1
|
Ghosh A, Jaaback K, Boulton A, Wong-Brown M, Raymond S, Dutta P, Bowden NA, Ghosh A. Fusobacterium nucleatum: An Overview of Evidence, Demi-Decadal Trends, and Its Role in Adverse Pregnancy Outcomes and Various Gynecological Diseases, including Cancers. Cells 2024; 13:717. [PMID: 38667331 PMCID: PMC11049087 DOI: 10.3390/cells13080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.
Collapse
Affiliation(s)
- Arunita Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Ken Jaaback
- Hunter New England Centre for Gynecological Cancer, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Angela Boulton
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Michelle Wong-Brown
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Steve Raymond
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Partha Dutta
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| |
Collapse
|
2
|
Chen L, Li J, Xiao B. The role of sialidases in the pathogenesis of bacterial vaginosis and their use as a promising pharmacological target in bacterial vaginosis. Front Cell Infect Microbiol 2024; 14:1367233. [PMID: 38495652 PMCID: PMC10940449 DOI: 10.3389/fcimb.2024.1367233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Bacterial vaginosis (BV) is an infection of the genital tract characterized by disturbance of the normally Lactobacilli-dominated vaginal flora due to the overgrowth of Gardnerella and other anaerobic bacteria. Gardnerella vaginalis, an anaerobic pathogen and the major pathogen of BV, produces sialidases that cleave terminal sialic acid residues off of human glycans. By desialylation, sialidases not only alter the function of sialic acid-containing glycoconjugates but also play a vital role in the attachment, colonization and spread of many other vaginal pathogens. With known pathogenic effects, excellent performance of sialidase-based diagnostic tests, and promising therapeutic potentials of sialidase inhibitors, sialidases could be used as a biomarker of BV. This review explores the sources of sialidases and their role in vaginal dysbiosis, in aims to better understand their participation in the pathogenesis of BV and their value in the diagnosis and treatment of BV.
Collapse
Affiliation(s)
- Liuyan Chen
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jiayue Li
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Agarwal K, Choudhury B, Robinson LS, Morrill SR, Bouchibiti Y, Chilin-Fuentes D, Rosenthal SB, Fisch KM, Peipert JF, Lebrilla CB, Allsworth JE, Lewis AL, Lewis WG. Resident microbes shape the vaginal epithelial glycan landscape. Sci Transl Med 2023; 15:eabp9599. [PMID: 38019934 PMCID: PMC11419735 DOI: 10.1126/scitranslmed.abp9599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Epithelial cells are covered in carbohydrates (glycans). This glycan coat or "glycocalyx" interfaces directly with microbes, providing a protective barrier against potential pathogens. Bacterial vaginosis (BV) is a condition associated with adverse health outcomes in which bacteria reside in direct proximity to the vaginal epithelium. Some of these bacteria, including Gardnerella, produce glycosyl hydrolase enzymes. However, glycans of the human vaginal epithelial surface have not been studied in detail. Here, we elucidate key characteristics of the "normal" vaginal epithelial glycan landscape and analyze the impact of resident microbes on the surface glycocalyx. In human BV, glycocalyx staining was visibly diminished in electron micrographs compared to controls. Biochemical and mass spectrometric analysis showed that, compared to normal vaginal epithelial cells, BV cells were depleted of sialylated N- and O-glycans, with underlying galactose residues exposed on the surface. Treatment of primary epithelial cells from BV-negative women with recombinant Gardnerella sialidases generated BV-like glycan phenotypes. Exposure of cultured VK2 vaginal epithelial cells to recombinant Gardnerella sialidase led to desialylation of glycans and induction of pathways regulating cell death, differentiation, and inflammatory responses. These data provide evidence that vaginal epithelial cells exhibit an altered glycan landscape in BV and suggest that BV-associated glycosidic enzymes may lead to changes in epithelial gene transcription that promote cell turnover and regulate responses toward the resident microbiome.
Collapse
Affiliation(s)
- Kavita Agarwal
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Biswa Choudhury
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Lloyd S. Robinson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Sydney R. Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Yasmine Bouchibiti
- Department of Chemistry, University of California, Davis, Davis, CA 95616, United States of America
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, United States of America
| | - Daisy Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Sara B. Rosenthal
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Jeffrey F. Peipert
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA 95616, United States of America
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, United States of America
| | - Jenifer E. Allsworth
- Department of Biomedical and Health Informatics, University of Missouri, Kansas City School of Medicine, Kansas City, MO 64110, United States of America
| | - Amanda L. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Warren G. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| |
Collapse
|
4
|
Clark ND, Pham C, Kurniyati K, Sze CW, Coleman L, Fu Q, Zhang S, Malkowski MG, Li C. Functional and structural analyses reveal that a dual domain sialidase protects bacteria from complement killing through desialylation of complement factors. PLoS Pathog 2023; 19:e1011674. [PMID: 37747935 PMCID: PMC10553830 DOI: 10.1371/journal.ppat.1011674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/05/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
The complement system is the first line of innate immune defense against microbial infections. To survive in humans and cause infections, bacterial pathogens have developed sophisticated mechanisms to subvert the complement-mediated bactericidal activity. There are reports that sialidases, also known as neuraminidases, are implicated in bacterial complement resistance; however, its underlying molecular mechanism remains elusive. Several complement proteins (e.g., C1q, C4, and C5) and regulators (e.g., factor H and C4bp) are modified by various sialoglycans (glycans with terminal sialic acids), which are essential for their functions. This report provides both functional and structural evidence that bacterial sialidases can disarm the complement system via desialylating key complement proteins and regulators. The oral bacterium Porphyromonas gingivalis, a "keystone" pathogen of periodontitis, produces a dual domain sialidase (PG0352). Biochemical analyses reveal that PG0352 can desialylate human serum and complement factors and thus protect bacteria from serum killing. Structural analyses show that PG0352 contains a N-terminal carbohydrate-binding module (CBM) and a C-terminal sialidase domain that exhibits a canonical six-bladed β-propeller sialidase fold with each blade composed of 3-4 antiparallel β-strands. Follow-up functional studies show that PG0352 forms monomers and is active in a broad range of pH. While PG0352 can remove both N-acetylneuraminic acid (Neu5Ac) and N-glycolyl-neuraminic acid (Neu5Gc), it has a higher affinity to Neu5Ac, the most abundant sialic acid in humans. Structural and functional analyses further demonstrate that the CBM binds to carbohydrates and serum glycoproteins. The results shown in this report provide new insights into understanding the role of sialidases in bacterial virulence and open a new avenue to investigate the molecular mechanisms of bacterial complement resistance.
