1
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. CircSMAD3 represses VSMC phenotype switching and neointima formation via promoting hnRNPA1 ubiquitination degradation. Cell Prolif 2025; 58:e13742. [PMID: 39219022 PMCID: PMC11693546 DOI: 10.1111/cpr.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Circular RNAs (circRNAs) are novel regulatory RNAs with high evolutionary conservation and stability, which makes them effective therapeutic agents for various vascular diseases. The SMAD family is a downstream mediator of the canonical transforming growth factor beta (TGF-β) signalling pathway and has been considered as a critical regulator in vascular injury. However, the role of circRNAs derived from the SMAD family members in vascular physiology remains unclear. In this study, we initially identified potential functional circRNAs originating from the SMAD family using integrated transcriptome screening. circSMAD3, derived from the SMAD3 gene, was identified to be significantly downregulated in vascular injury and atherosclerosis. Transcriptome analysis was conducted to comprehensively illustrate the pathways modulated by circRNAs. Functionally, circSMAD3 repressed vascular smooth muscle cell (VSMC) proliferation and phenotype switching in vitro evidenced by morphological assays, and ameliorated arterial injury-induced neointima formation in vivo. Mechanistically, circSMAD3 interacted with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) within the nucleus, enhanced its interaction with E3 ligase WD repeat domain 76 to promote hnRNPA1 ubiquitination degradation, facilitated p53 pre-RNA splicing, activated the p53γ signalling pathway, and finally suppressed VSMC proliferation and phenotype switching. Our study identifies circSMAD3 as a novel epigenetic regulator that suppresses VSMC proliferation and phenotype switching, thereby attenuating vascular remodelling and providing a new circRNA-based therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Xiaozhu Ma
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Li Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Qidamugai Wuyun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Ziyang Cai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Jiangtao Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Hu Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| |
Collapse
|
2
|
Ocampo D, Damon LJ, Sanford L, Holtzen SE, Jones T, Allen MA, Dowell RD, Palmer AE. Cellular zinc status alters chromatin accessibility and binding of p53 to DNA. Life Sci Alliance 2024; 7:e202402638. [PMID: 38969365 PMCID: PMC11231577 DOI: 10.26508/lsa.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Zn2+ is an essential metal required by approximately 850 human transcription factors. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Using ATAC-seq to profile regions of accessible chromatin coupled with transcription factor enrichment analysis, we examined how increases and decreases in the labile zinc pool affect chromatin accessibility and transcription factor enrichment. We found 685 transcription factor motifs were differentially enriched, corresponding to 507 unique transcription factors. The pattern of perturbation and the types of transcription factors were notably different at promoters versus intergenic regions, with zinc-finger transcription factors strongly enriched in intergenic regions in elevated Zn2+ To test whether ATAC-seq and transcription factor enrichment analysis predictions correlate with changes in transcription factor binding, we used ChIP-qPCR to profile six p53 binding sites. We found that for five of the six targets, p53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc alter chromatin accessibility and transcription factor binding to DNA.
