1
|
Lv X, Zhang Y, Sun K, Yang Q, Luo J, Tao L, Lu P. De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants. Nat Commun 2024; 15:8521. [PMID: 39358329 PMCID: PMC11447207 DOI: 10.1038/s41467-024-52582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Clostridioides difficile toxin B (TcdB) is the key virulence factor accounting for C. difficile infection-associated symptoms. Effectively neutralizing different TcdB variants with a universal solution poses a significant challenge. Here we present the de novo design and characterization of pan-specific mini-protein binders against major TcdB subtypes. Our design successfully binds to the first receptor binding interface (RBI-1) of the varied TcdB subtypes, exhibiting affinities ranging from 20 pM to 10 nM. The cryo-electron microscopy (cryo-EM) structures of the mini protein binder in complex with TcdB1 and TcdB4 are consistent with the computational design models. The engineered and evolved variants of the mini-protein binder and chondroitin sulfate proteoglycan 4 (CSPG4), another natural receptor that binds to the second RBI (RBI-2) of TcdB, better neutralize major TcdB variants both in cells and in vivo, as demonstrated by the colon-loop assay using female mice. Our findings provide valuable starting points for the development of therapeutics targeting C. difficile infections (CDI).
Collapse
Affiliation(s)
- Xinchen Lv
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Qi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Jianhua Luo
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Liang Tao
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Peilong Lu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
2
|
Cummer R, Grosjean F, Bolteau R, Vasegh SE, Veyron S, Keogh L, Trempe JF, Castagner B. Structure-Activity Relationship of Inositol Thiophosphate Analogs as Allosteric Activators of Clostridioides difficile Toxin B. J Med Chem 2024; 67:16576-16597. [PMID: 39254660 DOI: 10.1021/acs.jmedchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Clostridioides difficile is a bacterium that causes life-threatening intestinal infections. Infection symptoms are mediated by a toxin secreted by the bacterium. Toxin pathogenesis is modulated by the intracellular molecule, inositol-hexakisphosphate (IP6). IP6 binds to a cysteine protease domain (CPD) on the toxin, inducing autoproteolysis, which liberates a virulence factor in the cell cytosol. We developed second-generation IP6 analogs designed to induce autoproteolysis in the gut lumen, prior to toxin uptake, circumventing pathogenesis. We synthesized a panel of thiophosphate-/sulfate-containing IP6 analogs and characterized their toxin binding affinity, autoproteolysis induction, and cation interactions. Our top candidate was soluble in extracellular cation concentrations, unlike IP6. The IP6 analogs were more negatively charged than IP6, which improved affinity and stabilization of the CPD, enhancing toxin autoproteolysis. Our data illustrate the optimization of IP6 with thiophosphate biomimetic which are more capable of inducing toxin autoproteolysis than the native ligand, warranting further studies in vivo.
Collapse
Affiliation(s)
- Rebecca Cummer
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Félix Grosjean
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Raphaël Bolteau
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Seyed Ehsan Vasegh
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Simon Veyron
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Liam Keogh
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| |
Collapse
|
3
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
4
|
Hu C, Garey KW. Microscopy methods for Clostridioides difficile. Anaerobe 2024; 86:102822. [PMID: 38341023 DOI: 10.1016/j.anaerobe.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Microscopic technologies including light and fluorescent, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cryo-electron microscopy have been widely utilized to visualize Clostridioides difficile at the molecular, cellular, community, and structural biology level. This comprehensive review summarizes the microscopy tools (fluorescent and reporter system) in their use to study different aspects of C. difficile life cycle and virulence (sporulation, germination) or applications (detection of C. difficile or use of antimicrobials). With these developing techniques, microscopy tools will be able to find broader applications and address more challenging questions to study C. difficile and C. difficile infection.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
5
|
Zhou R, He L, Zhang J, Zhang X, Li Y, Zhan X, Tao L. Molecular basis of TMPRSS2 recognition by Paeniclostridium sordellii hemorrhagic toxin. Nat Commun 2024; 15:1976. [PMID: 38438396 PMCID: PMC10912200 DOI: 10.1038/s41467-024-46394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Hemorrhagic toxin (TcsH) is a major virulence factor produced by Paeniclostridium sordellii, which is a non-negligible threat to women undergoing childbirth or abortions. Recently, Transmembrane Serine Protease 2 (TMPRSS2) was identified as a host receptor of TcsH. Here, we show the cryo-EM structures of the TcsH-TMPRSS2 complex and uncover that TcsH binds to the serine protease domain (SPD) of TMPRSS2 through the CROP unit-VI. This receptor binding mode is unique among LCTs. Five top surface loops of TMPRSS2SPD, which also determine the protease substrate specificity, constitute the structural determinants recognized by TcsH. The binding of TcsH inhibits the proteolytic activity of TMPRSS2, whereas its implication in disease manifestations remains unclear. We further show that mutations selectively disrupting TMPRSS2-binding reduce TcsH toxicity in the intestinal epithelium of the female mice. These findings together shed light on the distinct molecular basis of TcsH-TMPRSS2 interactions, which expands our knowledge of host recognition mechanisms employed by LCTs and provides novel targets for developing therapeutics against P. sordellii infections.