Collapse
Affiliation(s)
- Nicholas D. Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York, United States of America
| | - Christopher Pham
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kurni Kurniyati
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ching Wooen Sze
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Laurynn Coleman
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Qin Fu
- Proteomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Sheng Zhang
- Proteomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Michael G. Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York, United States of America
| | - Chunhao Li
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
5
|
Muraoka A, Suzuki M, Hamaguchi T, Watanabe S, Iijima K, Murofushi Y, Shinjo K, Osuka S, Hariyama Y, Ito M, Ohno K, Kiyono T, Kyo S, Iwase A, Kikkawa F, Kajiyama H, Kondo Y. Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Sci Transl Med 2023; 15:eadd1531. [PMID: 37315109 DOI: 10.1126/scitranslmed.add1531] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Retrograde menstruation is a widely accepted cause of endometriosis. However, not all women who experience retrograde menstruation develop endometriosis, and the mechanisms underlying these observations are not yet understood. Here, we demonstrated a pathogenic role of Fusobacterium in the formation of ovarian endometriosis. In a cohort of women, 64% of patients with endometriosis but <10% of controls were found to have Fusobacterium infiltration in the endometrium. Immunohistochemical and biochemical analyses revealed that activated transforming growth factor-β (TGF-β) signaling resulting from Fusobacterium infection of endometrial cells led to the transition from quiescent fibroblasts to transgelin (TAGLN)-positive myofibroblasts, which gained the ability to proliferate, adhere, and migrate in vitro. Fusobacterium inoculation in a syngeneic mouse model of endometriosis resulted in a marked increase in TAGLN-positive myofibroblasts and increased number and weight of endometriotic lesions. Furthermore, antibiotic treatment largely prevented establishment of endometriosis and reduced the number and weight of established endometriotic lesions in the mouse model. Our data support a mechanism for the pathogenesis of endometriosis via Fusobacterium infection and suggest that eradication of this bacterium could be an approach to treat endometriosis.
Collapse
Affiliation(s)
- Ayako Muraoka
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Miho Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Watanabe
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Iijima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yumi Hariyama
- Department of Obstetrics and Gynecology, Toyota Kosei Hospital, 500-1, Ihohara, Zyosui-cho, Toyota 470-0396, Japan
| | - Mikako Ito
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwanoha 6-5-1, Kashiwa 277-8577, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
7
|
Zhang PP, He XP, Tang W, Chen HW, Han YY. Alterations in vaginal microbiota in uterine fibroids patients with ultrasound-guided high-intensity focused ultrasound ablation. Front Microbiol 2023; 14:1138962. [PMID: 37138604 PMCID: PMC10150040 DOI: 10.3389/fmicb.2023.1138962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Vaginal microbiota dysbiosis is closely related to diseases of the vagina and uterus. Uterine fibroids (UF) are the most common benign neoplasms of the uterus, and increased diversity in vaginal microbial of UF patients. High-intensity focused ultrasound (HIFU) is effective invasive treatment for fibroids in women who are not good surgical candidates. Whether HIFU of uterine fibroids will cause the change in vaginal microbiota has not been reported. We aimed to investigate the vaginal microbiota of UF patients with/without HIFU treatment using 16S rRNA gene sequencing. Methods Vaginal secretions were collected from 77 UF patients (pre-operative and post-operative) and were used for comparative composition, diversity, and richness analyses of microbial communities. Results The microbial α-diversity was significantly lower in the vaginal of UF patients with HIFU treatment. The relative abundance of some pathogenic bacteria of UF patients with HIFU treatment were significantly decreased in the bacterial phylum and genus level. Proteobacteria were found to be significantly upregulated as a biomarker in the HIFU treatment group in our study. Conclusion These findings might confirm the effectiveness of HIFU treatment from the point of view of microbiota.