Collapse
Affiliation(s)
- Daniel Ocampo
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Leah J Damon
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Lynn Sanford
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Samuel E Holtzen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Taylor Jones
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
3
|
Guo Y, Wu H, Wiesmüller L, Chen M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death Dis 2024; 15:412. [PMID: 38866752 PMCID: PMC11169513 DOI: 10.1038/s41419-024-06783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
Collapse
Affiliation(s)
- Yitian Guo
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Nussbaum DP, Martz CA, Waters AM, Barrera A, Liu A, Rutter JC, Cerda-Smith CG, Stewart AE, Wu C, Cakir M, Levandowski CB, Kantrowitz DE, McCall SJ, Pierobon M, Petricoin EF, Joshua Smith J, Reddy TE, Der CJ, Taatjes DJ, Wood KC. Mediator kinase inhibition impedes transcriptional plasticity and prevents resistance to ERK/MAPK-targeted therapy in KRAS-mutant cancers. NPJ Precis Oncol 2024; 8:124. [PMID: 38822082 PMCID: PMC11143207 DOI: 10.1038/s41698-024-00615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/03/2024] [Indexed: 06/02/2024] Open
Abstract
Acquired resistance remains a major challenge for therapies targeting oncogene activated pathways. KRAS is the most frequently mutated oncogene in human cancers, yet strategies targeting its downstream signaling kinases have failed to produce durable treatment responses. Here, we developed multiple models of acquired resistance to dual-mechanism ERK/MAPK inhibitors across KRAS-mutant pancreatic, colorectal, and lung cancers, and then probed the long-term events enabling survival against this class of drugs. These studies revealed that resistance emerges secondary to large-scale transcriptional adaptations that are diverse and cell line-specific. Transcriptional reprogramming extends beyond the well-established early response, and instead represents a dynamic, evolved process that is refined to attain a stably resistant phenotype. Mechanistic and translational studies reveal that resistance to dual-mechanism ERK/MAPK inhibition is broadly susceptible to manipulation of the epigenetic machinery, and that Mediator kinase, in particular, can be co-targeted at a bottleneck point to prevent diverse, cell line-specific resistance programs.
Collapse
Affiliation(s)
- Daniel P Nussbaum
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Colin A Martz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew M Waters
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Annie Liu
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Justine C Rutter
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Christian G Cerda-Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Amy E Stewart
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chao Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, Colorectal Service, New York, NY, USA
| | - Merve Cakir
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - David E Kantrowitz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Shannon J McCall
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Mariaelena Pierobon
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Fairfax, VA, USA
| | - Emanuel F Petricoin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Fairfax, VA, USA
| | - J Joshua Smith
- Department of Surgery, Memorial Sloan Kettering Cancer Center, Colorectal Service, New York, NY, USA
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Wood K, Nussbaum D, Martz C, Waters A, Barrera A, Rutter J, Cerda-Smith C, Stewart A, Wu C, Cakir M, Levandowski C, Kantrowitz D, McCall S, Pierobon M, Petricoin E, Smith J, Der C, Taatjes D. Mediator Kinase Inhibition Impedes Transcriptional Plasticity and Prevents Resistance to ERK/MAPK-Targeted Therapy in KRAS-Mutant Cancers. RESEARCH SQUARE 2023:rs.3.rs-3511242. [PMID: 37961649 PMCID: PMC10635398 DOI: 10.21203/rs.3.rs-3511242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Acquired resistance remains a major challenge for therapies targeting oncogene activated pathways. KRAS is the most frequently mutated oncogene in human cancers, yet strategies targeting its downstream signaling kinases have failed to produce durable treatment responses. Here, we developed multiple models of acquired resistance to dual-mechanism ERK/MAPK inhibitors across KRAS-mutant pancreatic, colorectal, and lung cancers, and then probed the long-term events enabling survival against this class of drugs. These studies revealed that resistance emerges secondary to large-scale transcriptional adaptations that are diverse and cell line-specific. Transcriptional reprogramming extends beyond the well-established early response, and instead represents a dynamic, evolved process that is refined to attain a stably resistant phenotype. Mechanistic and translational studies reveal that resistance to dual-mechanism ERK/MAPK inhibition is broadly susceptible to manipulation of the epigenetic machinery, and that Mediator kinase, in particular, can be co-targeted at a bottleneck point to prevent diverse, cell line-specific resistance programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chao Wu
- Memorial Sloan Kettering Cancer Center
| | | | | | | | | | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | | | - J Smith
- Memorial Sloan Kettering Cancer Center
| | - Channing Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | | |
Collapse
|
6
|
Steffens Reinhardt L, Groen K, Zhang X, Morten BC, Wawruszak A, Avery-Kiejda KA. p53 isoform expression promotes a stemness phenotype and inhibits doxorubicin sensitivity in breast cancer. Cell Death Dis 2023; 14:509. [PMID: 37553320 PMCID: PMC10409720 DOI: 10.1038/s41419-023-06031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
