabq0619. [PMID: 36812310 PMCID: PMC9946355 DOI: 10.1126/sciadv.abq0619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The predatory deltaproteobacterium Myxococcus xanthus uses a helically-trafficked motor at bacterial focal-adhesion (bFA) sites to power gliding motility. Using total internal reflection fluorescence and force microscopies, we identify the von Willebrand A domain-containing outer-membrane (OM) lipoprotein CglB as an essential substratum-coupling adhesin of the gliding transducer (Glt) machinery at bFAs. Biochemical and genetic analyses reveal that CglB localizes to the cell surface independently of the Glt apparatus; once there, it is recruited by the OM module of the gliding machinery, a heteroligomeric complex containing the integral OM β barrels GltA, GltB, and GltH, as well as the OM protein GltC and OM lipoprotein GltK. This Glt OM platform mediates the cell-surface accessibility and retention of CglB by the Glt apparatus. Together, these data suggest that the gliding complex promotes regulated surface exposure of CglB at bFAs, thus explaining the manner by which contractile forces exerted by inner-membrane motors are transduced across the cell envelope to the substratum.
Collapse
Affiliation(s)
- Salim T. Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Laval, QC G1V 0A6, Canada
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Nicolas Y. Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Laval, QC G1V 0A6, Canada
| | - Clémence Cuzin
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Akeisha M. Belgrave
- Integrated Sciences Program, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Laetitia My
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Betty Fleuchot
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Laura M. Faure
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Utkarsha Mahanta
- Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru-560100, Karnataka, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana-502284, India
| | - Ahmad A. Kezzo
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Laval, QC G1V 0A6, Canada
| | - Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Laval, QC G1V 0A6, Canada
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru-560100, Karnataka, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana-502284, India
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, 34090 Montpellier, France
| | - Benjamin P. Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN 37232, USA
| | - Julien Herrou
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, 34090 Montpellier, France
| | - Joshua W. Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Eric Durand
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| |
Collapse
|
7
|
Schwabe J, Pérez-Burgos M, Herfurth M, Glatter T, Søgaard-Andersen L. Evidence for a Widespread Third System for Bacterial Polysaccharide Export across the Outer Membrane Comprising a Composite OPX/β-Barrel Translocon. mBio 2022; 13:e0203222. [PMID: 35972145 PMCID: PMC9601211 DOI: 10.1128/mbio.02032-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, secreted polysaccharides have multiple critical functions. In Wzx/Wzy- and ABC transporter-dependent pathways, an outer membrane (OM) polysaccharide export (OPX) type translocon exports the polysaccharide across the OM. The paradigm OPX protein Wza of Escherichia coli is an octamer in which the eight C-terminal domains form an α-helical OM pore and the eight copies of the three N-terminal domains (D1 to D3) form a periplasmic cavity. In synthase-dependent pathways, the OM translocon is a 16- to 18-stranded β-barrel protein. In Myxococcus xanthus, the secreted polysaccharide EPS (exopolysaccharide) is synthesized in a Wzx/Wzy-dependent pathway. Here, using experiments, phylogenomics, and computational structural biology, we identify and characterize EpsX as an OM 18-stranded β-barrel protein important for EPS synthesis and identify AlgE, a β-barrel translocon of a synthase-dependent pathway, as its closest structural homolog. We also find that EpsY, the OPX protein of the EPS pathway, consists only of the periplasmic D1 and D2 domains and completely lacks the domain for spanning the OM (herein termed a D1D2OPX protein). In vivo, EpsX and EpsY mutually stabilize each other and interact in in vivo pulldown experiments supporting their direct interaction. Based on these observations, we propose that EpsY and EpsX make up and represent a third type of translocon for polysaccharide export across the OM. Specifically, in this composite translocon, EpsX functions as the OM-spanning β-barrel translocon together with the periplasmic D1D2OPX protein EpsY. Based on computational genomics, similar composite systems are widespread in Gram-negative bacteria. IMPORTANCE Bacteria secrete a wide variety of polysaccharides that have critical functions in, e.g., fitness, surface colonization, and biofilm formation and in beneficial and pathogenic human-, animal-, and plant-microbe interactions. In Gram-negative bacteria, export of these chemically diverse polysaccharides across the outer membrane depends on two known translocons, i.e., an outer membrane OPX protein in Wzx/Wzy- and ABC transporter-dependent pathways and an outer membrane 16- to 18-stranded β-barrel protein in synthase-dependent pathways. Here, using a combination of experiments in Myxococcus xanthus, phylogenomics, and computational structural biology, we provide evidence supporting that a third type of translocon can export polysaccharides across the outer membrane. Specifically, in this translocon, an outer membrane-spanning β-barrel protein functions together with an entirely periplasmic OPX protein that completely lacks the domain for spanning the OM. Computational genomics support that similar composite systems are widespread in Gram-negative bacteria.
