1
|
Choudhury D, Alanbari R, Saveliev P, Sokurenko E, Fuzi M, Tchesnokova V. Clonal and resistance profiles of fluoroquinolone-resistant uropathogenic Escherichia coli in countries with different practices of antibiotic prescription. Front Microbiol 2024; 15:1446818. [PMID: 39417079 PMCID: PMC11479919 DOI: 10.3389/fmicb.2024.1446818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Antibiotic prescription practices differ between countries, influencing regional antimicrobial resistance prevalence. However, comparisons of clonal diversity among resistant bacteria in countries with different prescribing practices are rare. The rise of fluoroquinolone-resistant Escherichia coli (FQREC), often multidrug-resistant, exacerbates global antibiotic resistance. Unlike in the USA, antibiotics are commonly dispensed in Iraq without prescriptions, leading to widespread overuse and misuse. This study aimed to assess the impact of varying antibiotic use practices on FQREC diversity. Methods We compared FQREC prevalence, multidrug resistance, and clonality of FQREC among E. coli isolated from urine submitted between 2017 and 2018 to three US hospitals and two Iraqi hospitals. All FQREC isolates were analyzed for QRDR mutations and the presence of PMQR genes. A subset of FQREC strains from the ST131-H30R/Rx subgroups underwent whole-genome sequencing (WGS) and phylogenetic analysis. Results E. coli from Iraq showed significantly higher resistance to all tested antibiotics compared to those from the USA, with 76.2% being FQREC versus 31.2% in the USA (p < 0.01). Iraqi FQREC strains were more frequently multidrug resistant. The predominant subgroup in both countries was ST131-H30, with the notable absence of ST1193 among Iraqi FQREC. Iraqi-origin ST131-H30 strains exhibited higher minimum inhibitory concentrations (MICs) for ciprofloxacin and greater resistance to third-generation cephalosporins (3GC), trimethoprim/sulfamethoxazole (TMP/STX), and imipenem (IMI) than those from the USA. Increased 3GC resistance in Iraqi strains was linked to a higher proportion of bla CTX-M-15-carrying H30Rx subclade isolates. Additionally, Iraqi H30 strains exhibited higher MICs for fluoroquinolones due to more frequent carriage of PMQR determinants compared to US strains. Whole-genome sequencing was performed on 46 Iraqi and 63 US H30 isolates. Phylogenetic analysis revealed two clades-H30R and H30Rx-present in both countries, with isolates from both regions distributed throughout, without the emergence of distinct new major subclones. However, Iraqi isolates tended to cluster in separate subclades, indicating endemic circulation of the strain groups. Conclusion In regions like Iraq, where antibiotics are overused and misused, resistance among uropathogenic E. coli to various antibiotics is significantly higher. Most Iraqi resistant strains belong to well-known international groups, and no new highly successful strains have emerged. The absence of ST1193 in Iraq may reflect regional, socioeconomic, demographic, or cultural factors that hinder the success of certain strain groups in the country.