Collapse
Affiliation(s)
- Ping-Ping Zhang
- Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Xue-Ping He
- Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Wen Tang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Han-Wei Chen
- Department of Radiology, Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
| | - Yuan-Yuan Han
- Department of Radiology, Panyu Central Hospital, Guangzhou, China
- School of Life Sciences, South China Normal University, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| |
Collapse
|
8
|
Dillard LR, Glass EM, Lewis AL, Thomas-White K, Papin JA. Metabolic Network Models of the Gardnerella Pangenome Identify Key Interactions with the Vaginal Environment. mSystems 2023; 8:e0068922. [PMID: 36511689 PMCID: PMC9948698 DOI: 10.1128/msystems.00689-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/13/2022] [Indexed: 12/15/2022] Open
Abstract
Gardnerella is the primary pathogenic bacterial genus present in the polymicrobial condition known as bacterial vaginosis (BV). Despite BV's high prevalence and associated chronic and acute women's health impacts, the Gardnerella pangenome is largely uncharacterized at both the genetic and functional metabolic levels. Here, we used genome-scale metabolic models to characterize in silico the Gardnerella pangenome metabolic content. We also assessed the metabolic functional capacity in a BV-positive cervicovaginal fluid context. The metabolic capacity varied widely across the pangenome, with 38.15% of all reactions being core to the genus, compared to 49.60% of reactions identified as being unique to a smaller subset of species. We identified 57 essential genes across the pangenome via in silico gene essentiality screens within two simulated vaginal metabolic environments. Four genes, gpsA, fas, suhB, and psd, were identified as core essential genes critical for the metabolic function of all analyzed bacterial species of the Gardnerella genus. Further understanding these core essential metabolic functions could inform novel therapeutic strategies to treat BV. Machine learning applied to simulated metabolic network flux distributions showed limited clustering based on the sample isolation source, which further supports the presence of extensive core metabolic functionality across this genus. These data represent the first metabolic modeling of the Gardnerella pangenome and illustrate strain-specific interactions with the vaginal metabolic environment across the pangenome. IMPORTANCE Bacterial vaginosis (BV) is the most common vaginal infection among reproductive-age women. Despite its prevalence and associated chronic and acute women's health impacts, the diverse bacteria involved in BV infection remain poorly characterized. Gardnerella is the genus of bacteria most commonly and most abundantly represented during BV. In this paper, we use metabolic models, which are a computational representation of the possible functional metabolism of an organism, to investigate metabolic conservation, gene essentiality, and pathway utilization across 110 Gardnerella strains. These models allow us to investigate in silico how strains may differ with respect to their metabolic interactions with the vaginal-host environment.
Collapse
Affiliation(s)
- Lillian R. Dillard
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Emma M. Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Amanda L. Lewis
- Department of Obstetrics and Gynecology, University of California—San Diego, La Jolla, California, USA
| | | | - Jason A. Papin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Liu J, Lin H, Cao M, Lin T, Lin A, Xu W, Wang H, He J, Li Y, Tang H, Zhang B. Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Front Cell Infect Microbiol 2023; 13:1124256. [PMID: 36814445 PMCID: PMC9939747 DOI: 10.3389/fcimb.2023.1124256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background and Aims Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.
Collapse
Affiliation(s)
- Jinglong Liu
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hao Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Man Cao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tan Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Aiqiang Lin
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wei Xu
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Han Wang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yuantao Li
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Hailing Tang
- Division of Gastroenterology, Xi’an Central Hospital, Xi’an, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Bangzhou Zhang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| |
Collapse
|
10
|
Bozzola T, Johnsson RE, Nilsson UJ, Ellervik U. Sialic Acid 4-N-Piperazine and Piperidine Derivatives Bind with High Affinity to the P. mirabilis Sialic Acid Sodium Solute Symporter. ChemMedChem 2022; 17:e202200351. [PMID: 36121381 PMCID: PMC10092485 DOI: 10.1002/cmdc.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Indexed: 01/14/2023]
Abstract
In search for novel antibacterial compounds, bacterial sialic acid uptake inhibition represents a promising strategy. Sialic acid plays a critical role for growth and colonisation of several pathogenic bacteria, and its uptake inhibition in bacteria was recently demonstrated to be a viable strategy by targeting the SiaT sodium solute symporters from Proteus mirabilis and Staphylococcus aureus. Here we report the design, synthesis and evaluation of potential sialic acid uptake inhibitors bearing 4-N-piperidine and piperazine moieties. The 4-N-derivatives were obtained via 4-N-functionalization with piperidine and piperazine nucleophiles in an efficient direct substitution of the 4-O-acetate of Neu5Ac. Evaluation for binding to bacterial transport proteins with nanoDSF and ITC revealed compounds possessing nanomolar affinity for the P. mirabilis SiaT symporter. Computational analyses indicate the engagement of a previously untargeted portion of the binding site.
Collapse
Affiliation(s)
- Tiago Bozzola
- Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Ulf Ellervik
- Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| |
Collapse
|
11
|
Shapiro RL, DeLong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev 2022; 191:114543. [PMID: 36208729 PMCID: PMC9940824 DOI: 10.1016/j.addr.2022.114543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Departments of Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Immunometabolic and potential tumor-promoting changes in 3D cervical cell models infected with bacterial vaginosis-associated bacteria. Commun Biol 2022; 5:725. [PMID: 35869172 PMCID: PMC9307755 DOI: 10.1038/s42003-022-03681-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractSpecific bacteria of the human microbiome influence carcinogenesis at diverse anatomical sites. Bacterial vaginosis (BV) is the most common vaginal disorder in premenopausal women that is associated with gynecologic sequelae, including cervical cancer. BV-associated microorganisms, such as Fusobacterium, Lancefieldella, Peptoniphilus, and Porphyromonas have been associated with gynecologic and other cancers, though the pro-oncogenic mechanisms employed by these bacteria are poorly understood. Here, we integrated a multi-omics approach with our three-dimensional (3-D) cervical epithelial cell culture model to investigate how understudied BV-associated bacteria linked to gynecologic neoplasia influence hallmarks of cancer in vitro. Lancefieldella parvulum and Peptoniphilus lacrimalis elicited robust proinflammatory responses in 3-D cervical cells. Fusobacterium nucleatum and Fusobacterium gonidiaformans modulated metabolic hallmarks of cancer corresponding to accumulation of 2-hydroxyglutarate, pro-inflammatory lipids, and signs of oxidative stress and genotoxic hydrogen sulfide. This study provides mechanistic insights into how gynecologic cancer-associated bacteria might facilitate a tumor-promoting microenvironment in the human cervix.