In breast cancer, dysregulated TP53 expression signatures are a better predictor of chemotherapy response and survival outcomes than TP53 mutations. Our previous studies have shown that high levels of Δ40p53 are associated with worse disease-free survival and disruption of p53-induced DNA damage response in breast cancers. Here, we further investigated the in vitro and in vivo implications of Δ40p53 expression in breast cancer. We have shown that genes associated with cell differentiation are downregulated while those associated with stem cell regulation are upregulated in invasive ductal carcinomas expressing high levels of Δ40p53. In contrast to p53, endogenous ∆40p53 co-localised with the stem cell markers Sox2, Oct4, and Nanog in MCF-7 and ZR75-1 cell lines. ∆40p53 and Sox2 co-localisation was also detected in breast cancer specimens. Further, in cells expressing a high ∆40p53:p53 ratio, increased expression of stem cell markers, greater mammosphere and colony formation capacities, and downregulation of miR-145 and miR-200 (p53-target microRNAs that repress stemness) were observed compared to the control subline. In vivo, a high ∆40p53:p53 ratio led to increased tumour growth, Ki67 and Sox2 expression, and blood microvessel areas in the vehicle-treated mice. High expression of ∆40p53 also reduced tumour sensitivity to doxorubicin compared to control tumours. Enhanced therapeutic efficacy of doxorubicin was observed when transiently targeting Δ40p53 or when treating cells with OTSSP167 with concomitant chemotherapy. Taken together, high Δ40p53 levels induce tumour growth and may promote chemoresistance by inducing a stemness phenotype in breast cancer; thus, targeting Δ40p53 in tumours that have a high Δ40p53:p53 ratio could enhance the efficacy of standard-of-care therapies such as doxorubicin.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Xiajie Zhang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Brianna C Morten
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Anna Wawruszak
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.
- Hunter Medical Research Institute, New Lambton, NSW, Australia.
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
7
|
Steffens Reinhardt L, Groen K, Xavier A, Avery-Kiejda KA. p53 Dysregulation in Breast Cancer: Insights on Mutations in the TP53 Network and p53 Isoform Expression. Int J Mol Sci 2023; 24:10078. [PMID: 37373225 DOI: 10.3390/ijms241210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
In breast cancer, p53 expression levels are better predictors of outcome and chemotherapy response than TP53 mutation. Several molecular mechanisms that modulate p53 levels and functions, including p53 isoform expression, have been described, and may contribute to deregulated p53 activities and worse cancer outcomes. In this study, TP53 and regulators of the p53 pathway were sequenced by targeted next-generation sequencing in a cohort of 137 invasive ductal carcinomas and associations between the identified sequence variants, and p53 and p53 isoform expression were explored. The results demonstrate significant variability in levels of p53 isoform expression and TP53 variant types among tumours. We have shown that TP53 truncating and missense mutations modulate p53 levels. Further, intronic mutations, particularly polymorphisms in intron 4, which can affect the translation from the internal TP53 promoter, were associated with increased Δ133p53 levels. Differential expression of p53 and p53 isoforms was associated with the enrichment of sequence variants in p53 interactors BRCA1, PALB2, and CHEK2. Taken together, these results underpin the complexity of p53 and p53 isoform regulation. Furthermore, given the growing evidence associating dysregulated levels of p53 isoforms with cancer progression, certain TP53 sequence variants that show strong links to p53 isoform expression may advance the field of prognostic biomarker study in breast cancer.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
8
|
Steffens Reinhardt L, Groen K, Newton C, Avery-Kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023; 1878:188882. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cheryl Newton
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
9
|
Alterations in the p53 isoform ratio govern breast cancer cell fate in response to DNA damage. Cell Death Dis 2022; 13:907. [PMID: 36307393 PMCID: PMC9616954 DOI: 10.1038/s41419-022-05349-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Our previous studies have shown that p53 isoform expression is altered in breast cancer and related to prognosis. In particular, a high ∆40p53:p53α ratio is associated with worse disease-free survival. In this manuscript, the influence of altered Δ40p53 and p53α levels on the response to standard of care DNA-damaging agents used in breast cancer treatment was investigated in vitro. Our results revealed that a high Δ40p53:p53α ratio causes cells to respond differently to doxorubicin and cisplatin treatments. Δ40p53 overexpression significantly impairs the cells' sensitivity to doxorubicin through reducing apoptosis and DNA damage, whereas Δ40p53 knockdown has the opposite effect. Further, a high Δ40p53:p53α ratio inhibited the differential expression of several genes following doxorubicin and promoted DNA repair, impairing the cells' canonical response. Overall, our results suggest that the response of breast cancer cells to standard of care DNA-damaging therapies is dependent on the expression of p53 isoforms, which may contribute to outcomes in breast cancer.