Collapse
Affiliation(s)
- Debarati Choudhury
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Rawan Alanbari
- Department of Microbiology, Al-Mustansiriyah University, College of Medicine, Baghdad, Iraq
| | - Pauline Saveliev
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | - Evgeni Sokurenko
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Miklos Fuzi
- Independent Researcher, Seattle, WA, United States
| | - Veronika Tchesnokova
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
2
|
Singh S, Gola C, Singh B, Agrawal V, Chaba R. D-galactonate metabolism in enteric bacteria: a molecular and physiological perspective. Curr Opin Microbiol 2024; 81:102524. [PMID: 39137493 DOI: 10.1016/j.mib.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
D-galactonate, a widely prevalent sugar acid, was first reported as a nutrient source for enteric bacteria in the 1970s. Since then, decades of research enabled a description of the modified Entner-Doudoroff pathway involved in its degradation and reported the structural and biochemical features of its metabolic enzymes, primarily in Escherichia coli K-12. However, only in the last few years, the D-galactonate transporter has been characterized, and the regulation of the dgo operon, encoding the structural genes for the transporter and enzymes of D-galactonate metabolism, has been detailed. Notably, in recent years, multiple evolutionary studies have identified the dgo operon as a dominant target for adaptation of E. coli in the mammalian gut. Despite considerable research on dgo operon, numerous fundamental questions remain to be addressed. The emerging relevance of the dgo operon in host-bacterial interactions further necessitates the study of D-galactonate metabolism in other enterobacterial strains.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Chetna Gola
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Bhupinder Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Vishal Agrawal
- Amity School of Biological Sciences, Amity University Punjab, Mohali, SAS Nagar, Punjab 140306, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
3
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Rahbé E, Glaser P, Opatowski L. Modeling the transmission of antibiotic-resistant Enterobacterales in the community: A systematic review. Epidemics 2024; 48:100783. [PMID: 38944024 DOI: 10.1016/j.epidem.2024.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Antibiotic-resistant Enterobacterales (ARE) are a public health threat worldwide. Dissemination of these opportunistic pathogens has been largely studied in hospitals. Despite high prevalence of asymptomatic colonization in the community in some regions of the world, less is known about ARE acquisition and spread in this setting. As explaining the community ARE dynamics has not been straightforward, mathematical models can be key to explore underlying phenomena and further evaluate the impact of interventions to curb ARE circulation outside of hospitals. METHODS We conducted a systematic review of mathematical modeling studies focusing on the transmission of AR-E in the community, excluding models only specific to hospitals. We extracted model features (population, setting), formalism (compartmental, individual-based), biological hypotheses (transmission, infection, antibiotic impact, resistant strain specificities) and main findings. We discussed additional mechanisms to be considered, open scientific questions, and most pressing data needs. RESULTS We identified 18 modeling studies focusing on the human transmission of ARE in the community (n=11) or in both community and hospital (n=7). Models aimed at (i) understanding mechanisms driving resistance dynamics; (ii) identifying and quantifying transmission routes; or (iii) evaluating public health interventions to reduce resistance. To overcome the difficulty of reproducing observed ARE dynamics in the community using the classical two-strains competition model, studies proposed to include mechanisms such as within-host strain competition or a strong host population structure. Studies inferring model parameters from longitudinal carriage data were mostly based on models considering the ARE strain only. They showed differences in ARE carriage duration depending on the acquisition mode: returning travelers have a significantly shorter carriage duration than discharged hospitalized patient or healthy individuals. Interestingly, predictions across models regarding the success of public health interventions to reduce ARE rates depended on pathogens, settings, and antibiotic resistance mechanisms. For E. coli, reducing person-to-person transmission in the community had a stronger effect than reducing antibiotic use in the community. For Klebsiella pneumoniae, reducing antibiotic use in hospitals was more efficient than reducing community use. CONCLUSIONS This study raises the limited number of modeling studies specifically addressing the transmission of ARE in the community. It highlights the need for model development and community-based data collection especially in low- and middle-income countries to better understand acquisition routes and their relative contribution to observed ARE levels. Such modeling will be critical to correctly design and evaluate public health interventions to control ARE transmission in the community and further reduce the associated infection burden.
Collapse
Affiliation(s)
- Eve Rahbé
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antimicrobials Evasion research unit, Paris, France; Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology research team, Montigny-Le-Bretonneux, France.
| | - Philippe Glaser
- Institut Pasteur, Ecology and Evolution of Antibiotic Resistance research unit, Université Paris Cité, Paris, France
| | - Lulla Opatowski
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antimicrobials Evasion research unit, Paris, France; Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology research team, Montigny-Le-Bretonneux, France.