Collapse
Affiliation(s)
- Ruoyu Zhou
- College of Life Sciences, Fudan University, Shanghai, 200433, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Liuqing He
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Jiahao Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Xiaofeng Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yanyan Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Xiechao Zhan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Liang Tao
- College of Life Sciences, Fudan University, Shanghai, 200433, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
6
|
Kinsolving J, Bous J, Kozielewicz P, Košenina S, Shekhani R, Grätz L, Masuyer G, Wang Y, Stenmark P, Dong M, Schulte G. Structural and functional insight into the interaction of Clostridioides difficile toxin B and FZD 7. Cell Rep 2024; 43:113727. [PMID: 38308843 DOI: 10.1016/j.celrep.2024.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
The G protein-coupled receptors of the Frizzled (FZD) family, in particular FZD1,2,7, are receptors that are exploited by Clostridioides difficile toxin B (TcdB), the major virulence factor responsible for pathogenesis associated with Clostridioides difficile infection. We employ a live-cell assay examining the affinity between full-length FZDs and TcdB. Moreover, we present cryoelectron microscopy structures of TcdB alone and in complex with full-length FZD7, which reveal that large structural rearrangements of the combined repetitive polypeptide domain are required for interaction with FZDs and other TcdB receptors, constituting a first step for receptor recognition. Furthermore, we show that bezlotoxumab, an FDA-approved monoclonal antibody to treat Clostridioides difficile infection, favors the apo-TcdB structure and thus disrupts binding with FZD7. The dynamic transition between the two conformations of TcdB also governs the stability of the pore-forming region. Thus, our work provides structural and functional insight into how conformational dynamics of TcdB determine receptor binding.
Collapse
Affiliation(s)
- Julia Kinsolving
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Julien Bous
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Pawel Kozielewicz
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Sara Košenina
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rawan Shekhani
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Lukas Grätz
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Yuankai Wang
- Department of Urology, Boston Children's Hospital, Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Gunnar Schulte
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden.
| |
Collapse
|
7
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Zhou Y, Zhan X, Luo J, Li D, Zhou R, Zhang J, Pan Z, Zhang Y, Jia T, Zhang X, Li Y, Tao L. Structural dynamics of the CROPs domain control stability and toxicity of Paeniclostridium sordellii lethal toxin. Nat Commun 2023; 14:8426. [PMID: 38114525 PMCID: PMC10730571 DOI: 10.1038/s41467-023-44169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Paeniclostridium sordellii lethal toxin (TcsL) is a potent exotoxin that causes lethal toxic shock syndrome associated with fulminant bacterial infections. TcsL belongs to the large clostridial toxin (LCT) family. Here, we report that TcsL with varied lengths of combined repetitive oligopeptides (CROPs) deleted show increased autoproteolysis as well as higher cytotoxicity. We next present cryo-EM structures of full-length TcsL, at neutral (pH 7.4) and acidic (pH 5.0) conditions. The TcsL at neutral pH exhibits in the open conformation, which resembles reported TcdB structures. Low pH induces the conformational change of partial TcsL to the closed form. Two intracellular interfaces are observed in the closed conformation, which possibly locks the cysteine protease domain and hinders the binding of the host receptor. Our findings provide insights into the structure and function of TcsL and reveal mechanisms for CROPs-mediated modulation of autoproteolysis and cytotoxicity, which could be common across the LCT family.