Collapse
|
10
|
Bassett J, Rimel JK, Basu S, Basnet P, Luo J, Engel KL, Nagel M, Woyciehowsky A, Ebmeier CC, Kaplan CD, Taatjes DJ, Ranish JA. Systematic mutagenesis of TFIIH subunit p52/Tfb2 identifies residues required for XPB/Ssl2 subunit function and genetic interactions with TFB6. J Biol Chem 2022; 298:102433. [PMID: 36041630 PMCID: PMC9557730 DOI: 10.1016/j.jbc.2022.102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
TFIIH is an evolutionarily conserved complex that plays central roles in both RNA polymerase II (pol II) transcription and DNA repair. As an integral component of the pol II preinitiation complex, TFIIH regulates pol II enzyme activity in numerous ways. The TFIIH subunit XPB/Ssl2 is an ATP-dependent DNA translocase that stimulates promoter opening prior to transcription initiation. Crosslinking-mass spectrometry and cryo-EM results have shown a conserved interaction network involving XPB/Ssl2 and the C-terminal Hub region of the TFIIH p52/Tfb2 subunit, but the functional significance of specific residues is unclear. Here, we systematically mutagenized the HubA region of Tfb2 and screened for growth phenotypes in a TFB6 deletion background in Saccharomyces cerevisiae. We identified six lethal and 12 conditional mutants. Slow growth phenotypes of all but three conditional mutants were relieved in the presence of TFB6, thus identifying a functional interaction between Tfb2 HubA mutants and Tfb6, a protein that dissociates Ssl2 from TFIIH. Our biochemical analysis of Tfb2 mutants with severe growth phenotypes revealed defects in Ssl2 association, with similar results in human cells. Further characterization of these tfb2 mutant cells revealed defects in GAL gene induction, and reduced occupancy of TFIIH and pol II at GAL gene promoters, suggesting that functionally competent TFIIH is required for proper pol II recruitment to preinitiation complexes in vivo. Consistent with recent structural models of TFIIH, our results identify key residues in the p52/Tfb2 HubA domain that are required for stable incorporation of XPB/Ssl2 into TFIIH and for pol II transcription.
Collapse
Affiliation(s)
- Jacob Bassett
- Department of Systems Biology, Institute for Systems Biology, Seattle, Washington, USA
| | - Jenna K. Rimel
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - Shrabani Basu
- Department of Cell Biology, University of Pittsburgh, Pennsylvania, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Luo
- Department of Systems Biology, Institute for Systems Biology, Seattle, Washington, USA
| | | | - Michael Nagel
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | | | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dylan J. Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - Jeffrey A. Ranish
- Department of Systems Biology, Institute for Systems Biology, Seattle, Washington, USA,For correspondence: Jeffrey A. Ranish
| |
Collapse
|
11
|
Padariya M, Jooste ML, Hupp T, Fåhraeus R, Vojtesek B, Vollrath F, Kalathiya U, Karakostis K. The Elephant evolved p53 isoforms that escape mdm2-mediated repression and cancer. Mol Biol Evol 2022; 39:6632613. [PMID: 35792674 PMCID: PMC9279639 DOI: 10.1093/molbev/msac149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The p53 tumor suppressor is a transcription factor with roles in cell development, apoptosis, oncogenesis, aging, and homeostasis in response to stresses and infections. p53 is tightly regulated by the MDM2 E3 ubiquitin ligase. The p53–MDM2 pathway has coevolved, with MDM2 remaining largely conserved, whereas the TP53 gene morphed into various isoforms. Studies on prevertebrate ancestral homologs revealed the transition from an environmentally induced mechanism activating p53 to a tightly regulated system involving cell signaling. The evolution of this mechanism depends on structural changes in the interacting protein motifs. Elephants such as Loxodonta africana constitute ideal models to investigate this coevolution as they are large and long-living as well as having 20 copies of TP53 isoformic sequences expressing a variety of BOX-I MDM2-binding motifs. Collectively, these isoforms would enhance sensitivity to cellular stresses, such as DNA damage, presumably accounting for strong cancer defenses and other adaptations favoring healthy aging. Here we investigate the molecular evolution of the p53–MDM2 system by combining in silico modeling and in vitro assays to explore structural and functional aspects of p53 isoforms retaining the MDM2 interaction, whereas forming distinct pools of cell signaling. The methodology used demonstrates, for the first time that in silico docking simulations can be used to explore functional aspects of elephant p53 isoforms. Our observations elucidate structural and mechanistic aspects of p53 regulation, facilitate understanding of complex cell signaling, and suggest testable hypotheses of p53 evolution referencing Peto’s Paradox.