Collapse
Affiliation(s)
- Johannes Schwabe
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marco Herfurth
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
8
|
Saïdi F, Mahanta U, Panda A, Kezzo AA, Jolivet NY, Bitazar R, John G, Martinez M, Mellouk A, Calmettes C, Chang YW, Sharma G, Islam ST. Bacterial Outer Membrane Polysaccharide Export (OPX) Proteins Occupy Three Structural Classes with Selective β-Barrel Porin Requirements for Polymer Secretion. Microbiol Spectr 2022; 10:e0129022. [PMID: 36200915 PMCID: PMC9603273 DOI: 10.1128/spectrum.01290-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022] Open
Abstract
Secretion of high-molecular-weight polysaccharides across the bacterial envelope is ubiquitous, as it enhances prokaryotic survival in (a)biotic settings. Such polymers are often assembled by Wzx/Wzy- or ABC transporter-dependent schemes implicating outer membrane (OM) polysaccharide export (OPX) proteins in cell-surface polymer translocation. In the social predatory bacterium Myxococcus xanthus, the exopolysaccharide (EPS) pathway WzaX, major spore coat (MASC) pathway WzaS, and biosurfactant polysaccharide (BPS) pathway WzaB were herein found to be truncated OPX homologues of Escherichia coli Wza lacking OM-spanning α-helices. Comparative genomics across all bacteria (>91,000 OPX proteins identified and analyzed), complemented with cryo-electron tomography cell-envelope analyses, revealed such "truncated" WzaX/S/B architecture to be the most common among three defined OPX-protein structural classes independent of periplasm thickness. Fold recognition and deep learning revealed the conserved M. xanthus proteins MXAN_7418/3226/1916 (encoded beside wzaX/S/B, respectively) to be integral OM β-barrels, with structural homology to the poly-N-acetyl-d-glucosamine synthase-dependent pathway porin PgaA. Such bacterial porins were identified near numerous genes for all three OPX protein classes. Interior MXAN_7418/3226/1916 β-barrel electrostatics were found to match properties of their associated polymers. With MXAN_3226 essential for MASC export, and MXAN_7418 herein shown to mediate EPS translocation, we have designated this new secretion machinery component "Wzp" (i.e., Wz porin), with the final step of M. xanthus EPS/MASC/BPS secretion across the OM now proposed to be mediated by WzpX/S/B (i.e., MXAN_7418/3226/1916). Importantly, these data support a novel and widespread secretion paradigm for polysaccharide biosynthesis pathways in which those containing OPX components that cannot span the OM instead utilize β-barrel porins to mediate polysaccharide transport across the OM. IMPORTANCE Diverse bacteria assemble and secrete polysaccharides that alter their physiologies through modulation of motility, biofilm formation, and host immune system evasion. Most such pathways require outer membrane (OM) polysaccharide export (OPX) proteins for sugar-polymer transport to the cell surface. In the prototypic Escherichia coli Group-1-capsule biosynthesis system, eight copies of this canonical OPX protein cross the OM with an α-helix, forming a polysaccharide-export pore. Herein, we instead reveal that most OPX proteins across all bacteria lack this α-helix, raising questions as to the manner by which most secreted polysaccharides actually exit cells. In the model developmental bacterium Myxococcus xanthus, we show this process to depend on OPX-coupled OM-spanning β-barrel porins, with similar porins encoded near numerous OPX genes in diverse bacteria. Knowledge of the terminal polysaccharide secretion step will enable development of antimicrobial compounds targeted to blocking polymer export from outside the cell, thus bypassing any requirements for antimicrobial compound uptake by the cell.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Utkarsha Mahanta
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Adyasha Panda
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Ahmad A. Kezzo
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Nicolas Y. Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Razieh Bitazar
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Gavin John
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abdelkader Mellouk
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Charles Calmettes
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Salim T. Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
9
|