| |
Collapse
|
5
|
Boyd A, El Dani M, Ajrouche R, Demontant V, Cheval J, Lacombe K, Cosson G, Rodriguez C, Pawlotsky JM, Woerther PL, Surgers L. Gut microbiome diversity and composition in individuals with and without extended-spectrum β-lactamase-producing Enterobacterales carriage: a matched case-control study in infectious diseases department. Clin Microbiol Infect 2024; 30:1154-1163. [PMID: 38527613 DOI: 10.1016/j.cmi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE Little is known about the effect of gut microbial and extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) carriage, particularly in the general population. The aim of this study was to identify microbiota signatures uniquely correlated with ESBL-E carriage. METHODS We conducted a case-control study among individuals seeking care at the Sexual Health Clinic or Department of Infectious and Tropical Diseases, Saint-Antoine Hospital, Paris, France. Using coarsened exact matching, 176 participants with ESBL-carriage (i.e. cases) were matched 1:1 to those without ESBL-carriage (i.e. controls) based on sexual group, ESBL-E prevalence of countries travelled in <12 months, number of sexual partners in <6 months, geographic origin, and any antibiotic use in <6 months. 16S rRNA gene amplicon sequencing was used to generate differential abundances at the genus level and measures of α- and β-diversity. RESULTS Participants were mostly men (83.2%, n = 293/352) and had a median age of 33 years (interquartile range: 27-44). Nine genera were found associated with ESBL-E carriage: Proteus (p < 0.0001), Carnobacterium (p < 0.0001), Enterorhabdus (p 0.0079), Catonella (p 0.017), Dermacoccus (p 0.017), Escherichia/Shigella (p 0.021), Kocuria (p 0.023), Bacillus (p 0.040), and Filifactor (p 0.043); however, differences were no longer significant after Benjamini-Hochberg correction (q > 0.05). There were no differences between those with versus without ESBL-E carriage in measures of α-diversity (Shannon Diversity Index, p 0.49; Simpson Diversity Index, p 0.54; and Chao1 Richness Estimator, p 0.16) or β-diversity (Bray-Curtis dissimilarity index, p 0.42). DISCUSSION In this large carefully controlled study, there is lacking evidence that gut microbial composition and diversity is any different between individuals with and without ESBL-E carriage.
Collapse
Affiliation(s)
- Anders Boyd
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; Stichting HIV Monitoring, Amsterdam, The Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, The Netherlands
| | - Mariam El Dani
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon
| | - Roula Ajrouche
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon; Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut, Lebanon
| | - Vanessa Demontant
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Justine Cheval
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Karine Lacombe
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France
| | - Guillaume Cosson
- GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France
| | - Christophe Rodriguez
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
| | - Jean-Michel Pawlotsky
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
| | - Paul-Louis Woerther
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France; Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; Université Paris-Est-Créteil (UPEC), EA 7380 Dynamic, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Laure Surgers
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France.
| |
Collapse
|
6
|
Lindon S, Shah S, Gifford DR, Lood C, Gomis Font MA, Kaur D, Oliver A, MacLean RC, Wheatley RM. Antibiotic resistance alters the ability of Pseudomonas aeruginosa to invade bacteria from the respiratory microbiome. Evol Lett 2024; 8:735-747. [PMID: 39328287 PMCID: PMC11424078 DOI: 10.1093/evlett/qrae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 09/28/2024] Open
Abstract
The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen Pseudomonas aeruginosa and the respiratory microbiome as our model system. We measure the ability of P. aeruginosa spontaneous antibiotic-resistant mutants to invade pre-established cultures of commensal respiratory microbes in an assay that allows us to link specific resistance mutations with changes in invasion ability. While commensal respiratory microbes tend to provide some degree of resistance to P. aeruginosa invasion, antibiotic resistance is a double-edged sword that can either help or hinder the ability of P. aeruginosa to invade. The directionality of this help or hindrance depends on both P. aeruginosa genotype and respiratory microbe identity. Specific resistance mutations in genes involved in multidrug efflux pump regulation are shown to facilitate the invasion of P. aeruginosa into Staphylococcus lugdunensis, yet impair invasion into Rothia mucilaginosa and Staphylococcus epidermidis. Streptococcus species provide the strongest resistance to P. aeruginosa invasion, and this is maintained regardless of antibiotic resistance genotype. Our study demonstrates how the cost of mutations that provide enhanced antibiotic resistance in P. aeruginosa can crucially depend on community context. We suggest that attempts to manipulate the microbiome should focus on promoting the growth of commensals that can increase the fitness costs associated with antibiotic resistance and provide robust inhibition of both wildtype and antibiotic-resistant pathogen strains.