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Mia-Lyn Jooste
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Robin Fåhraeus
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
- Department of Medical Biosciences, Umeå University , 90185 Umeå , Sweden
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
| | - Fritz Vollrath
- Department of Zoology, Zoology Research and Administration Building, University of Oxford , Oxford, UK
- Save the Elephants Marula Manor , Marula Lane, Karen P.O. Box 54667. Nairobi 00200. Kenya Office: +254 720 441 178
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , 08193 Bellaterra (Barcelona) , Spain
| |
Collapse
|
12
|
Cytoplasmic p53β Isoforms Are Associated with Worse Disease-Free Survival in Breast Cancer. Int J Mol Sci 2022; 23:ijms23126670. [PMID: 35743117 PMCID: PMC9223648 DOI: 10.3390/ijms23126670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
TP53 mutations are associated with tumour progression, resistance to therapy and poor prognosis. However, in breast cancer, TP53′s overall mutation frequency is lower than expected (~25%), suggesting that other mechanisms may be responsible for the disruption of this critical tumour suppressor. p53 isoforms are known to enhance or disrupt p53 pathway activity in cell- and context-specific manners. Our previous study revealed that p53 isoform mRNA expression correlates with clinicopathological features and survival in breast cancer and may account for the dysregulation of the p53 pathway in the absence of TP53 mutations. Hence, in this study, the protein expression of p53 isoforms, transactivation domain p53 (TAp53), p53β, Δ40p53, Δ133p53 and Δ160p53 was analysed using immunohistochemistry in a cohort of invasive ductal carcinomas (n = 108). p53 isoforms presented distinct cellular localisation, with some isoforms being expressed in tumour cells and others in infiltrating immune cells. Moreover, high levels of p53β, most likely to be N-terminally truncated β variants, were significantly associated with worse disease-free survival, especially in tumours with wild-type TP53. To the best of our knowledge, this is the first study that analysed the endogenous protein levels of p53 isoforms in a breast cancer cohort. Our findings suggest that p53β may be a useful prognostic marker.
Collapse
|
13
|
Enhancer RNAs (eRNAs) in Cancer: The Jacks of All Trades. Cancers (Basel) 2022; 14:cancers14081978. [PMID: 35454885 PMCID: PMC9030334 DOI: 10.3390/cancers14081978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review focuses on eRNAs and the several mechanisms by which they can regulate gene expression. In particular we describe here the most recent examples of eRNAs dysregulated in cancer or involved in the immune escape of tumor cells. Abstract Enhancer RNAs (eRNAs) are non-coding RNAs (ncRNAs) transcribed in enhancer regions. They play an important role in transcriptional regulation, mainly during cellular differentiation. eRNAs are tightly tissue- and cell-type specific and are induced by specific stimuli, activating promoters of target genes in turn. eRNAs usually have a very short half-life but in some cases, once activated, they can be stably expressed and acquire additional functions. Due to their critical role, eRNAs are often dysregulated in cancer and growing number of interactions with chromatin modifiers, transcription factors, and splicing machinery have been described. Enhancer activation and eRNA transcription have particular relevance also in inflammatory response, placing the eRNAs at the interplay between cancer and immune cells. Here, we summarize all the possible molecular mechanisms recently reported in association with eRNAs activity.
