1
|
Kwak JS, León-Tapia MÁ, Diblasi C, Manousi D, Grønvold L, Sandvik GK, Saitou M. Functional and regulatory diversification of Period genes responsible for circadian rhythm in vertebrates. G3 (BETHESDA, MD.) 2024; 14:jkae162. [PMID: 39028850 PMCID: PMC11457068 DOI: 10.1093/g3journal/jkae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - M Ángel León-Tapia
- Colección Nacional de Mamíferos, Pabellón Nacional de la Biodiversidad, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celian Diblasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Domniki Manousi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Guro Katrine Sandvik
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Marie Saitou
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
2
|
Nie XY, Menet JS. Circadian regulation of stereotypic chromatin conformations at enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590818. [PMID: 38712031 PMCID: PMC11071494 DOI: 10.1101/2024.04.24.590818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cooperation between the circadian transcription factor (TF) CLOCK:BMAL1 and other TFs at cis-regulatory elements (CREs) is critical to daily rhythms of transcription. Yet, the modalities of this cooperation are unclear. Here, we analyzed the co-binding of multiple TFs on single DNA molecules in mouse liver using single molecule footprinting (SMF). We found that SMF reads clustered in stereotypic chromatin states that reflect distinguishable organization of TFs and nucleosomes, and that were remarkably conserved between all samples. DNA protection at CLOCK:BMAL1 binding motif (E-box) varied between CREs, from E-boxes being solely bound by CLOCK:BMAL1 to situations where other TFs competed with CLOCK:BMAL1 for E-box binding. SMF also uncovered CLOCK:BMAL1 cooperative binding at E-boxes separated by 250 bp, which structurally altered the CLOCK:BMAL1-DNA interface. Importantly, we discovered multiple nucleosomes with E-boxes at entry/exit sites that were removed upon CLOCK:BMAL1 DNA binding, thereby promoting the formation of open chromatin states that facilitate DNA binding of other TFs and that were associated with rhythmic transcription. These results demonstrate the utility of SMF for studying how CLOCK:BMAL1 and other TFs regulate stereotypical chromatin states at CREs to promote transcription.
Collapse
Affiliation(s)
- Xinyu Y. Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
| | - Jerome S. Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX
| |
Collapse
|
3
|
Sharma D, Partch CL. PAS Dimerization at the Nexus of the Mammalian Circadian Clock. J Mol Biol 2024; 436:168341. [PMID: 37924861 PMCID: PMC11729053 DOI: 10.1016/j.jmb.2023.168341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Circadian rhythms are genetically encoded molecular clocks for internal biological timekeeping. Organisms from single-cell bacteria to humans use these clocks to adapt to the external environment and synchronize their physiology and behavior to solar light/dark cycles. Although the proteins that constitute the molecular 'cogs' and give rise to circadian rhythms are now known, we still lack a detailed understanding of how these proteins interact to generate and sustain the ∼24-hour circadian clock. Structural studies have helped to expand the architecture of clock proteins and have revealed the abundance of the only well-defined structured regions in the mammalian clock called Per-ARNT-Sim (PAS) domains. PAS domains are modular, evolutionarily conserved sensory and signaling domains that typically mediate protein-protein interactions. In the mammalian circadian clock, PAS domains modulate homo and heterodimerization of several core clock proteins that assemble into transcription factors or repressors. This review will focus on the functional importance of the PAS domains in the circadian clock from a biophysical and biochemical standpoint and describe their roles in clock protein interactions and circadian timekeeping.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States; Center for Circadian Biology, University of California San Diego, CA, United States.