Collapse
Affiliation(s)
- Selina Lindon
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Sarah Shah
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Danna R Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Cédric Lood
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Maria A Gomis Font
- Servicio de Microbiología, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - Divjot Kaur
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - R Craig MacLean
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Rachel M Wheatley
- Department of Biology, University of Oxford, Oxford, United Kingdom
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
7
|
Denkel LA, Gastmeier P. Gut microbiome and its role in the acquisition of extended-spectrum β-lactamase-producing Enterobacterales. Clin Microbiol Infect 2024; 30:1102-1104. [PMID: 38821175 DOI: 10.1016/j.cmi.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Affiliation(s)
- Luisa A Denkel
- Institute of Hygiene and Environmental Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; National Reference Center for the Surveillance of Nosocomial Infections, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; National Reference Center for the Surveillance of Nosocomial Infections, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Muñoz-Cazalla A, de Quinto I, Álvaro-Llorente L, Rodríguez-Beltrán J, Herencias C. The role of bacterial metabolism in human gut colonization. Int Microbiol 2024:10.1007/s10123-024-00550-6. [PMID: 38937311 DOI: 10.1007/s10123-024-00550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Can we anticipate the emergence of the next pandemic antibiotic-resistant bacterial clone? Addressing such an ambitious question relies on our ability to comprehensively understand the ecological and epidemiological factors fostering the evolution of high-risk clones. Among these factors, the ability to persistently colonize and thrive in the human gut is crucial for most high-risk clones. Nonetheless, the causes and mechanisms facilitating successful gut colonization remain obscure. Here, we review recent evidence that suggests that bacterial metabolism plays a pivotal role in determining the ability of high-risk clones to colonize the human gut. Subsequently, we outline novel approaches that enable the exploration of microbial metabolism at an unprecedented scale and level of detail. A thorough understanding of the constraints and opportunities of bacterial metabolism in gut colonization will foster our ability to predict the emergence of high-risk clones and take appropriate containment strategies.
Collapse
Affiliation(s)
- Ada Muñoz-Cazalla
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ignacio de Quinto
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Laura Álvaro-Llorente
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Cristina Herencias
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Khawaja T, Mäklin T, Kallonen T, Gladstone RA, Pöntinen AK, Mero S, Thorpe HA, Samuelsen Ø, Parkhill J, Izhar M, Akhtar MW, Corander J, Kantele A. Deep sequencing of Escherichia coli exposes colonisation diversity and impact of antibiotics in Punjab, Pakistan. Nat Commun 2024; 15:5196. [PMID: 38890378 PMCID: PMC11189469 DOI: 10.1038/s41467-024-49591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Multi-drug resistant (MDR) E. coli constitute a major public health burden globally, reaching the highest prevalence in the global south yet frequently flowing with travellers to other regions. However, our comprehension of the entire genetic diversity of E. coli colonising local populations remains limited. We quantified this diversity, its associated antimicrobial resistance (AMR), and assessed the impact of antibiotic use by recruiting 494 outpatients and 423 community dwellers in the Punjab province, Pakistan. Rectal swab and stool samples were cultured on CLED agar and DNA extracted from plate sweeps was sequenced en masse to capture both the genetic and AMR diversity of E. coli. We assembled 5,247 E. coli genomes from 1,411 samples, displaying marked genetic diversity in gut colonisation. Compared with high income countries, the Punjabi population generally showed a markedly different distribution of genetic lineages and AMR determinants, while use of antibiotics elevated the prevalence of well-known globally circulating MDR clinical strains. These findings implicate that longitudinal multi-regional genomics-based surveillance of both colonisation and infections is a prerequisite for developing mechanistic understanding of the interplay between ecology and evolution in the maintenance and dissemination of (MDR) E. coli.