Collapse
|
13
|
Sun M, Geng H, Bai J, Feng J, Xu N, Liu Y, Liu X, Liu G. Characterization of cervical canal and vaginal bacteria in pregnant women with cervical incompetence. Front Microbiol 2022; 13:986326. [PMID: 36246259 PMCID: PMC9556877 DOI: 10.3389/fmicb.2022.986326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Vaginal and cervical canal bacteria are associated with women’s health and pregnancy outcomes. Here, we compared their composition and characteristics in 37 reproductive-aged Chinese women including 24 pregnant women with cervical incompetence (vaginal and cervical canal bacteria formed Groups A and B, respectively) and 13 healthy pregnant women (vaginal and cervical canal bacteria formed Groups C and D, respectively) using high-throughput sequencing of the V4 region of 16S rRNA gene. The results of alpha and beta diversity analysis, respectively, indicated no statistical differences between Groups A and B (p = 0.32, 0.06), nor Groups B and D (p = 0.69, 0.74); however, differences were found between Groups C and D (p = 0.02, 0.01) and between Groups A and C (p = 0.04, 0.02). PLS-DA analysis showed that the individuals from each group were irregularly distributed according to their clade. Lactobacillus, Bifidobacterium and Ureaplasma were the dominant genera in all groups. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSts) analysis identified 31 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs associated with the bacterial communities from the four groups, including membrane transport, folding, sorting and degradation, xenobiotics biodegradation and metabolism, and nucleotide metabolism. We further determined relationships between pregnancy outcomes (Apgar scores) and certain bacterial species. A significant positive correlation was found between Apgar scores and Actinomyces neuii and Anoxybacillus flavithermus in the vagina and cervical canal of pregnant women with cervical incompetence while Bacteroides plebeius, Bifidobacterium pseudopodium and Staphylococcus petrasii in the cervical canal displayed negative correlations with Apgar scores. Moreover, Clostridium fimetarium, Methanobacterium congolense, Pseudomonas chlororaphis, and Psychrobacter nivimaris in the vagina were negatively correlated with Apgar scores. These bacteria may serve as potential biomarkers, however, additional research is warranted to verify their role in clinical outcomes.
Collapse
Affiliation(s)
- Meiguo Sun
- Department of Obstertrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huiwu Geng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
| | - Jingjing Bai
- Department of Obstertrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiahui Feng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
| | - Na Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
| | - Yunlong Liu
- Department of Obstertrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
- Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Zhengzhou, Henan, China
- *Correspondence: Xiaoying Liu,
| | - Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
- Gang Liu,
| |
Collapse
|
14
|
Yokoi T, Nishiyama K, Kushida Y, Uribayashi K, Kunihara T, Fujimoto R, Yamamoto Y, Ito M, Miki T, Haneda T, Mukai T, Okada N. O-acetylesterase activity of Bifidobacterium bifidum sialidase facilities the liberation of sialic acid and encourages the proliferation of sialic acid scavenging Bifidobacterium breve. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:637-645. [PMID: 35581157 DOI: 10.1111/1758-2229.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Bifidobacterium bifidum possesses two extracellular sialidases (SiaBb1 and SiaBb2) that release free sialic acid from mucin sialoglycans, which can be utilized via cross-feeding by Bifidobacterium breve that, otherwise, is prevented from utilizing this nutrient source. Modification of sialic acids with O-acetyl esters is known to protect mucin glycans from degradation by bacterial sialidases. Compared to SiaBb2, SiaBb1 has an additional O-acetylesterase (Est) domain. We aimed to elucidate the role of the SiaBb1 Est domain from B. bifidum in sialic acid cross-feeding within Bifidobacterium. Pre-treatment of mucin secreted from bovine submaxillary glands (BSM) using His6 -tagged-Est and -SiaBb2 released a higher amount of sialic acid compared to the pre-treatment by His6 -SiaBb2. Growth of B. breve increased with an increase in nanE expression when supplemented with both His6 -Est- and His6 -SiaBb2-treated BSM. These results indicate that the esterase activity of the SiaBb1 Est domain enhances the efficiency of SiaBb2 to cleave sialic acid from mucin. This free sialic acid can be utilized by coexisting sialic acid scavenging B. breve via cross-feeding. Here, we provide the molecular mechanism underlying the unique sialoglycan degradation property of B. bifidum which is mediated by the complementary activities of SiaBb1 and SiaBb2 in the context of sialic acid cross-feeding.
Collapse
Affiliation(s)
- Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Keita Nishiyama
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Kushida
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kazuya Uribayashi
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takahiro Kunihara
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Rika Fujimoto
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuji Yamamoto
- Laboratory of Biomolecular Science, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takao Mukai
- Laboratory of Biomolecular Science, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
15
|
Comparison of probiotic Lactobacillus strains isolated from dairy and Iranian traditional food products with those from human source on intestinal microbiota using BALB/C mice model. Braz J Microbiol 2022; 53:1577-1591. [PMID: 35781865 DOI: 10.1007/s42770-022-00790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022] Open
Abstract
This study compares the probiotic Lactobacillus strains isolated from dairy and Iranian traditional food products with those from human sources on intestinal microbiota using BALB/C mice model. First, Lactiplantibacillus plantarum (M11), Limosilactobacillus fermentum (19SH), Lactobacillus acidophilus (AC2), and Lactobacillus gasseri (52b) strains, isolated from either Iranian traditionally fermented products or human (healthy woman vaginal secretions), identified with molecular methods and selected based on the surface hydrophobicity, auto- and co-aggregation, were investigated for their probiotic properties and compared with their standard probiotic strains in vitro. The native strains and their mixtures (MIX) were then orally fed to five groups of female inbred BALB/C mice over the course of 38 days by gavage at 0.5 and 4 McFarland, respectively, equal to 1.5 × 108 and 1 × 109 cfu/ml. Feeding paused for 6 days to test the bacteria's adhesion in vivo. According to the findings, the probiotic Lactobacillus strain isolated from human source (52b) exhibited the best in vitro and in vivo adhesion ability. Probiotic Lactobacillus strains isolated from Iranian traditional food products (19SH and AC2) had the most co-aggregation with Listeria monocytogenes (ATTC 7644), Salmonella enterica subsp. enterica (ATCC 13,076), and Escherichia coli (NCTC 12,900 O157:H7) in vitro. These strains produced the most profound decreasing effect on the mice intestinal microbiota and pathogens in vivo. The difference in the strains and their probiotic potential is related to the sources from which they are isolated as well as their cell walls. The results suggest that (19SH and 52b strains) are the best candidates to investigate the cell wall and its effect on the host immune system.