Saïdi F, Gamboa Marin OJ, Veytia-Bucheli JI, Vinogradov E, Ravicoularamin G, Jolivet NY, Kezzo AA, Ramirez Esquivel E, Panda A, Sharma G, Vincent S, Gauthier C, Islam ST. Evaluation of Azido 3-Deoxy-d- manno-oct-2-ulosonic Acid (Kdo) Analogues for Click Chemistry-Mediated Metabolic Labeling of Myxococcus xanthus DZ2 Lipopolysaccharide. ACS OMEGA 2022; 7:34997-35013. [PMID: 36211050 PMCID: PMC9535733 DOI: 10.1021/acsomega.2c03711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Metabolic labeling paired with click chemistry is a powerful approach for selectively imaging the surfaces of diverse bacteria. Herein, we explored the feasibility of labeling the lipopolysaccharide (LPS) of Myxococcus xanthus-a Gram-negative predatory social bacterium known to display complex outer membrane (OM) dynamics-via growth in the presence of distinct azido (-N3) analogues of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo). Determination of the LPS carbohydrate structure from strain DZ2 revealed the presence of one Kdo sugar in the core oligosaccharide, modified with phosphoethanolamine. The production of 8-azido-8-deoxy-Kdo (8-N3-Kdo) was then greatly improved over previous reports via optimization of the synthesis of its 5-azido-5-deoxy-d-arabinose precursor to yield gram amounts. The novel analogue 7-azido-7-deoxy-Kdo (7-N3-Kdo) was also synthesized, with both analogues capable of undergoing in vitro strain-promoted azide-alkyne cycloaddition (SPAAC) "click" chemistry reactions. Slower and faster growth of M. xanthus was displayed in the presence of 8-N3-Kdo and 7-N3-Kdo (respectively) compared to untreated cells, with differences also seen for single-cell gliding motility and type IV pilus-dependent swarm community expansion. While the surfaces of 8-N3-Kdo-grown cells were fluorescently labeled following treatment with dibenzocyclooctyne-linked fluorophores, the surfaces of 7-N3-Kdo-grown cells could not undergo fluorescent tagging. Activity analysis of the KdsB enzyme required to activate Kdo prior to its integration into nascent LPS molecules revealed that while 8-N3-Kdo is indeed a substrate of the enzyme, 7-N3-Kdo is not. Though a lack of M. xanthus cell aggregation was shown to expedite growth in liquid culture, 7-N3-Kdo-grown cells did not manifest differences in intrinsic clumping relative to untreated cells, suggesting that 7-N3-Kdo may instead be catabolized by the cells. Ultimately, these data provide important insights into the synthesis and cellular processing of valuable metabolic labels and establish a basis for the elucidation of fundamental principles of OM dynamism in live bacterial cells.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Oscar Javier Gamboa Marin
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- Unité
Mixte de Recherche INRS-UQAC, INRS−Centre AFSB, Université du Québec à Chicoutimi
(UQAC), Chicoutimi, Quebec G7H 2B1, Canada
| | - José Ignacio Veytia-Bucheli
- Department
of Chemistry, Laboratory of Bio-Organic Chemistry−Namur Research
Institute for Life Sciences (NARILIS), University
of Namur (UNamur), Namur 5000, Belgium
| | - Evgeny Vinogradov
- Vaccine
Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Gokulakrishnan Ravicoularamin
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- Unité
Mixte de Recherche INRS-UQAC, INRS−Centre AFSB, Université du Québec à Chicoutimi
(UQAC), Chicoutimi, Quebec G7H 2B1, Canada
| | - Nicolas Y. Jolivet
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Ahmad A. Kezzo
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Eric Ramirez Esquivel
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Adyasha Panda
- Institute
of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka 560100, India
| | - Gaurav Sharma
- Institute
of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka 560100, India
| | - Stéphane
P. Vincent
- Department
of Chemistry, Laboratory of Bio-Organic Chemistry−Namur Research
Institute for Life Sciences (NARILIS), University
of Namur (UNamur), Namur 5000, Belgium
| | - Charles Gauthier
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- Unité
Mixte de Recherche INRS-UQAC, INRS−Centre AFSB, Université du Québec à Chicoutimi
(UQAC), Chicoutimi, Quebec G7H 2B1, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| |
Collapse
|
10
|
Subedi K, Wall D. Conditional and Synthetic Type IV Pili-Dependent Motility Phenotypes in Myxococcus xanthus. Front Microbiol 2022; 13:879090. [PMID: 35586861 PMCID: PMC9108774 DOI: 10.3389/fmicb.2022.879090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Myxobacteria exhibit a variety of complex social behaviors that all depend on coordinated movement of cells on solid surfaces. The cooperative nature of cell movements is known as social (S)-motility. This system is powered by cycles of type IV pili (Tfp) extension and retraction. Exopolysaccharide (EPS) also serves as a matrix to hold cells together. Here, we characterized a new S-motility gene in Myxococcus xanthus. This mutant is temperature-sensitive (Ts–) for S-motility; however, Tfp and EPS are made. A 1 bp deletion was mapped to the MXAN_4099 locus and the gene was named sglS. Null mutations in sglS exhibit a synthetic enhanced phenotype with a null sglT mutation, a previously characterized S-motility gene that exhibits a similar Ts– phenotype. Our results suggest that SglS and SglT contribute toward Tfp function at high temperatures in redundant pathways. However, at low temperatures only one pathway is necessary for wild-type S-motility, while in the double mutant, motility is nearly abolished at low temperatures. Interestingly, the few cells that do move do so with a high reversal frequency. We suggest SglS and SglT play conditional roles facilitating Tfp retraction and hence motility in M. xanthus.
