1
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
2
|
Hodgson RE, Rayment JA, Huang WP, Sanchez Avila A, Ellis BC, Lin YH, Soni N, Hautbergue GM, Shelkovnikova TA. C9orf72 poly-PR forms anisotropic condensates causative of nuclear TDP-43 pathology. iScience 2024; 27:110937. [PMID: 39391721 PMCID: PMC11465050 DOI: 10.1016/j.isci.2024.110937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Proteinaceous inclusions formed by C9orf72-derived dipeptide-repeat (DPR) proteins are a histopathological hallmark in ∼50% of familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) cases. However, DPR aggregation/inclusion formation could not be efficiently recapitulated in cell models for four out of five DPRs. In this study, using optogenetics, we achieved chemical-free poly-PR condensation/aggregation in cultured cells including human motor neurons, with spatial and temporal control. Strikingly, nuclear poly-PR condensates had anisotropic, hollow-center appearance, resembling TDP-43 anisosomes, and their growth was limited by RNA. These condensates induced abnormal TDP-43 granulation in the nucleus without stress response activation. Cytoplasmic poly-PR aggregates forming under prolonged opto-stimulation were more persistent than its nuclear condensates, selectively sequestered TDP-43 in a demixed state and surrounded spontaneous stress granules. Thus, poly-PR condensation accompanied by nuclear TDP-43 dysfunction may constitute an early pathological event in C9-ALS/FTD. Anisosome-type condensates of disease-linked proteins may represent a common molecular species in neurodegenerative disease.
Collapse
Affiliation(s)
- Rachel E. Hodgson
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Jessica A. Rayment
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Anna Sanchez Avila
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Brittany C.S. Ellis
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Tatyana A. Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
3
|
Zhang J, Ma X, Li Z, Liu H, Tian M, Wen Y, Wang S, Wang L. Identification of key genes and diagnostic model associated with circadian rhythms and Parkinson's disease by bioinformatics analysis. Front Aging Neurosci 2024; 16:1458476. [PMID: 39478700 PMCID: PMC11523131 DOI: 10.3389/fnagi.2024.1458476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Background Circadian rhythm disruption is typical in Parkinson's disease (PD) early stage, and it plays an important role in the prognosis of the treatment effect in the advanced stage of PD. There is growing evidence that circadian rhythm genes can influence development of PD. Therefore, this study explored specific regulatory mechanism of circadian genes (C-genes) in PD through bioinformatic approaches. Methods Differentially expressed genes (DEGs) between PD and control samples were identified from GSE22491 using differential expression analysis. The key model showing the highest correlation with PD was derived through WGCNA analysis. Then, DEGs, 1,288 C-genes and genes in key module were overlapped for yielding differentially expressed C-genes (DECGs), and they were analyzed for LASSO and SVM-RFE for yielding critical genes. Meanwhile, from GSE22491 and GSE100054, receiver operating characteristic (ROC) was implemented on critical genes to identify biomarkers, and Gene Set Enrichment Analysis (GSEA) was applied for the purpose of exploring pathways involved in biomarkers. Eventually, immune infiltrative analysis was applied for understanding effect of biomarkers on immune microenvironment, and therapeutic drugs which could affect biomarkers expressions were also predicted. Finally, we verified the expression of the genes by q-PCR. Results Totally 634 DEGs were yielded between PD and control samples, and MEgreen module had the highest correlation with PD, thus it was defined as key model. Four critical genes (AK3, RTN3, CYP4F2, and LEPR) were identified after performing LASSO and SVM-RFE on 18 DECGs. Through ROC analysis, AK3, RTN3, and LEPR were identified as biomarkers due to their excellent ability to distinguish PD from control samples. Besides, biomarkers were associated with Parkinson's disease and other functional pathways. Conclusion Through bioinformatic analysis, the circadian rhythm related biomarkers were identified (AK3, RTN3 and LEPR) in PD, contributing to studies related to PD treatment.