Collapse
|
16
|
Sokolovskaya OM, Tan MW, Wolan DW. Sialic acid diversity in the human gut: Molecular impacts and tools for future discovery. Curr Opin Struct Biol 2022; 75:102397. [PMID: 35653953 DOI: 10.1016/j.sbi.2022.102397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Sialic acids are a family of structurally related sugars that are prevalent in mucosal surfaces, including the human intestine. In the gut, sialic acids have diverse biological roles at the interface of the host epithelium and the microbiota. N-acetylneuraminic acid (Neu5Ac), the best studied sialic acid, is a nutrient source for bacteria and, when displayed on the cell surface, a binding site for host immune factors, viruses, and bacterial toxins. Neu5Ac is extensively modified by host and microbial enzymes, and the impacts of Neu5Ac derivatives on host-microbe interactions, and generally on human and microbial biology, remain underexplored. In this mini-review, we highlight recent reports describing how host and microbial proteins differentiate Neu5Ac and its derivatives, draw attention to gaps in knowledge related to sialic acid biology, and suggest cutting-edge methodologies that may expand our appreciation and understanding of Neu5Ac in health and disease.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, United States
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, United States
| | - Dennis W Wolan
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, United States.
| |
Collapse
|
17
|
Morrill SR, Agarwal K, Saha S, Lewis WG, Gilbert NM, Lewis AL. Models of Murine Vaginal Colonization by Anaerobically Grown Bacteria. J Vis Exp 2022:10.3791/64032. [PMID: 35695538 PMCID: PMC9678008 DOI: 10.3791/64032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
The mammalian vagina can be colonized by many bacterial taxa. The human vaginal microbiome is often dominated by Lactobacillus species, but one-in-four women experience bacterial vaginosis, in which a low level of lactobacilli is accompanied by an overgrowth of diverse anaerobic bacteria. This condition has been associated with many health complications, including risks to reproductive and sexual health. While there is growing evidence showing the complex nature of microbial interactions in human vaginal health, the individual roles of these different anaerobic bacteria are not fully understood. This is complicated by the lack of adequate models to study anaerobically grown vaginal bacteria. Mouse models allow us to investigate the biology and virulence of these organisms in vivo. Other mouse models of vaginal bacterial inoculation have previously been described. Here, we describe methods for the inoculation of anaerobically grown bacteria and their viable recovery in conventionally raised C57Bl/6 mice. A new, less stressful procedural method for vaginal inoculation and washing is also described. Inoculation and viable recovery of Gardnerella are outlined in detail, and strategies for additional anaerobes such as Prevotella bivia and Fusobacterium nucleatum are discussed.
Collapse
Affiliation(s)
- Sydney R Morrill
- Division of Biology and Biomedical Sciences, Washington University School of Medicine; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California; Glycobiology Research and Training Center, UCSD
| | - Kavita Agarwal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California; Glycobiology Research and Training Center, UCSD
| | - Sudeshna Saha
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California; Glycobiology Research and Training Center, UCSD
| | - Warren G Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California; Glycobiology Research and Training Center, UCSD
| | - Nicole M Gilbert
- Department of Pediatrics, Washington University School of Medicine
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California; Glycobiology Research and Training Center, UCSD;
| |
Collapse
|
18
|
Severgnini M, Morselli S, Camboni T, Ceccarani C, Laghi L, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. A Deep Look at the Vaginal Environment During Pregnancy and Puerperium. Front Cell Infect Microbiol 2022; 12:838405. [PMID: 35656029 PMCID: PMC9152327 DOI: 10.3389/fcimb.2022.838405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
A deep comprehension of the vaginal ecosystem may hold promise for unraveling the pathophysiology of pregnancy and may provide novel biomarkers to identify subjects at risk of maternal-fetal complications. In this prospective study, we assessed the characteristics of the vaginal environment in a cohort of pregnant women throughout their different gestational ages and puerperium. Both the vaginal bacterial composition and the vaginal metabolic profiles were analyzed. A total of 63 Caucasian women with a successful pregnancy and 9 subjects who had a first trimester miscarriage were enrolled. For the study, obstetric examinations were scheduled along the three trimester phases (9-13, 20-24, 32-34 gestation weeks) and puerperium (40-55 days after delivery). Two vaginal swabs were collected at each time point, to assess the vaginal microbiome profiling (by Nugent score and 16S rRNA gene sequencing) and the vaginal metabolic composition (1H-NMR spectroscopy). During pregnancy, the vaginal microbiome underwent marked changes, with a significant decrease in overall diversity, and increased stability. Over time, we found a significant increase of Lactobacillus and a decrease of several genera related to bacterial vaginosis (BV), such as Prevotella, Atopobium and Sneathia. It is worth noting that the levels of Bifidobacterium spp. tended to decrease at the end of pregnancy. At the puerperium, a significantly lower content of Lactobacillus and higher levels of Gardnerella, Prevotella, Atopobium, and Streptococcus were observed. Women receiving an intrapartum antibiotic prophylaxis for Group B Streptococcus (GBS) were characterized by a vaginal abundance of Prevotella compared to untreated women. Analysis of bacterial relative abundances highlighted an increased abundance of Fusobacterium in women suffering a first trimester abortion, at all taxonomic levels. Lactobacillus abundance was strongly correlated with higher levels of lactate, sarcosine, and many amino acids (i.e., isoleucine, leucine, phenylalanine, valine, threonine, tryptophan). Conversely, BV-associated genera, such as Gardnerella, Atopobium, and Sneathia, were related to amines (e.g., putrescine, methylamine), formate, acetate, alcohols, and short-chain fatty-acids (i.e., butyrate, propionate).