Collapse
Affiliation(s)
- Kalpana Subedi
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Daniel Wall,
| |
Collapse
|
11
|
The differential expression of PilY1 proteins by the HsfBA phosphorelay allows twitching motility in the absence of exopolysaccharides. PLoS Genet 2022; 18:e1010188. [PMID: 35486648 PMCID: PMC9109919 DOI: 10.1371/journal.pgen.1010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/16/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type Four Pili (T4P) are extracellular appendages mediating several bacterial functions such as motility, biofilm formation and infection. The ability to adhere to substrates is essential for all these functions. In Myxococcus xanthus, during twitching motility, the binding of polar T4P to exopolysaccharides (EPS), induces pilus retraction and the forward cell movement. EPS are produced, secreted and weakly associated to the M. xanthus cell surface or deposited on the substrate. In this study, a genetic screen allowed us to identify two factors involved in EPS-independent T4P-dependent twitching motility: the PilY1.1 protein and the HsfBA phosphorelay. Transcriptomic analyses show that HsfBA differentially regulates the expression of PilY1 proteins and that the down-regulation of pilY1.1 together with the accumulation of its homologue pilY1.3, allows twitching motility in the absence of EPS. The genetic and bioinformatic dissection of the PilY1.1 domains shows that PilY1.1 might be a bi-functional protein with a role in priming T4P extension mediated by its conserved N-terminal domain and roles in EPS-dependent motility mediated by an N-terminal DUF4114 domain activated upon binding to Ca2+. We speculate that the differential transcriptional regulation of PilY1 homologs by HsfBA in response to unknown signals, might allow accessorizing T4P tips with different modules allowing twitching motility in the presence of alternative substrates and environmental conditions. In the motile bacterium Myxococcus xanthus, T4P mediate twitching motility by binding to the sugar moiety of the extracellular matrix deposited on the neighboring cells or on the substrate. The binding of T4P to these sugars also termed exopolysaccharides (EPS) stimulates the pilus fiber retraction pulling the cell forwards. In this study, we performed a series of genetic analyses leading to the discovery that M. xanthus cells can move in the absence of EPS if two conditions are fulfilled: the pilY1.1 gene is down-regulated and the PilY1.3 protein is accumulated on pili. RNAseq, qRT-PCR and gel retardation assays show that the differential accumulation of PilY1 proteins is under the control of the HsfBA phosphorelay, which up-regulates the expression of pilY1.1 and down-regulates that of a homologue, pilY1.3. We also found that PilY1.1 has a domain at the N terminus probably requiring Ca2+ to be active in EPS-dependent motility, and a conserved domain at the C terminus essential for T4P assembly. Conversely, PilY1.3 contains a Von Willebrand factor A (VWA) domain and is potentially involved in the binding to proteins. We speculate that thanks to the HsfBA regulation, T4P can be equipped with different PilY1 homologues to allow twitching motility in the presence of different substrates.