Collapse
Affiliation(s)
- Jiyuan Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaopeng Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | | | - Hu Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Mei Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Liang Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
4
|
Soeda Y, Yoshimura H, Bannai H, Koike R, Shiiba I, Takashima A. Intracellular tau fragment droplets serve as seeds for tau fibrils. Structure 2024; 32:1793-1807.e6. [PMID: 39032487 DOI: 10.1016/j.str.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Intracellular tau aggregation requires a local protein concentration increase, referred to as "droplets". However, the cellular mechanism for droplet formation is poorly understood. Here, we expressed OptoTau, a P301L mutant tau fused with CRY2olig, a light-sensitive protein that can form homo-oligomers. Under blue light exposure, OptoTau increased tau phosphorylation and was sequestered in aggresomes. Suppressing aggresome formation by nocodazole formed tau granular clusters in the cytoplasm. The granular clusters disappeared by discontinuing blue light exposure or 1,6-hexanediol treatment suggesting that intracellular tau droplet formation requires microtubule collapse. Expressing OptoTau-ΔN, a species of N-terminal cleaved tau observed in the Alzheimer's disease brain, formed 1,6-hexanediol and detergent-resistant tau clusters in the cytoplasm with blue light stimulation. These intracellular stable tau clusters acted as a seed for tau fibrils in vitro. These results suggest that tau droplet formation and N-terminal cleavage are necessary for neurofibrillary tangles formation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Bannai
- School of Advanced Science and Engineering, Department of Electrical Engineering and Biosciences, Waseda University, 2-2 Wakamatsucho, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Riki Koike
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
5
|
Ullah I, Zhao L, Uddin S, Zhou Y, Wang X, Li H. Nicotine-mediated therapy for Parkinson's disease in transgenic Caenorhabditis elegans model. Front Aging Neurosci 2024; 16:1358141. [PMID: 38813528 PMCID: PMC11135287 DOI: 10.3389/fnagi.2024.1358141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Parkinson's disease resultant in the degeneration of Dopaminergic neurons and accumulation of α-synuclein in the substantia nigra pars compacta. The synthetic therapeutics for Parkinson's disease have moderate symptomatic benefits but cannot prevent or delay disease progression. In this study, nicotine was employed by using transgenic Caenorhabditis elegans Parkinson's disease models to minimize the Parkinson's disease symptoms. The results showed that the nicotine at 100, 150, and 200 μM doses reduced degeneration of Dopaminergic neurons caused by 6-hydroxydopamine (14, 33, and 40%), lowered the aggregative toxicity of α-synuclein by 53, 56, and 78%, respectively. The reduction in food-sensing behavioral disabilities of BZ555 was observed to be 18, 49, and 86%, respectively, with nicotine concentrations of 100 μM, 150 μM, and 200 μM. Additionally, nicotine was found to enhance Daf-16 nuclear translocation by 14, 31, and 49%, and dose-dependently increased SOD-3 expression by 10, 19, and 23%. In summary, the nicotine might a promising therapy option for Parkinson's disease.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shahab Uddin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yangtao Zhou
- Department of Neurology, Clinical Center for Parkinson's Disease, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Moors TE, Milovanovic D. Defining a Lewy Body: Running Up the Hill of Shifting Definitions and Evolving Concepts. JOURNAL OF PARKINSON'S DISEASE 2024; 14:17-33. [PMID: 38189713 PMCID: PMC10836569 DOI: 10.3233/jpd-230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Teixeira M, Sheta R, Idi W, Oueslati A. Optogenetic-mediated induction and monitoring of α-synuclein aggregation in cellular models of Parkinson's disease. STAR Protoc 2023; 4:102738. [PMID: 37991922 PMCID: PMC10700619 DOI: 10.1016/j.xpro.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Studying Parkinson's disease (PD) is complex due to a lack of cellular models mimicking key aspects of protein pathology. Here, we present a protocol for inducing and monitoring α-synuclein aggregation in living cells using optogenetics. We describe steps for plasmid transduction, biochemical validation, immunocytochemistry, and live-cell confocal imaging. These induced aggregates fulfill the cardinal features of authentic protein inclusions observed in PD-diseased brains and offer a tool to study the role of protein aggregation in neurodegeneration. For complete details on the use and execution of this protocol, please refer to Bérard et al.1.