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | | | | | - Vittorio Sambri
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, Cesena, Italy
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Staphylococcus aureus Overcomes Anaerobe-Derived Short-Chain Fatty Acid Stress via FadX and the CodY Regulon. J Bacteriol 2022; 204:e0006422. [PMID: 35389253 DOI: 10.1128/jb.00064-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is characterized by immune dysfunction, mucus hypersecretion, and persistent infection of the paranasal sinuses. While Staphylococcus aureus is a primary CRS pathogen, recent sequence-based surveys have found increased relative abundances of anaerobic bacteria, suggesting that S. aureus may experience altered metabolic landscapes in CRS relative to healthy airways. To test this possibility, we characterized the growth kinetics and transcriptome of S. aureus in supernatants of the abundant CRS anaerobe Fusobacterium nucleatum. While growth was initially delayed, S. aureus ultimately grew to similar levels as in the control medium. The transcriptome was significantly affected by F. nucleatum metabolites, with the agr quorum sensing system notably repressed. Conversely, expression of fadX, encoding a putative propionate coenzyme A (CoA)-transferase, was significantly increased, leading to our hypothesis that short-chain fatty acids (SCFAs) produced by F. nucleatum could mediate S. aureus growth behavior and gene expression. Supplementation with propionate and butyrate, but not acetate, recapitulated delayed growth phenotypes observed in F. nucleatum supernatants. A fadX mutant was found to be more sensitive than wild type to propionate, suggesting a role for FadX in the S. aureus SCFA stress response. Interestingly, spontaneous resistance to butyrate, but not propionate, was observed frequently. Whole-genome sequencing and targeted mutagenesis identified codY mutants as resistant to butyrate inhibition. Together, these data show that S. aureus physiology is dependent on its cocolonizing microbiota and metabolites they exchange and indicate that propionate and butyrate may act on different targets in S. aureus to suppress its growth. IMPORTANCE Staphylococcus aureus is an important CRS pathogen, and yet it is found in the upper airways of 30% to 50% of people without complications. The presence of strict and facultative anaerobic bacteria in CRS sinuses has recently spurred research into bacterial interactions and how they influence S. aureus physiology and pathogenesis. We show here that propionate and butyrate produced by one such CRS anaerobe, namely, Fusobacterium nucleatum, alter the growth and gene expression of S. aureus. We show that fadX is important for S. aureus to resist propionate stress and that the CodY regulon mediates growth in inhibitory concentrations of butyrate. This work highlights the possible complexity of S. aureus-anaerobe interactions and implicates membrane stress as a possible mechanism influencing S. aureus behavior in CRS sinuses.
Collapse
|
20
|
Pramanick R, Nathani N, Warke H, Mayadeo N, Aranha C. Vaginal Dysbiotic Microbiome in Women With No Symptoms of Genital Infections. Front Cell Infect Microbiol 2022; 11:760459. [PMID: 35096634 PMCID: PMC8790106 DOI: 10.3389/fcimb.2021.760459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
The vaginal microbiome plays a critical role in determining the progression of female genital tract infections; however, little is known about the vaginal microbiota of Indian women. We aimed to investigate the vaginal microbial architecture of women with asymptomatic bacterial vaginosis (BV) (n=20) and normal microbiota (n=19). Microbial diversity was analyzed in vaginal swabs from regularly menstruating women (18-45yrs) by 16S rRNA V3-V4 amplicon (MiSeq Illumina) sequencing. Rarefaction analysis showed a higher number of species in normal flora compared to BV. Alpha diversity as measured by Pielou’s evenness revealed microbial diversity was significantly greater in BV samples than normal microbiota (p= 0.0165). Beta diversity comparison using UniFrac metrics indicated distinct microbial communities clustering between normal and BV flora. Firmicutes were the major phyla observed in vaginal specimens of normal microbiota whereas Actinobacteria, Fusobacteria, Bacteroidetes were significantly abundant in BV samples. Notably, the relative abundance of Lactobacillus was significantly high in normal microbiota. Conversely Gardnerella, Sneathia, Prevotella, Atopobium, Ureaplasma, Dialister significantly dominated dysbiotic microbiota. Relative frequency of Lactobacillus decreased significantly in BV (6%) as compared to normal microbiota (35.2%). L. fermentum, L. gasseri, L. iners, L. jensenii, L. mucosae, L. ruminis, L. salivarius, L. coleohominis was more exclusively present in normal microbiota. L. iners was detected from both the groups with a relative frequency of 50.4% and 17.2% in normal and BV microbiota respectively. Lefse analysis indicated Atopobium vaginae, Sneathia amnii, Mycoplasma hominis Prevotella disiens in the vaginal microbiota as a biomarker for dysbiosis and L. jensenii as a biomarker of a healthy microbiota. Firmicutes were negatively correlated to Tenericutes, Actinobacteria, Bacteroidetes, and Fusobacteria. Proteobacteria positively correlated to Tenericutes, and Bacteroidetes were shown to be positively correlated to Fusobacteria. Predicted functional analysis indicated differences in the functional profiles between BV and normal microbiota. Normal microbiota utilized pathways essential for phosphatidylglycerol biosynthesis I & II, peptidoglycan biosynthesis, geranylgeranyl diphosphate biosynthesis I, mevalonate pathway, CoA biosynthesis pathway I and pyrimidine nucleotide salvage; whereas BV bacteria had characteristic aromatic amino acid biosynthesis, pentose phosphate pathway, carbohydrate degradation. In conclusion, women with asymptomatic BV have vaginal microbiota significantly different than women with normal microbiota. Furthermore, the study provides insights into the vaginal microbial structure of Indian women that will enable us to explore the prospective candidates for restoring the vaginal microbiota.