Collapse
|
12
|
Saïdi F, Bitazar R, Bradette NY, Islam ST. Bacterial Glycocalyx Integrity Impacts Tolerance of Myxococcus xanthus to Antibiotics and Oxidative-Stress Agents. Biomolecules 2022; 12:571. [PMID: 35454160 PMCID: PMC9029694 DOI: 10.3390/biom12040571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
The presence of an exopolysaccharide (EPS) layer surrounding bacterial cells, termed a "glycocalyx", confers protection against toxic molecules. However, the effect of glycocalyx integrity on the tolerance to such agents is poorly understood. Using a modified disc-diffusion assay, we tested the susceptibility to a panel of antibiotics and oxidative stress-inducing compounds of various mutant strains of the social predatory Gram-negative soil bacterium Myxococcus xanthus; the selected mutants were those that manifest different physical states of their respective EPS glycocalyces. While the overall presence of an EPS layer was indeed beneficial for tolerance, the integrity of this layer was also found to affect the susceptibility of the bacterium to killing; however, this finding was not universal, and instead was dependent on the specific compound tested. Thus, the integrity of the cell-surface EPS glycocalyx plays an important role in the tolerance of M. xanthus to harmful compounds.
Collapse
Affiliation(s)
- Fares Saïdi
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada; (F.S.); (R.B.); (N.Y.B.)
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC G1V 0A6, Canada
| | - Razieh Bitazar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada; (F.S.); (R.B.); (N.Y.B.)
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicholas Y. Bradette
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada; (F.S.); (R.B.); (N.Y.B.)
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC G1V 0A6, Canada
| | - Salim T. Islam
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada; (F.S.); (R.B.); (N.Y.B.)
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
13
|
Surveying a Swarm: Experimental Techniques to Establish and Examine Bacterial Collective Motion. Appl Environ Microbiol 2021; 88:e0185321. [PMID: 34878816 DOI: 10.1128/aem.01853-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The survival and successful spread of many bacterial species hinges on their mode of motility. One of the most distinct of these is swarming, a collective form of motility where a dense consortium of bacteria employ flagella to propel themselves across a solid surface. Surface environments pose unique challenges, derived from higher surface friction/tension and insufficient hydration. Bacteria have adapted by deploying an array of mechanisms to overcome these challenges. Beyond allowing bacteria to colonize new terrain in the absence of bulk liquid, swarming also bestows faster speeds and enhanced antibiotic resistance to the collective. These crucial attributes contribute to the dissemination, and in some cases pathogenicity, of an array of bacteria. This mini-review highlights; 1) aspects of swarming motility that differentiates it from other methods of bacterial locomotion. 2) Facilitatory mechanisms deployed by diverse bacteria to overcome different surface challenges. 3) The (often difficult) approaches required to cultivate genuine swarmers. 4) The methods available to observe and assess the various facets of this collective motion, as well as the features exhibited by the population as a whole.
Collapse
|
14
|
Akbar S, Phillips KE, Misra SK, Sharp JS, Stevens DC. Differential response to prey quorum signals indicates predatory specialization of myxobacteria and ability to predate Pseudomonas aeruginosa. Environ Microbiol 2021; 24:1263-1278. [PMID: 34674390 PMCID: PMC9257966 DOI: 10.1111/1462-2920.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Multiomic analysis of transcriptional and metabolic responses from the predatory myxobacteria Myxococcus xanthus and Cystobacter ferrugineus exposed to prey signalling molecules of the acylhomoserine lactone and quinolone quorum signalling classes provided insight into predatory specialization. Acylhomoserine lactone quorum signals elicited a general response from both myxobacteria. We suggest that this is likely due to the generalist predator lifestyles of myxobacteria and ubiquity of acylhomoserine lactone signals. We also provide data that indicates the core homoserine lactone moiety included in all acylhomoserine lactone scaffolds to be sufficient to induce this general response. Comparing both myxobacteria, unique transcriptional and metabolic responses were observed from Cystobacter ferrugineus exposed to the quinolone signal 2‐heptylquinolin‐4(1H)‐one (HHQ) natively produced by Pseudomonas aeruginosa. We suggest that this unique response and ability to metabolize quinolone signals contribute to the superior predation of P. aeruginosa observed from C. ferrugineus. These results further demonstrate myxobacterial eavesdropping on prey signalling molecules and provide insight into how responses to exogenous signals might correlate with prey range of myxobacteria.