| |
Collapse
|
4
|
Michael AK, Stoos L, Crosby P, Eggers N, Nie XY, Makasheva K, Minnich M, Healy KL, Weiss J, Kempf G, Cavadini S, Kater L, Seebacher J, Vecchia L, Chakraborty D, Isbel L, Grand RS, Andersch F, Fribourgh JL, Schübeler D, Zuber J, Liu AC, Becker PB, Fierz B, Partch CL, Menet JS, Thomä NH. Cooperation between bHLH transcription factors and histones for DNA access. Nature 2023; 619:385-393. [PMID: 37407816 PMCID: PMC10338342 DOI: 10.1038/s41586-023-06282-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lisa Stoos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolas Eggers
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Xinyu Y Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX, USA
| | - Kristina Makasheva
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martina Minnich
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kelly L Healy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luca Vecchia
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Deyasini Chakraborty
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Florian Andersch
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Andrew C Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
5
|
Grabe S, Mahammadov E, Olmo MD, Herzel H. Synergies of Multiple Zeitgebers Tune Entrainment. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:803011. [PMID: 36925578 PMCID: PMC10013031 DOI: 10.3389/fnetp.2021.803011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Circadian rhythms are biological rhythms with a period close to 24 h. They become entrained to the Earth's solar day via different periodic cues, so-called zeitgebers. The entrainment of circadian rhythms to a single zeitgeber was investigated in many mathematical clock models of different levels of complexity, ranging from the Poincaré oscillator and the Goodwin model to biologically more detailed models of multiple transcriptional translational feedback loops. However, circadian rhythms are exposed to multiple coexisting zeitgebers in nature. Therefore, we study synergistic effects of two coexisting zeitgebers on different components of the circadian clock. We investigate the induction of period genes by light together with modulations of nuclear receptor activities by drugs and metabolism. Our results show that the entrainment of a circadian rhythm to two coexisting zeitgebers depends strongly on the phase difference between the two zeitgebers. Synergistic interactions of zeitgebers can strengthen diurnal rhythms to reduce detrimental effects of shift-work and jet lag. Medical treatment strategies which aim for stable circadian rhythms should consider interactions of multiple zeitgebers.
Collapse
Affiliation(s)
- Saskia Grabe
- CharitéCenter for Basic Sciences, Institute for Theoretical Biology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Elmir Mahammadov
- Stem Cell Center (SCC), Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Marta Del Olmo
- CharitéCenter for Basic Sciences, Institute for Theoretical Biology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- CharitéCenter for Basic Sciences, Institute for Theoretical Biology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Rivas GBS, Zhou J, Merlin C, Hardin PE. CLOCKWORK ORANGE promotes CLOCK-CYCLE activation via the putative Drosophila ortholog of CLOCK INTERACTING PROTEIN CIRCADIAN. Curr Biol 2021; 31:4207-4218.e4. [PMID: 34331859 DOI: 10.1016/j.cub.2021.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The Drosophila circadian clock is driven by a transcriptional feedback loop in which CLOCK-CYCLE (CLK-CYC) binds E-boxes to transcribe genes encoding the PERIOD-TIMELESS (PER-TIM) repressor, which releases CLK-CYC from E-boxes to inhibit transcription. CLOCKWORK ORANGE (CWO) reinforces PER-TIM repression by binding E-boxes to maintain PER-TIM bound CLK-CYC off DNA, but also promotes CLK-CYC transcription through an unknown mechanism. To determine how CWO activates CLK-CYC transcription, we identified CWO target genes that are upregulated in the absence of CWO repression, conserved in mammals, and preferentially expressed in brain pacemaker neurons. Among the genes identified was a putative ortholog of mouse Clock Interacting Protein Circadian (Cipc), which represses CLOCK-BMAL1 transcription. Reducing or eliminating Drosophila Cipc expression shortens period, while overexpressing Cipc lengthens period, which is consistent with previous work showing that Drosophila Cipc represses CLK-CYC transcription in S2 cells. Cipc represses CLK-CYC transcription in vivo, but not uniformly, as per is strongly repressed, tim less so, and vri hardly at all. Long period rhythms in cwo mutant flies are largely rescued when Cipc expression is reduced or eliminated, indicating that increased Cipc expression mediates the period lengthening of cwo mutants. Consistent with this behavioral rescue, eliminating Cipc rescues the decreased CLK-CYC transcription in cwo mutant flies, where per is strongly rescued, tim is moderately rescued, and vri shows little rescue. These results suggest a mechanism for CWO-dependent CLK-CYC activation: CWO inhibition of CIPC repression promotes CLK-CYC transcription. This mechanism may be conserved since cwo and Cipc perform analogous roles in the mammalian circadian clock.