Collapse
Affiliation(s)
- Rinku Pramanick
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Neelam Nathani
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, India
| | - Himangi Warke
- Department of Obstetrics and Gynecology, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, India
| | - Niranjan Mayadeo
- Department of Obstetrics and Gynecology, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, India
| | - Clara Aranha
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| |
Collapse
|
21
|
Łaniewski P, Herbst-Kralovetz MM. Bacterial vaginosis and health-associated bacteria modulate the immunometabolic landscape in 3D model of human cervix. NPJ Biofilms Microbiomes 2021; 7:88. [PMID: 34903740 PMCID: PMC8669023 DOI: 10.1038/s41522-021-00259-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial vaginosis (BV) is an enigmatic polymicrobial condition characterized by a depletion of health-associated Lactobacillus and an overgrowth of anaerobes. Importantly, BV is linked to adverse gynecologic and obstetric outcomes: an increased risk of sexually transmitted infections, preterm birth, and cancer. We hypothesized that members of the cervicovaginal microbiota distinctly contribute to immunometabolic changes in the human cervix, leading to these sequelae. Our 3D epithelial cell model that recapitulates the human cervical epithelium was infected with clinical isolates of cervicovaginal bacteria, alone or as a polymicrobial community. We used Lactobacillus crispatus as a representative health-associated commensal and four common BV-associated species: Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae, and Sneathia amnii. The immunometabolic profiles of these microenvironments were analyzed using multiplex immunoassays and untargeted global metabolomics. A. vaginae and S. amnii exhibited the highest proinflammatory potential through induction of cytokines, iNOS, and oxidative stress-associated compounds. G. vaginalis, P. bivia, and S. amnii distinctly altered physicochemical barrier-related proteins and metabolites (mucins, sialic acid, polyamines), whereas L. crispatus produced an antimicrobial compound, phenyllactic acid. Alterations to the immunometabolic landscape correlate with symptoms and hallmarks of BV and connected BV with adverse women’s health outcomes. Overall, this study demonstrated that 3D cervical epithelial cell colonized with cervicovaginal microbiota faithfully reproduce the immunometabolic microenvironment previously observed in clinical studies and can successfully be used as a robust tool to evaluate host responses to commensal and pathogenic bacteria in the female reproductive tract.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA. .,Department of Obstetrics and Gynecology, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA.
| |
Collapse
|
22
|
Vagios S, Mitchell CM. Mutual Preservation: A Review of Interactions Between Cervicovaginal Mucus and Microbiota. Front Cell Infect Microbiol 2021; 11:676114. [PMID: 34327149 PMCID: PMC8313892 DOI: 10.3389/fcimb.2021.676114] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
At mucosal surfaces throughout the body mucus and mucins regulate interactions between epithelia and both commensal and pathogenic bacteria. Although the microbes in the female genital tract have been linked to multiple reproductive health outcomes, the role of cervicovaginal mucus in regulating genital tract microbes is largely unexplored. Mucus-microbe interactions could support the predominance of specific bacterial species and, conversely, commensal bacteria can influence mucus properties and its influence on reproductive health. Herein, we discuss the current evidence for both synergistic and antagonistic interactions between cervicovaginal mucus and the female genital tract microbiome, and how an improved understanding of these relationships could significantly improve women’s health.
Collapse
Affiliation(s)
- Stylianos Vagios
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Boston, MA, United States
| | - Caroline M Mitchell
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Boston, MA, United States
| |
Collapse
|
23
|
Severi E, Rudden M, Bell A, Palmer T, Juge N, Thomas GH. Multiple evolutionary origins reflect the importance of sialic acid transporters in the colonization potential of bacterial pathogens and commensals. Microb Genom 2021; 7. [PMID: 34184979 PMCID: PMC8461474 DOI: 10.1099/mgen.0.000614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Located at the tip of cell surface glycoconjugates, sialic acids are at the forefront of host-microbe interactions and, being easily liberated by sialidase enzymes, are used as metabolites by numerous bacteria, particularly by pathogens and commensals living on or near diverse mucosal surfaces. These bacteria rely on specific transporters for the acquisition of host-derived sialic acids. Here, we present the first comprehensive genomic and phylogenetic analysis of bacterial sialic acid transporters, leading to the identification of multiple new families and subfamilies. Our phylogenetic analysis suggests that sialic acid-specific transport has evolved independently at least eight times during the evolution of bacteria, from within four of the major families/superfamilies of bacterial transporters, and we propose a robust classification scheme to bring together a myriad of different nomenclatures that exist to date. The new transporters discovered occur in diverse bacteria, including Spirochaetes, Bacteroidetes, Planctomycetes and Verrucomicrobia, many of which are species that have not been previously recognized to have sialometabolic capacities. Two subfamilies of transporters stand out in being fused to the sialic acid mutarotase enzyme, NanM, and these transporter fusions are enriched in bacteria present in gut microbial communities. Our analysis supports the increasing experimental evidence that competition for host-derived sialic acid is a key phenotype for successful colonization of complex mucosal microbiomes, such that a strong evolutionary selection has occurred for the emergence of sialic acid specificity within existing transporter architectures.