Collapse
Affiliation(s)
- Shukria Akbar
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Kayleigh E Phillips
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,Department of Chemistry and Biochemistry, University of Mississippi, University, University, MS, USA
| | - D Cole Stevens
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| |
Collapse
|
15
|
Seef S, Herrou J, de Boissier P, My L, Brasseur G, Robert D, Jain R, Mercier R, Cascales E, Habermann BH, Mignot T. A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria. eLife 2021; 10:72409. [PMID: 34505573 PMCID: PMC8460266 DOI: 10.7554/elife.72409] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Myxococcus xanthus, a soil bacterium, predates collectively using motility to invade prey colonies. Prey lysis is mostly thought to rely on secreted factors, cocktails of antibiotics and enzymes, and direct contact with Myxococcus cells. In this study, we show that on surfaces the coupling of A-motility and contact-dependent killing is the central predatory mechanism driving effective prey colony invasion and consumption. At the molecular level, contact-dependent killing involves a newly discovered type IV filament-like machinery (Kil) that both promotes motility arrest and prey cell plasmolysis. In this process, Kil proteins assemble at the predator-prey contact site, suggesting that they allow tight contact with prey cells for their intoxication. Kil-like systems form a new class of Tad-like machineries in predatory bacteria, suggesting a conserved function in predator-prey interactions. This study further reveals a novel cell-cell interaction function for bacterial pili-like assemblages.
Collapse
Affiliation(s)
- Sofiene Seef
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Julien Herrou
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Paul de Boissier
- Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Laetitia My
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Gael Brasseur
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Donovan Robert
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Rikesh Jain
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France.,Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Romain Mercier
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Eric Cascales
- Aix-Marseille Université - CNRS UMR 7255, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Bianca H Habermann
- Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Tâm Mignot
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| |
Collapse
|
16
|
Ramos Y, Sansone S, Morales DK. Sugarcoating it: Enterococcal polysaccharides as key modulators of host-pathogen interactions. PLoS Pathog 2021; 17:e1009822. [PMID: 34499702 PMCID: PMC8428557 DOI: 10.1371/journal.ppat.1009822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, United States of America
| | - Stephanie Sansone
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Urology, Weill Cornell Medicine, New York, New York, United States of America
| | - Diana K. Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Saïdi F, Jolivet NY, Lemon DJ, Nakamura A, Belgrave AM, Garza AG, Veyrier FJ, Islam ST. Bacterial glycocalyx integrity drives multicellular swarm biofilm dynamism. Mol Microbiol 2021; 116:1151-1172. [PMID: 34455651 DOI: 10.1111/mmi.14803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Exopolysaccharide (EPS) layers on the bacterial cell surface are key determinants of biofilm establishment and maintenance, leading to the formation of higher-order 3D structures that confer numerous survival benefits to a cell community. In addition to a specific cell-associated EPS glycocalyx, we recently revealed that the social δ-proteobacterium Myxococcus xanthus secretes a novel biosurfactant polysaccharide (BPS) to the extracellular milieu. Together, secretion of the two polymers (EPS and BPS) is required for type IV pilus (T4P)-dependent swarm expansion via spatio-specific biofilm expression profiles. Thus the synergy between EPS and BPS secretion somehow modulates the multicellular lifecycle of M. xanthus. Herein, we demonstrate that BPS secretion functionally alters the EPS glycocalyx via destabilization of the latter, fundamentally changing the characteristics of the cell surface. This impacts motility behaviors at the single-cell level and the aggregative capacity of cells in groups via cell-surface EPS fibril formation as well as T4P production, stability, and positioning. These changes modulate the structure of swarm biofilms via cell layering, likely contributing to the formation of internal swarm polysaccharide architecture. Together, these data reveal the manner by which the combined secretion of two distinct polymers induces single-cell changes that modulate swarm biofilm communities.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Nicolas Y Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - David J Lemon
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Arnaldo Nakamura
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Akeisha M Belgrave
- Integrated Sciences Program, Harrisburg University of Science & Technology, Harrisburg, Pennsylvania, USA
| | - Anthony G Garza
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Frédéric J Veyrier
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Salim T Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
18
|
Jenni A, Knüsel S, Nagar R, Benninger M, Häner R, Ferguson MAJ, Roditi I, Menon AK, Bütikofer P. Elimination of GPI2 suppresses glycosylphosphatidylinositol GlcNAc transferase activity and alters GPI glycan modification in Trypanosoma brucei. J Biol Chem 2021; 297:100977. [PMID: 34284059 PMCID: PMC8358704 DOI: 10.1016/j.jbc.2021.100977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/20/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.