Collapse
Affiliation(s)
- Yao Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiechao Zhan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| | - Jianhua Luo
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Diyin Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Ruoyu Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Jiahao Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zhenrui Pan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Tianhui Jia
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiaofeng Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yanyan Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Liang Tao
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
9
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Tian S, Zhou N. Gaining New Insights into Fundamental Biological Pathways by Bacterial Toxin-Based Genetic Screens. Bioengineering (Basel) 2023; 10:884. [PMID: 37627769 PMCID: PMC10451959 DOI: 10.3390/bioengineering10080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Genetic screen technology has been applied to study the mechanism of action of bacterial toxins-a special class of virulence factors that contribute to the pathogenesis caused by bacterial infections. These screens aim to identify host factors that directly or indirectly facilitate toxin intoxication. Additionally, specific properties of certain toxins, such as membrane interaction, retrograde trafficking, and carbohydrate binding, provide robust probes to comprehensively investigate the lipid biosynthesis, membrane vesicle transport, and glycosylation pathways, respectively. This review specifically focuses on recent representative toxin-based genetic screens that have identified new players involved in and provided new insights into fundamental biological pathways, such as glycosphingolipid biosynthesis, protein glycosylation, and membrane vesicle trafficking pathways. Functionally characterizing these newly identified factors not only expands our current understanding of toxin biology but also enables a deeper comprehension of fundamental biological questions. Consequently, it stimulates the development of new therapeutic approaches targeting both bacterial infectious diseases and genetic disorders with defects in these factors and pathways.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nini Zhou
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Tian S, Xiong X, Zeng J, Wang S, Tremblay BJM, Chen P, Chen B, Liu M, Chen P, Sheng K, Zeve D, Qi W, Breault DT, Rodríguez C, Gerhard R, Jin R, Doxey AC, Dong M. Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants. Nat Commun 2022; 13:6786. [PMID: 36351897 PMCID: PMC9646764 DOI: 10.1038/s41467-022-33964-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Toxin B (TcdB) is a major exotoxin responsible for diseases associated with Clostridioides difficile infection. Its sequence variations among clinical isolates may contribute to the difficulty in developing effective therapeutics. Here, we investigate receptor-binding specificity of major TcdB subtypes (TcdB1 to TcdB12). We find that representative members of subtypes 2, 4, 7, 10, 11, and 12 do not recognize the established host receptor, frizzled proteins (FZDs). Using a genome-wide CRISPR-Cas9-mediated screen, we identify tissue factor pathway inhibitor (TFPI) as a host receptor for TcdB4. TFPI is recognized by a region in TcdB4 that is homologous to the FZD-binding site in TcdB1. Analysis of 206 TcdB variant sequences reveals a set of six residues within this receptor-binding site that defines a TFPI binding-associated haplotype (designated B4/B7) that is present in all TcdB4 members, a subset of TcdB7, and one member of TcdB2. Intragenic micro-recombination (IR) events have occurred around this receptor-binding region in TcdB7 and TcdB2 members, resulting in either TFPI- or FZD-binding capabilities. Introduction of B4/B7-haplotype residues into TcdB1 enables dual recognition of TFPI and FZDs. Finally, TcdB10 also recognizes TFPI, although it does not belong to the B4/B7 haplotype, and shows species selectivity: it recognizes TFPI of chicken and to a lesser degree mouse, but not human, dog, or cattle versions. These findings identify TFPI as a TcdB receptor and reveal IR-driven changes on receptor-specificity among TcdB variants.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaozhe Xiong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ji Zeng
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Siyu Wang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Benjamin Jean-Marie Tremblay
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peng Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Min Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Pengsheng Chen
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kuanwei Sheng
- Wyss Institute for Bioinspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Wanshu Qi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - César Rodríguez
- Faculty of Microbiology & CIET, University of Costa Rica, San José, Costa Rica
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Andrew C Doxey
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|