Collapse
Affiliation(s)
- Gustavo B S Rivas
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Jian Zhou
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
7
|
Beytebiere JR, Greenwell BJ, Sahasrabudhe A, Menet JS. Clock-controlled rhythmic transcription: is the clock enough and how does it work? Transcription 2019; 10:212-221. [PMID: 31595813 DOI: 10.1080/21541264.2019.1673636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks regulate the rhythmic expression of thousands of genes underlying the daily oscillations of biological functions. Here, we discuss recent findings showing that circadian clock rhythmic transcriptional outputs rely on additional mechanisms than just clock gene DNA binding, which may ultimately contribute to the plasticity of circadian transcriptional programs.
Collapse
Affiliation(s)
- Joshua R Beytebiere
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA
| | - Ben J Greenwell
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA.,Program of Genetics, Texas A&M University, College Station, TX, USA
| | - Aishwarya Sahasrabudhe
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA.,Program of Genetics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Petkau N, Budak H, Zhou X, Oster H, Eichele G. Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters. eLife 2019; 8:e43235. [PMID: 31294688 PMCID: PMC6650244 DOI: 10.7554/elife.43235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.
Collapse
Affiliation(s)
- Nikolai Petkau
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Harun Budak
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Xunlei Zhou
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Henrik Oster
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Gregor Eichele
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
9
|
Beytebiere JR, Trott AJ, Greenwell BJ, Osborne CA, Vitet H, Spence J, Yoo SH, Chen Z, Takahashi JS, Ghaffari N, Menet JS. Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer-enhancer interactions. Genes Dev 2019; 33:294-309. [PMID: 30804225 PMCID: PMC6411008 DOI: 10.1101/gad.322198.118] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022]
Abstract
The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of thousands of genes. Consistent with the various biological functions under clock control, rhythmic gene expression is tissue-specific despite an identical clockwork mechanism in every cell. Here we show that BMAL1 DNA binding is largely tissue-specific, likely because of differences in chromatin accessibility between tissues and cobinding of tissue-specific transcription factors. Our results also indicate that BMAL1 ability to drive tissue-specific rhythmic transcription is associated with not only the activity of BMAL1-bound enhancers but also the activity of neighboring enhancers. Characterization of physical interactions between BMAL1 enhancers and other cis-regulatory regions by RNA polymerase II chromatin interaction analysis by paired-end tag (ChIA-PET) reveals that rhythmic BMAL1 target gene expression correlates with rhythmic chromatin interactions. These data thus support that much of BMAL1 target gene transcription depends on BMAL1 capacity to rhythmically regulate a network of enhancers.
