1
|
Rentsch J, Bandstra S, Sezen B, Sigrist P, Bottanelli F, Schmerl B, Shoichet S, Noé F, Sadeghi M, Ewers H. Sub-membrane actin rings compartmentalize the plasma membrane. J Cell Biol 2024; 223:e202310138. [PMID: 38252080 PMCID: PMC10807028 DOI: 10.1083/jcb.202310138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
The compartmentalization of the plasma membrane (PM) is a fundamental feature of cells. The diffusivity of membrane proteins is significantly lower in biological than in artificial membranes. This is likely due to actin filaments, but assays to prove a direct dependence remain elusive. We recently showed that periodic actin rings in the neuronal axon initial segment (AIS) confine membrane protein motion between them. Still, the local enrichment of ion channels offers an alternative explanation. Here we show, using computational modeling, that in contrast to actin rings, ion channels in the AIS cannot mediate confinement. Furthermore, we show, employing a combinatorial approach of single particle tracking and super-resolution microscopy, that actin rings are close to the PM and that they confine membrane proteins in several neuronal cell types. Finally, we show that actin disruption leads to loss of compartmentalization. Taken together, we here develop a system for the investigation of membrane compartmentalization and show that actin rings compartmentalize the PM.
Collapse
Affiliation(s)
- Jakob Rentsch
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Selle Bandstra
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Batuhan Sezen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Philipp Sigrist
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Francesca Bottanelli
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bettina Schmerl
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Shi M, Xu H, Hu R, Chen Y, Wu X, Chen B, Ma R. Identification and Validation of Synapse-related Hub Genes after Spinal Cord Injury by Bioinformatics Analysis. Comb Chem High Throughput Screen 2024; 27:599-610. [PMID: 37170986 DOI: 10.2174/1386207326666230426151114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is a neurological disease with high morbidity and mortality. Previous studies have shown that abnormally expressed synapse-related genes are closely related to the occurrence and development of SCI. However, little is known about the interaction of these aberrantly expressed genes and the molecular mechanisms that play a role in the injury response. Therefore, deeply exploring the correlation between synapse-related genes and functional recovery after spinal cord injury and the molecular regulation mechanism is of great significance. METHODS First, we selected the function GSE45006 dataset to construct three clinically meaningful gene modules by hierarchical clustering analysis in 4 normal samples and 20 SCI samples. Subsequently, we performed functional and pathway enrichment analyses of key modules. RESULTS The results showed that related module genes were significantly enriched in synaptic structures and functions, such as the regulation of synaptic membranes and membrane potential. A protein-protein interaction network (PPI) was constructed to identify 10 hub genes of SCI, and the results showed that Snap25, Cplx1, Stxbp1, Syt1, Rims1, Rab3a, Syn2, Syn1, Cask, Lin7b were most associated with SCI. Finally, these hub genes were further verified by quantitative real-time fluorescence polymerase chain reaction (qRT-PCR) in the spinal cord tissues of the blank group and SCI rats, and it was found that the expression of these hub genes was significantly decreased in the spinal cord injury compared with the blank group (P ≤ 0.05). CONCLUSION These results suggest that the structure and function of synapses play an important role after spinal cord injury. Our study helps to understand the underlying pathogenesis of SCI patients further and identify new targets for SCI treatment.
Collapse
Affiliation(s)
- Mengting Shi
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haipeng Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rong Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xingying Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bowen Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruijie Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Acupuncture and Moxibustion, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
4
|
Zhang B, Zhang P, L T, Cao Y, Chen T, Chen C, Zhang Z, Zhong Q. P2X7 Receptor in microglia contributes to propofol-induced unconsciousness by regulating synaptic plasticity in mice. Neuroscience 2023:S0306-4522(23)00223-3. [PMID: 37211083 DOI: 10.1016/j.neuroscience.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/16/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Propofol infusion is processed through the wake-sleep cycle in neural connections, and the ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and synaptic plasticity through its regulation of electric activity in the brain. Here, we explored the potential roles of P2X7R of microglia in propofol-induced unconsciousness. Propofol induced loss of the righting reflex in male C57BL/6 wild-type mice and increased spectral power of the slow wave and delta wave of the medial prefrontal cortex (mPFC), all of which were reversed with P2X7R antagonist A-740003 and strengthened with P2X7R agonist Bz-ATP. Propofol increased the P2X7R expression level and P2X7R immunoreactivity with microglia in the mPFC, induced mild synaptic injury and increased GABA release in the mPFC, and these changes were less severe when treated with A-740003 and were more obvious when treated with Bz-ATP. Electrophysiological approaches showed that propofol induced a decreased frequency of sEPSCs and an increased frequency of sIPSCs, A-740003 decrease frequency of sEPSCs and sIPSCs and Bz-ATP increase frequency of sEPSCs and sIPSCs under propofol anesthesia. These findings indicated that P2X7R in microglia regulates synaptic plasticity and may contribute to propofol-mediated unconsciousness.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430022
| | - Panpan Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071; Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430022
| | - Tingting L
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071.
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071.
| |
Collapse
|
5
|
Yamada T, Saitoh Y, Kametani K, Kamijo A, Sakamoto T, Terada N. Involvement of membrane palmitoylated protein 2 (MPP2) in the synaptic molecular complex at the mouse cerebellar glomerulus. Histochem Cell Biol 2022; 158:497-511. [PMID: 35854144 DOI: 10.1007/s00418-022-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
We previously reported that the membrane skeletal protein 4.1G in the peripheral nervous system transports membrane palmitoylated protein 6 (MPP6), which interacts with the synaptic scaffolding protein Lin7 and cell adhesion molecule 4 (CADM4) in Schwann cells that form myelin. In the present study, we investigated the localization of and proteins related to MPP2, a highly homologous family protein of MPP6, in the cerebellum of the mouse central nervous system, in which neurons are well organized. Immunostaining for MPP2 was observed at cerebellar glomeruli (CG) in the granular layer after postnatal day 14. Using the high-resolution Airyscan mode of a confocal laser-scanning microscope, MPP2 was detected as a dot pattern and colocalized with CADM1 and Lin7, recognized as small ring/line patterns, as well as with calcium/calmodulin-dependent serine protein kinase (CASK), NMDA glutamate receptor 1 (GluN1), and M-cadherin, recognized as dot patterns, indicating the localization of MPP2 in the excitatory postsynaptic region and adherens junctions of granule cells. An immunoprecipitation analysis revealed that MPP2 formed a molecular complex with CADM1, CASK, M-cadherin, and Lin7. Furthermore, the Lin7 staining pattern showed small rings surrounding mossy fibers in wild-type CG, while it changed to the dot/spot pattern inside small rings detected with CADM1 staining in MPP2-deficient CG. These results indicate that MPP2 influences the distribution of Lin7 to synaptic cell membranes at postsynaptic regions in granule cells at CG, at which electric signals enter the cerebellum.
Collapse
Affiliation(s)
- Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Kiyokazu Kametani
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Division of Basic and Clinical Medicine, Nagano College of Nursing, Komagane, Nagano, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|