Collapse
Affiliation(s)
- Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
8
|
Bérard M, Martínez-Drudis L, Sheta R, El-Agnaf OMA, Oueslati A. Non-invasive systemic viral delivery of human alpha-synuclein mimics selective and progressive neuropathology of Parkinson's disease in rodent brains. Mol Neurodegener 2023; 18:91. [PMID: 38012703 PMCID: PMC10683293 DOI: 10.1186/s13024-023-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration. METHODS Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system. RESULTS Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD. CONCLUSIONS Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.
Collapse
Affiliation(s)
- Morgan Bérard
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Laura Martínez-Drudis
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
9
|
Lurette O, Martín-Jiménez R, Khan M, Sheta R, Jean S, Schofield M, Teixeira M, Rodriguez-Aller R, Perron I, Oueslati A, Hebert-Chatelain E. Aggregation of alpha-synuclein disrupts mitochondrial metabolism and induce mitophagy via cardiolipin externalization. Cell Death Dis 2023; 14:729. [PMID: 37949858 PMCID: PMC10638290 DOI: 10.1038/s41419-023-06251-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Accumulation of α-synuclein aggregates in the substantia nigra pars compacta is central in the pathophysiology of Parkinson's disease, leading to the degeneration of dopaminergic neurons and the manifestation of motor symptoms. Although several PD models mimic the pathological accumulation of α-synuclein after overexpression, they do not allow for controlling and monitoring its aggregation. We recently generated a new optogenetic tool by which we can spatiotemporally control the aggregation of α-synuclein using a light-induced protein aggregation system. Using this innovative tool, we aimed to characterize the impact of α-synuclein clustering on mitochondria, whose activity is crucial to maintain neuronal survival. We observed that aggregates of α-synuclein transiently and dynamically interact with mitochondria, leading to mitochondrial depolarization, lower ATP production, mitochondrial fragmentation and degradation via cardiolipin externalization-dependent mitophagy. Aggregation of α-synuclein also leads to lower mitochondrial content in human dopaminergic neurons and in mouse midbrain. Interestingly, overexpression of α-synuclein alone did not induce mitochondrial degradation. This work is among the first to clearly discriminate between the impact of α-synuclein overexpression and aggregation on mitochondria. This study thus represents a new framework to characterize the role of mitochondria in PD.
Collapse
Affiliation(s)
- Olivier Lurette
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Rebeca Martín-Jiménez
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Mehtab Khan
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada
- Department of Molecular Medecine, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Jean
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Mia Schofield
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada
- Department of Molecular Medecine, Université Laval, Quebec City, QC, Canada
| | - Raquel Rodriguez-Aller
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada
- Department of Molecular Medecine, Université Laval, Quebec City, QC, Canada
| | - Isabelle Perron
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada
- Department of Molecular Medecine, Université Laval, Quebec City, QC, Canada
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada.
- Department of Biology, University of Moncton, Moncton, NB, Canada.
| |
Collapse
|
10
|
Sheta R, Teixeira M, Idi W, Oueslati A. Optimized protocol for the generation of functional human induced-pluripotent-stem-cell-derived dopaminergic neurons. STAR Protoc 2023; 4:102486. [PMID: 37515763 PMCID: PMC10400954 DOI: 10.1016/j.xpro.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
Generation of functional human dopaminergic (DA) neurons from human induced pluripotent stem cells (hiPSCs) is a crucial tool for modeling dopamine-related human diseases and cell replacement therapies. Here, we present a protocol to combine neuralizing transcription factor (NGN2) programming and DA patterning to differentiate hiPSCs into mature and functional induced DA (iDA) neurons. We describe steps from transduction of hiPSCs and neural induction through to differentiation and maturation of near-pure, fully functional iDA neurons within 3 weeks. For complete details on the use and execution of this protocol, please refer to Sheta et al. (2022).1.