Collapse
Affiliation(s)
- Joshua R Beytebiere
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Alexandra J Trott
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Ben J Greenwell
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Collin A Osborne
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Helene Vitet
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Jessica Spence
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noushin Ghaffari
- Center for Bioinformatics and Genomic Systems Engineering (CBGSE), Texas A&M AgriLife Research, College Station, Texas 77845, USA
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, College Station, Texas 77845, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
10
|
Sharp B, Paquet E, Naef F, Bafna A, Wijnen H. A new promoter element associated with daily time keeping in Drosophila. Nucleic Acids Res 2017; 45:6459-6470. [PMID: 28407113 PMCID: PMC5499816 DOI: 10.1093/nar/gkx268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
Circadian clocks are autonomous daily timekeeping mechanisms that allow organisms to adapt to environmental rhythms as well as temporally organize biological functions. Clock-controlled timekeeping involves extensive regulation of rhythmic gene expression. To date, relatively few clock-associated promoter elements have been identified and characterized. In an unbiased search of core clock gene promoters from 12 species of Drosophila, we discovered a 29-bp consensus sequence that we designated as the Clock-Associated Transcriptional Activation Cassette or 'CATAC'. To experimentally address the spatiotemporal expression information associated with this element, we generated constructs with four separate native CATAC elements upstream of a basal promoter driving expression of either the yeast Gal4 or firefly luciferase reporter genes. Reporter assays showed that presence of wild-type, but not mutated CATAC elements, imparted increased expression levels as well as rhythmic regulation. Part of the CATAC consensus sequence resembles the E-box binding site for the core circadian transcription factor CLOCK/CYCLE (CLK/CYC), and CATAC-mediated expression rhythms are lost in the presence of null mutations in either cyc or the gene encoding the CLK/CYC inhibitor, period (per). Nevertheless, our results indicate that CATAC's enhancer function persists in the absence of CLK/CYC. Thus, CATAC represents a novel cis-regulatory element encoding clock-controlled regulation.
Collapse
Affiliation(s)
- Brandi Sharp
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Eric Paquet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akanksha Bafna
- Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Herman Wijnen
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.,Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
11
|
Tokuda IT, Okamoto A, Matsumura R, Takumi T, Akashi M. Potential contribution of tandem circadian enhancers to nonlinear oscillations in clock gene expression. Mol Biol Cell 2017; 28:2333-2342. [PMID: 28637769 PMCID: PMC5555660 DOI: 10.1091/mbc.e17-02-0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/14/2023] Open
Abstract
Limit-cycle oscillations require the presence of nonlinear processes. Although mathematical studies have long suggested that multiple nonlinear processes are required for autonomous circadian oscillation in clock gene expression, the underlying mechanism remains controversial. Here we show experimentally that cell-autonomous circadian transcription of a mammalian clock gene requires a functionally interdependent tandem E-box motif; the lack of either of the two E-boxes results in arrhythmic transcription. Although previous studies indicated the role of the tandem motifs in increasing circadian amplitude, enhancing amplitude does not explain the mechanism for limit-cycle oscillations in transcription. In this study, mathematical analysis suggests that the interdependent behavior of enhancer elements including not only E-boxes but also ROR response elements might contribute to limit-cycle oscillations by increasing transcriptional nonlinearity. As expected, introduction of the interdependence of circadian enhancer elements into mathematical models resulted in autonomous transcriptional oscillation with low Hill coefficients. Together these findings suggest that interdependent tandem enhancer motifs on multiple clock genes might cooperatively enhance nonlinearity in the whole circadian feedback system, which would lead to limit-cycle oscillations in clock gene expression.
Collapse
Affiliation(s)
- Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Akihiko Okamoto
- Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Ritsuko Matsumura
- Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Makoto Akashi
- Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
12
|
Sobel JA, Krier I, Andersin T, Raghav S, Canella D, Gilardi F, Kalantzi AS, Rey G, Weger B, Gachon F, Dal Peraro M, Hernandez N, Schibler U, Deplancke B, Naef F. Transcriptional regulatory logic of the diurnal cycle in the mouse liver. PLoS Biol 2017; 15:e2001069. [PMID: 28414715 PMCID: PMC5393560 DOI: 10.1371/journal.pbio.2001069] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Many organisms exhibit temporal rhythms in gene expression that propel diurnal cycles in physiology. In the liver of mammals, these rhythms are controlled by transcription-translation feedback loops of the core circadian clock and by feeding-fasting cycles. To better understand the regulatory interplay between the circadian clock and feeding rhythms, we mapped DNase I hypersensitive sites (DHSs) in the mouse liver during a diurnal cycle. The intensity of DNase I cleavages cycled at a substantial fraction of all DHSs, suggesting that DHSs harbor regulatory elements that control rhythmic transcription. Using chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq), we found that hypersensitivity cycled in phase with RNA polymerase II (Pol II) loading and H3K27ac histone marks. We then combined the DHSs with temporal Pol II profiles in wild-type (WT) and Bmal1-/- livers to computationally identify transcription factors through which the core clock and feeding-fasting cycles control diurnal rhythms in transcription. While a similar number of mRNAs accumulated rhythmically in Bmal1-/- compared to WT livers, the amplitudes in Bmal1-/- were generally lower. The residual rhythms in Bmal1-/- reflected transcriptional regulators mediating feeding-fasting responses as well as responses to rhythmic systemic signals. Finally, the analysis of DNase I cuts at nucleotide resolution showed dynamically changing footprints consistent with dynamic binding of CLOCK:BMAL1 complexes. Structural modeling suggested that these footprints are driven by a transient heterotetramer binding configuration at peak activity. Together, our temporal DNase I mappings allowed us to decipher the global regulation of diurnal transcription rhythms in the mouse liver.