Collapse
|
14
|
Allen BL, Quach K, Jones T, Levandowski CB, Ebmeier CC, Rubin JD, Read T, Dowell RD, Schepartz A, Taatjes DJ. Suppression of p53 response by targeting p53-Mediator binding with a stapled peptide. Cell Rep 2022; 39:110630. [PMID: 35385747 PMCID: PMC9044438 DOI: 10.1016/j.celrep.2022.110630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 01/11/2023] Open
Abstract
DNA-binding transcription factors (TFs) remain challenging to target with molecular probes. Many TFs function in part through interaction with Mediator, a 26-subunit complex that controls RNA polymerase II activity genome-wide. We sought to block p53 function by disrupting the p53-Mediator interaction. Through rational design and activity-based screening, we characterize a stapled peptide, with functional mimics of both p53 activation domains, that blocks p53-Mediator binding and selectively inhibits p53-dependent transcription in human cells; importantly, this "bivalent" peptide has negligible impact, genome-wide, on non-p53 target genes. Our proof-of-concept strategy circumvents the TF entirely and targets the TF-Mediator interface instead, with desired functional outcomes (i.e., selective inhibition of p53 activation). Furthermore, these results demonstrate that TF activation domains represent viable starting points for Mediator-targeting molecular probes, as an alternative to large compound libraries. Different TFs bind Mediator through different subunits, suggesting this strategy could be broadly applied to selectively alter gene expression programs.
Collapse
Affiliation(s)
- Benjamin L. Allen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,These authors contributed equally
| | - Kim Quach
- Department of Chemistry, Yale University, New Haven, CT 06520, USA,These authors contributed equally
| | - Taylor Jones
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,These authors contributed equally
| | | | | | - Jonathan D. Rubin
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Timothy Read
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,Department of Medicine, Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robin D. Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA,Department of Chemistry, University of California, Berkeley, CA 94720, USA,Correspondence: (A.S.), (D.J.T.)
| | - Dylan J. Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,Lead contact,Correspondence: (A.S.), (D.J.T.)
| |
Collapse
|
15
|
Hunter S, Sigauke RF, Stanley JT, Allen MA, Dowell RD. Protocol variations in run-on transcription dataset preparation produce detectable signatures in sequencing libraries. BMC Genomics 2022; 23:187. [PMID: 35255806 PMCID: PMC8900324 DOI: 10.1186/s12864-022-08352-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background A variety of protocols exist for producing whole genome run-on transcription datasets. However, little is known about how differences between these protocols affect the signal within the resulting libraries. Results Using run-on transcription datasets generated from the same biological system, we show that a variety of GRO- and PRO-seq preparation methods leave identifiable signatures within each library. Specifically we show that the library preparation method results in differences in quality control metrics, as well as differences in the signal distribution at the 5 ′ end of transcribed regions. These shifts lead to disparities in eRNA identification, but do not impact analyses aimed at inferring the key regulators involved in changes to transcription. Conclusions Run-on sequencing protocol variations result in technical signatures that can be used to identify both the enrichment and library preparation method of a particular data set. These technical signatures are batch effects that limit detailed comparisons of pausing ratios and eRNAs identified across protocols. However, these batch effects have only limited impact on our ability to infer which regulators underlie the observed transcriptional changes. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08352-8).
Collapse
Affiliation(s)
- Samuel Hunter
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Rutendo F Sigauke
- Computational Bioscience Program, Anschutz Medical Campus, University of Colorado, Aurora, 80045, USA
| | - Jacob T Stanley
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA. .,Computational Bioscience Program, Anschutz Medical Campus, University of Colorado, Aurora, 80045, USA. .,Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA. .,Department of Computer Science, University of Colorado, Boulder, 80309, USA.
| |
Collapse
|
16
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|