Collapse
Affiliation(s)
- Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
12
|
Kanojia N, Thapa K, Kaur G, Sharma A, Puri V, Verma N. Update on Therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer's and Parkinson's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Detection and modulation of neurodegenerative processes using graphene-based nanomaterials: Nanoarchitectonics and applications. Adv Colloid Interface Sci 2023; 311:102824. [PMID: 36549182 DOI: 10.1016/j.cis.2022.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disorders (NDDs) are caused by progressive loss of functional neurons following the aggregation and fibrillation of proteins in the central nervous system. The incidence rate continues to rise alarmingly worldwide, particularly in aged population, and the success of treatment remains limited to symptomatic relief. Graphene nanomaterials (GNs) have attracted immense interest on the account of their unique physicochemical and optoelectronic properties. The research over the past two decades has recognized their ability to interact with aggregation-prone neuronal proteins, regulate autophagy and modulate the electrophysiology of neuronal cells. Graphene can prevent the formation of higher order protein aggregates and facilitate the clearance of such deposits. In this review, after highlighting the role of protein fibrillation in neurodegeneration, we have discussed how GN-protein interactions can be exploited for preventing neurodegeneration. A comprehensive understanding of such interactions would contribute to the exploration of novel modalities for controlling neurodegenerative processes.
Collapse
|
14
|
Muhammad F, Liu Y, Wang N, Zhao L, Zhou Y, Yang H, Li H. Neuroprotective effects of cannabidiol on dopaminergic neurodegeneration and α-synuclein accumulation in C. elegans models of Parkinson's disease. Neurotoxicology 2022; 93:128-139. [PMID: 36108815 DOI: 10.1016/j.neuro.2022.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Parkinson disease (PD) is the second most progressive neurodegenerative disorder of the central nervous system (CNS) in the elderly, causing motor impediments and cognitive dysfunctions. Dopaminergic (DA) neuron degeneration and α-synuclein (α-Syn) accumulation in substantia nigra pars compacta (SNPc) are the major contributor to this disease. At present, the disease has no effective treatment. Many recent studies focus on identifying novel therapeutics that provide benefits to stop disease advancement in PD patients. Cannabidiol (CBD) is a cannabinoid derived from the Cannabis sativa plant and possesses anti-depressive, anti-inflammatory, and antioxidative effects. The present study aims to evaluate the neuroprotective effect of CBD in transgenic C. elegans PD models. We observed that CBD at 0.025 mM (24.66 %), 0.05 mM (52.41 %) and 0.1 mM (71.36 %) diminished DA neuron degenerations induced by 6-hydroxydopamine (6-OHDA), reduced (0.025, 27.1 %), (0.05, 38.9 %), (0.1, 51.3 %) food-sensing behavioural disabilities in BZ555, reduced 40.6 %, 56.3 %, 70.2 % the aggregative toxicity of α-Syn and expanded the nematodes' lifespan up to 11.5 %, 23.1 %, 28.8 %, dose-dependently. Moreover, CBD augmented the ubiquitin-like proteasomes 28.11 %, 43.27, 61.33 % and SOD-3 expressions by about 16.4 %, 21.2 %, 44.8 % in transgenic models. Further, we observed the antioxidative role of CBD by reducing 33.2 %, 41.4 %, 56.7 % reactive oxygen species in 6-OHDA intoxicated worms. Together, these findings supported CBD as an anti-parkinsonian drug and may exert its effects by raising lipid depositions to enhance proteasome activity and reduce oxidative stress via the antioxidative pathway.
Collapse
Affiliation(s)
- Fahim Muhammad
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing 100053, China.
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, China.
| | - Ningbo Wang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, China.
| | - Yangtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing 100053, China.
| | - Hui Yang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, Gansu, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, China.
| |
Collapse
|