Collapse
Affiliation(s)
- Jonathan Aryeh Sobel
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Irina Krier
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Teemu Andersin
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Sunil Raghav
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Styliani Kalantzi
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume Rey
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matteo Dal Peraro
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Bart Deplancke
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
13
|
Goya ME, Romanowski A, Caldart CS, Bénard CY, Golombek DA. Circadian rhythms identified in Caenorhabditis elegans by in vivo long-term monitoring of a bioluminescent reporter. Proc Natl Acad Sci U S A 2016; 113:E7837-E7845. [PMID: 27849618 PMCID: PMC5137770 DOI: 10.1073/pnas.1605769113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circadian rhythms are based on endogenous clocks that allow organisms to adjust their physiology and behavior by entrainment to the solar day and, in turn, to select the optimal times for most biological variables. Diverse model systems-including mice, flies, fungi, plants, and bacteria-have provided important insights into the mechanisms of circadian rhythmicity. However, the general principles that govern the circadian clock of Caenorhabditis elegans have remained largely elusive. Here we report robust molecular circadian rhythms in C elegans recorded with a bioluminescence assay in vivo and demonstrate the main features of the circadian system of the nematode. By constructing a luciferase-based reporter coupled to the promoter of the suppressor of activated let-60 Ras (sur-5) gene, we show in both population and single-nematode assays that C elegans expresses ∼24-h rhythms that can be entrained by light/dark and temperature cycles. We provide evidence that these rhythms are temperature-compensated and can be re-entrained after phase changes of the synchronizing agents. In addition, we demonstrate that light and temperature sensing requires the photoreceptors LITE and GUR-3, and the cyclic nucleotide-gated channel subunit TAX-2. Our results shed light on C elegans circadian biology and demonstrate evolutionarily conserved features in the circadian system of the nematode.