Collapse
Affiliation(s)
- Aurelio Jenni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Graduate School for Chemical and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Robert Häner
- Department for Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Pérez-Burgos M, Søgaard-Andersen L. Biosynthesis and function of cell-surface polysaccharides in the social bacterium Myxococcus xanthus. Biol Chem 2021; 401:1375-1387. [PMID: 32769218 DOI: 10.1515/hsz-2020-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| |
Collapse
|
20
|
Behavioral Interactions between Bacterivorous Nematodes and Predatory Bacteria in a Synthetic Community. Microorganisms 2021; 9:microorganisms9071362. [PMID: 34201688 PMCID: PMC8307948 DOI: 10.3390/microorganisms9071362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022] Open
Abstract
Theory and empirical studies in metazoans predict that apex predators should shape the behavior and ecology of mesopredators and prey at lower trophic levels. Despite the ecological importance of microbial communities, few studies of predatory microbes examine such behavioral res-ponses and the multiplicity of trophic interactions. Here, we sought to assemble a three-level microbial food chain and to test for behavioral interactions between the predatory nematode Caenorhabditis elegans and the predatory social bacterium Myxococcus xanthus when cultured together with two basal prey bacteria that both predators can eat—Escherichia coli and Flavobacterium johnsoniae. We found that >90% of C. elegans worms failed to interact with M. xanthus even when it was the only potential prey species available, whereas most worms were attracted to pure patches of E. coli and F. johnsoniae. In addition, M. xanthus altered nematode predatory behavior on basal prey, repelling C. elegans from two-species patches that would be attractive without M. xanthus, an effect similar to that of C. elegans pathogens. The nematode also influenced the behavior of the bacterial predator: M. xanthus increased its predatory swarming rate in response to C. elegans in a manner dependent both on basal-prey identity and on worm density. Our results suggest that M. xanthus is an unattractive prey for some soil nematodes and is actively avoided when other prey are available. Most broadly, we found that nematode and bacterial predators mutually influence one another’s predatory behavior, with likely consequences for coevolution within complex microbial food webs.
Collapse
|
21
|
Three PilZ Domain Proteins, PlpA, PixA, and PixB, Have Distinct Functions in Regulation of Motility and Development in Myxococcus xanthus. J Bacteriol 2021; 203:e0012621. [PMID: 33875546 PMCID: PMC8316039 DOI: 10.1128/jb.00126-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In bacteria, the nucleotide-based second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) binds to effectors to generate outputs in response to changes in the environment. In Myxococcus xanthus, c-di-GMP regulates type IV pilus-dependent motility and the starvation-induced developmental program that results in formation of spore-filled fruiting bodies; however, little is known about the effectors that bind c-di-GMP. Here, we systematically inactivated all 24 genes encoding PilZ domain-containing proteins, which are among the most common c-di-GMP effectors. We confirm that the stand-alone PilZ domain protein PlpA is important for regulation of motility independently of the Frz chemosensory system and that Pkn1, which is composed of a Ser/Thr kinase domain and a PilZ domain, is specifically important for development. Moreover, we identify two PilZ domain proteins that have distinct functions in regulating motility and development. PixB, which is composed of two PilZ domains and an acetyltransferase domain, binds c-di-GMP in vitro and regulates type IV pilus-dependent and gliding motility in a Frz-dependent manner as well as development. The acetyltransferase domain is required and sufficient for function during growth, while all three domains and c-di-GMP binding are essential for PixB function during development. PixA is a response regulator composed of a PilZ domain and a receiver domain, binds c-di-GMP in vitro, and regulates motility independently of the Frz system, likely by setting up the polarity of the two motility systems. Our results support a model whereby PlpA, PixA, and PixB act in independent pathways and have distinct functions in regulation of motility. IMPORTANCE c-di-GMP signaling controls bacterial motility in many bacterial species by binding to downstream effector proteins. Here, we identify two PilZ domain-containing proteins in Myxococcus xanthus that bind c-di-GMP. We show that PixB, which contains two PilZ domains and an acetyltransferase domain, acts in a manner that depends on the Frz chemosensory system to regulate motility via the acetyltransferase domain, while the intact protein and c-di-GMP binding are essential for PixB to support development. In contrast, PixA acts in a Frz-independent manner to regulate motility. Taking our results together with previous observations, we conclude that PilZ domain proteins and c-di-GMP act in multiple independent pathways to regulate motility and development in M. xanthus.