Collapse
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, York, UK.,Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Andrew Bell
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Tracy Palmer
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nathalie Juge
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
24
|
Asija K, Sutter M, Kerfeld CA. A Survey of Bacterial Microcompartment Distribution in the Human Microbiome. Front Microbiol 2021; 12:669024. [PMID: 34054778 PMCID: PMC8156839 DOI: 10.3389/fmicb.2021.669024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial microcompartments (BMCs) are protein-based organelles that expand the metabolic potential of many bacteria by sequestering segments of enzymatic pathways in a selectively permeable protein shell. Sixty-eight different types/subtypes of BMCs have been bioinformatically identified based on the encapsulated enzymes and shell proteins encoded in genomic loci. BMCs are found across bacterial phyla. The organisms that contain them, rather than strictly correlating with specific lineages, tend to reflect the metabolic landscape of the environmental niches they occupy. From our recent comprehensive bioinformatic survey of BMCs found in genome sequence data, we find many in members of the human microbiome. Here we survey the distribution of BMCs in the different biotopes of the human body. Given their amenability to be horizontally transferred and bioengineered they hold promise as metabolic modules that could be used to probiotically alter microbiomes or treat dysbiosis.
Collapse
Affiliation(s)
- Kunica Asija
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Markus Sutter
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
Agarwal K, Lewis AL. Vaginal sialoglycan foraging by Gardnerella vaginalis: mucus barriers as a meal for unwelcome guests? Glycobiology 2021; 31:667-680. [PMID: 33825850 DOI: 10.1093/glycob/cwab024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial vaginosis (BV) is a condition of the vaginal microbiome in which there are few lactobacilli and abundant anaerobic bacteria. Members of the genus Gardnerella are often one of the most abundant bacteria in BV. BV is associated with a wide variety of poor health outcomes for women. It has been recognized since the 1980s that women with BV have detectable and sometimes markedly elevated levels of sialidase activity in vaginal fluids and that bacteria associated with this condition produce this activity in culture. Mounting evidence collected using diverse methodologies points to the conclusion that BV is associated with a reduction in intact sialoglycans in cervicovaginal secretions. Here we review evidence for the contributions of vaginal bacteria, especially Gardnerella, in the processes of mucosal sialoglycan degradation, uptake, metabolism and depletion. Our understanding of the impacts of vaginal sialoglycan degradation is still limited. However, the potential implications of sialic acid depletion are discussed in light of our current understanding of the roles played by sialoglycans in vaginal physiology.
Collapse
Affiliation(s)
- Kavita Agarwal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| |
Collapse
|
26
|
Masumuzzaman M, Evivie SE, Ogwu MC, Li B, Du J, Li W, Huo G, Liu F, Wang S. Genomic and in vitro properties of the dairy Streptococcus thermophilus SMQ-301 strain against selected pathogens. Food Funct 2021; 12:7017-7028. [PMID: 34152341 DOI: 10.1039/d0fo02951c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cumulative studies have suggested that probiotic bacterial strains could be an effective alternative in inhibiting conditions caused by foodborne and vaginal pathogens. The use of genomic techniques is becoming highly useful in understanding the potential of these beneficial microorganisms. This study presents some genomic and in vitro properties of the Streptococcus thermophilus SMQ-301 strain against foodborne and vaginal pathogens (Staphylococcus aureus, Escherichia coli, and Gardnerella vaginalis) to validate its use in dairy food formulations. Genomic analyses include bacteriocin production, stress response systems, antioxidant capability, and RAST-based functional annotation. In vitro investigations focused on the antimicrobial effects of the S. thermophilus SMQ-301 cell-free solution (CFS) against the selected pathogens after enzymatic actions and pH treatments, assessment of cytotoxic effects using murine RAW264.7 cells, and assessment of organic acid production levels using supplementary carbon sources. The results show that the S. thermophilus SMQ-301 genome possesses essential pathways for stress management, antioxidant activities, and bacteriocin production. For the first time, the bacteriocin-producing peptides of S. thermophilus SMQ-301 are reported, which gives an insight into its inhibitory potential. In vitro, the CFS of S. thermophilus SMQ-301 had significant (P < 0.05) antimicrobial effects on the selected pathogens, with S. aureus ATCC25923 being the most resistant. All antimicrobial activities of the CFS against the selected pathogens were eliminated at pH 6.5 and 7.0. S. thermophilus SMQ-301 CFS yielded the highest lactic (25.58 ± 0.24 mg mL-1) and acetic (5.53 ± 0.12 mg mL-1) acid production levels, with 1% fructooligosaccharide (P < 0.05). The S. thermophilus SMQ-301 strain also lowered murine RAW264.7 cell activities from 101.77% (control) to 80.16% (T5 - RAW264.7 cells + 1 × 109 CFU mL-1 cells) (P < 0.05). This study showed that although the S. thermophilus SMQ-301 strain had excellent genomic characteristics, the in vitro effects varied markedly against all three pathogens. In all, the S. thermophilus SMQ-301 strain has promising applications as a potential probiotic in the food and allied industries.
Collapse
Affiliation(s)
- Md Masumuzzaman
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|