Collapse
Affiliation(s)
- Tamim Khawaja
- Meilahti Infectious Diseases and Vaccine Research Center (MeiVac), Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Multidiciplinary Center of Excellence in Antimicrobial Resistance Research, FIMAR, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Tommi Mäklin
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Teemu Kallonen
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | | | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Sointu Mero
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Multidiciplinary Center of Excellence in Antimicrobial Resistance Research, FIMAR, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Mateen Izhar
- Department of Microbiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - M Waheed Akhtar
- School of Biological Science, University of the Punjab, Lahore, Pakistan
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
- Department of Biostatistics, University of Oslo, Oslo, Norway.
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK.
| | - Anu Kantele
- Meilahti Infectious Diseases and Vaccine Research Center (MeiVac), Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland.
- Multidiciplinary Center of Excellence in Antimicrobial Resistance Research, FIMAR, Medical Faculty, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
11
|
Xu X, Liu F, Qiao W, Dong Y, Yang H, Liu F, Xu H, Qiao M. A Point Mutation in Cassette Relieves the Repression Regulation of CcpA Resulting in an Increase in the Degradation of 2,3-Butanediol in Lactococcus lactis. Microorganisms 2024; 12:773. [PMID: 38674718 PMCID: PMC11051896 DOI: 10.3390/microorganisms12040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
In lactic acid bacteria, the global transcriptional regulator CcpA regulates carbon metabolism by repressing and activating the central carbon metabolism pathway, thus decreasing or increasing the yield of certain metabolites to maximize carbon flow. However, there are no reports on the deregulation of the inhibitory effects of CcpA on the metabolism of secondary metabolites. In this study, we identified a single-base mutant strain of Lactococcus lactis N8-2 that is capable of metabolizing 2,3-butanediol. It has been established that CcpA dissociates from the catabolite responsive element (cre) site due to a mutation, leading to the activation of derepression and expression of the 2,3-butanediol dehydrogenase gene cluster (butB and butA). Transcriptome analysis and quantitative polymerase chain reaction (Q-PCR) results showed significant upregulation of transcription of butB and butA compared to the unmutated strain. Furthermore, micro-scale thermophoresis experiments confirmed that CcpA did not bind to the mutated cre. Furthermore, in a bacterial two-plasmid fluorescent hybridization system, it was similarly confirmed that the dissociation of CcpA from cre eliminated the repressive effect of CcpA on downstream genes. Finally, we investigated the differing catalytic capacities of the 2,3-butanediol dehydrogenase gene cluster in L. lactis N8-1 and L. lactis N8-2 for 2,3-butanediol. This led to increased expression of butB and butA, which were deregulated by CcpA repression. This is the first report on the elimination of the deterrent effect of CcpA in lactic acid bacteria, which changes the direction of enzymatic catalysis and alters the direction of carbon metabolism. This provides new perspectives and strategies for metabolizing 2,3-butanediol using bacteria in synthetic biology.