Collapse
|
22
|
van Gestel J, Wagner A. Cryptic surface-associated multicellularity emerges through cell adhesion and its regulation. PLoS Biol 2021; 19:e3001250. [PMID: 33983920 PMCID: PMC8148357 DOI: 10.1371/journal.pbio.3001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/25/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The repeated evolution of multicellularity led to a wide diversity of organisms, many of which are sessile, including land plants, many fungi, and colonial animals. Sessile organisms adhere to a surface for most of their lives, where they grow and compete for space. Despite the prevalence of surface-associated multicellularity, little is known about its evolutionary origin. Here, we introduce a novel theoretical approach, based on spatial lineage tracking of cells, to study this origin. We show that multicellularity can rapidly evolve from two widespread cellular properties: cell adhesion and the regulatory control of adhesion. By evolving adhesion, cells attach to a surface, where they spontaneously give rise to primitive cell collectives that differ in size, life span, and mode of propagation. Selection in favor of large collectives increases the fraction of adhesive cells until a surface becomes fully occupied. Through kin recognition, collectives then evolve a central-peripheral polarity in cell adhesion that supports a division of labor between cells and profoundly impacts growth. Despite this spatial organization, nascent collectives remain cryptic, lack well-defined boundaries, and would require experimental lineage tracking technologies for their identification. Our results suggest that cryptic multicellularity could readily evolve and originate well before multicellular individuals become morphologically evident.
Collapse
Affiliation(s)
- Jordi van Gestel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
23
|
Characterization of the Exopolysaccharide Biosynthesis Pathway in Myxococcus xanthus. J Bacteriol 2020; 202:JB.00335-20. [PMID: 32778557 PMCID: PMC7484181 DOI: 10.1128/jb.00335-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
The secreted polysaccharide referred to as exopolysaccharide (EPS) has important functions in the social life cycle of M. xanthus; however, little is known about how EPS is synthesized. Here, we characterized the EPS biosynthetic machinery and showed that it makes up a Wzx/Wzy-dependent pathway for polysaccharide biosynthesis. Mutants lacking a component of this pathway had reduced type IV pilus-dependent motility and a conditional defect in development. These analyses also suggest that EPS and/or the EPS biosynthetic machinery is important for type IV pilus formation. Myxococcus xanthus arranges into two morphologically distinct biofilms depending on its nutritional status, i.e., coordinately spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. A secreted polysaccharide, referred to as exopolysaccharide (EPS), is a structural component of both biofilms and is also important for type IV pilus-dependent motility and fruiting body formation. Here, we characterize the biosynthetic machinery responsible for EPS biosynthesis using bioinformatics, genetics, heterologous expression, and biochemical experiments. We show that this machinery constitutes a Wzx/Wzy-dependent pathway dedicated to EPS biosynthesis. Our data support that EpsZ (MXAN_7415) is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for the initiation of the repeat unit synthesis. Heterologous expression experiments support that EpsZ has galactose-1-P transferase activity. Moreover, MXAN_7416, renamed WzxEPS, and MXAN_7442, renamed WzyEPS, are the Wzx flippase and Wzy polymerase responsible for translocation and polymerization of the EPS repeat unit, respectively. In this pathway, EpsV (MXAN_7421) also is the polysaccharide copolymerase and EpsY (MXAN_7417) the outer membrane polysaccharide export (OPX) protein. Mutants with single in-frame deletions in the five corresponding genes had defects in type IV pilus-dependent motility and a conditional defect in fruiting body formation. Furthermore, all five mutants were deficient in type IV pilus formation, and genetic analyses suggest that EPS and/or the EPS biosynthetic machinery stimulates type IV pilus extension. Additionally, we identify a polysaccharide biosynthesis gene cluster, which together with an orphan gene encoding an OPX protein make up a complete Wzx/Wzy-dependent pathway for synthesis of an unknown polysaccharide. IMPORTANCE The secreted polysaccharide referred to as exopolysaccharide (EPS) has important functions in the social life cycle of M. xanthus; however, little is known about how EPS is synthesized. Here, we characterized the EPS biosynthetic machinery and showed that it makes up a Wzx/Wzy-dependent pathway for polysaccharide biosynthesis. Mutants lacking a component of this pathway had reduced type IV pilus-dependent motility and a conditional defect in development. These analyses also suggest that EPS and/or the EPS biosynthetic machinery is important for type IV pilus formation.
Collapse
|