Collapse
Affiliation(s)
- Xian Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Fulu Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| | - Yujie Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Huan Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Fengming Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| |
Collapse
|
12
|
Baquero F, Rodríguez-Beltrán J, Coque TM, del Campo R. Boosting Fitness Costs Associated with Antibiotic Resistance in the Gut: On the Way to Biorestoration of Susceptible Populations. Biomolecules 2024; 14:76. [PMID: 38254676 PMCID: PMC10812938 DOI: 10.3390/biom14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The acquisition and expression of antibiotic resistance implies changes in bacterial cell physiology, imposing fitness costs. Many human opportunistic pathogenic bacteria, such as those causing urinary tract or bloodstream infections, colonize the gut. In this opinionated review, we will examine the various types of stress that these bacteria might suffer during their intestinal stay. These stresses, and their compensatory responses, probably have a fitness cost, which might be additive to the cost of expressing antibiotic resistance. Such an effect could result in a disadvantage relative to antibiotic susceptible populations that might replace the resistant ones. The opinion proposed in this paper is that the effect of these combinations of fitness costs should be tested in antibiotic resistant bacteria with susceptible ones as controls. This testing might provide opportunities to increase the bacterial gut stress boosting physiological biomolecules or using dietary interventions. This approach to reduce the burden of antibiotic-resistant populations certainly must be answered empirically. In the end, the battle against antibiotic resistance should be won by antibiotic-susceptible organisms. Let us help them prevail.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Rosa del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| |
Collapse
|
13
|
Cho NA, Strayer K, Dobson B, McDonald B. Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness. Gut Microbes 2024; 16:2351478. [PMID: 38780485 PMCID: PMC11123462 DOI: 10.1080/19490976.2024.2351478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
For many years, it has been hypothesized that pathological changes to the gut microbiome in critical illness is a driver of infections, organ dysfunction, and other adverse outcomes in the intensive care unit (ICU). The advent of contemporary microbiome methodologies and multi-omics tools have allowed researchers to test this hypothesis by dissecting host-microbe interactions in the gut to better define its contribution to critical illness pathogenesis. Observational studies of patients in ICUs have revealed that gut microbial communities are profoundly altered in critical illness, characterized by markedly reduced alpha diversity, loss of commensal taxa, and expansion of potential pathogens. These key features of ICU gut dysbiosis have been associated with adverse outcomes including life-threatening hospital-acquired (nosocomial) infections. Current research strives to define cellular and molecular mechanisms connecting gut dysbiosis with infections and other outcomes, and to identify opportunities for therapeutic modulation of host-microbe interactions. This review synthesizes evidence from studies of critically ill patients that have informed our understanding of intestinal dysbiosis in the ICU, mechanisms linking dysbiosis to infections and other adverse outcomes, as well as clinical trials of microbiota-modifying therapies. Additionally, we discuss novel avenues for precision microbial therapeutics to combat nosocomial infections and other life-threatening complications of critical illness.
Collapse
Affiliation(s)
- Nicole A Cho
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathryn Strayer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Breenna Dobson
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Pugh HL, Connor C, Siasat P, McNally A, Blair JMA. E. coli ST11 (O157:H7) does not encode a functional AcrF efflux pump. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001324. [PMID: 37074150 PMCID: PMC10202319 DOI: 10.1099/mic.0.001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
Escherichia coli is a facultative anaerobe found in a wide range of environments. Commonly described as the laboratory workhorse, E. coli is one of the best characterized bacterial species to date, however much of our understanding comes from studies involving the laboratory strain E. coli K-12. Resistance-nodulation-division efflux pumps are found in Gram-negative bacteria and can export a diverse range of substrates, including antibiotics. E. coli K-12 has six RND pumps; AcrB, AcrD, AcrF, CusA, MdtBC and MdtF, and it is frequently reported that all E. coli strains possess these six pumps. However, this is not true of E. coli ST11, a lineage of E. coli, which is primarily composed of the highly virulent important human pathogen, E. coli O157:H7. Here we show that acrF is absent from the pangenome of ST11 and that this lineage of E. coli has a highly conserved insertion within the acrF gene, which when translated encodes 13 amino acids and two stop codons. This insertion was found to be present in 97.59 % of 1787 ST11 genome assemblies. Non-function of AcrF in ST11 was confirmed in the laboratory as complementation with acrF from ST11 was unable to restore AcrF function in E. coli K-12 substr. MG1655 ΔacrB ΔacrF. This shows that the complement of RND efflux pumps present in laboratory bacterial strains may not reflect the situation in virulent strains of bacterial pathogens.
Collapse
Affiliation(s)
- Hannah L. Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Christopher Connor
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Pauline Siasat
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica M. A. Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|