Collapse
Affiliation(s)
- María Eugenia Goya
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
| | - Andrés Romanowski
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Carlos S Caldart
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
| | - Claire Y Bénard
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605;
- Department of Biological Sciences University of Quebec at Montreal, Montreal, QC, Canada H2X 1Y4
| | - Diego A Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina;
| |
Collapse
|
14
|
Zhou J, Yu W, Hardin PE. CLOCKWORK ORANGE Enhances PERIOD Mediated Rhythms in Transcriptional Repression by Antagonizing E-box Binding by CLOCK-CYCLE. PLoS Genet 2016; 12:e1006430. [PMID: 27814361 PMCID: PMC5096704 DOI: 10.1371/journal.pgen.1006430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/17/2016] [Indexed: 01/13/2023] Open
Abstract
The Drosophila circadian oscillator controls daily rhythms in physiology, metabolism and behavior via transcriptional feedback loops. CLOCK-CYCLE (CLK-CYC) heterodimers initiate feedback loop function by binding E-box elements to activate per and tim transcription. PER-TIM heterodimers then accumulate, bind CLK-CYC to inhibit transcription, and are ultimately degraded to enable the next round of transcription. The timing of transcriptional events in this feedback loop coincide with, and are controlled by, rhythms in CLK-CYC binding to E-boxes. PER rhythmically binds CLK-CYC to initiate transcriptional repression, and subsequently promotes the removal of CLK-CYC from E-boxes. However, little is known about the mechanism by which CLK-CYC is removed from DNA. Previous studies demonstrated that the transcription repressor CLOCKWORK ORANGE (CWO) contributes to core feedback loop function by repressing per and tim transcription in cultured S2 cells and in flies. Here we show that CWO rhythmically binds E-boxes upstream of core clock genes in a reciprocal manner to CLK, thereby promoting PER-dependent removal of CLK-CYC from E-boxes, and maintaining repression until PER is degraded and CLK-CYC displaces CWO from E-boxes to initiate transcription. These results suggest a model in which CWO co-represses CLK-CYC transcriptional activity in conjunction with PER by competing for E-box binding once CLK-CYC-PER complexes have formed. Given that CWO orthologs DEC1 and DEC2 also target E-boxes bound by CLOCK-BMAL1, a similar mechanism may operate in the mammalian clock.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Wangjie Yu
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Paul E. Hardin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
15
|
Shin SH, Choi SS. Lengths of coding and noncoding regions of a gene correlate with gene essentiality and rates of evolution. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0265-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Abstract
The circadian clock uses a widely expressed pair of clock activators to drive tissue-specific rhythms in target gene expression. A new study sheds light on this tissue specificity by showing that binding of clock activators and tissue-specific transcription factors to closely associated target sites enables cooperative activation of target genes in different tissues.
Collapse
Affiliation(s)
- Jerome S Menet
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843-3258, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
17
|
Circadian regulation of myocardial sarcomeric Titin-cap (Tcap, telethonin): identification of cardiac clock-controlled genes using open access bioinformatics data. PLoS One 2014; 9:e104907. [PMID: 25121604 PMCID: PMC4133362 DOI: 10.1371/journal.pone.0104907] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/17/2014] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms are important for healthy cardiovascular physiology and are regulated at the molecular level by a circadian clock mechanism. We and others previously demonstrated that 9–13% of the cardiac transcriptome is rhythmic over 24 h daily cycles; the heart is genetically a different organ day versus night. However, which rhythmic mRNAs are regulated by the circadian mechanism is not known. Here, we used open access bioinformatics databases to identify 94 transcripts with expression profiles characteristic of CLOCK and BMAL1 targeted genes, using the CircaDB website and JTK_Cycle. Moreover, 22 were highly expressed in the heart as determined by the BioGPS website. Furthermore, 5 heart-enriched genes had human/mouse conserved CLOCK:BMAL1 promoter binding sites (E-boxes), as determined by UCSC table browser, circadian mammalian promoter/enhancer database PEDB, and the European Bioinformatics Institute alignment tool (EMBOSS). Lastly, we validated findings by demonstrating that Titin cap (Tcap, telethonin) was targeted by transcriptional activators CLOCK and BMAL1 by showing 1) Tcap mRNA and TCAP protein had a diurnal rhythm in murine heart; 2) cardiac Tcap mRNA was rhythmic in animals kept in constant darkness; 3) Tcap and control Per2 mRNA expression and cyclic amplitude were blunted in ClockΔ19/Δ19 hearts; 4) BMAL1 bound to the Tcap promoter by ChIP assay; 5) BMAL1 bound to Tcap promoter E-boxes by biotinylated oligonucleotide assay; and 6) CLOCK and BMAL1 induced tcap expression by luciferase reporter assay. Thus this study identifies circadian regulated genes in silico, with validation of Tcap, a critical regulator of cardiac Z-disc sarcomeric structure and function.
Collapse
|
18
|
Neville M, Goodwin SF. Genome-wide approaches to understanding behaviour in Drosophila melanogaster. Brief Funct Genomics 2012; 11:395-404. [PMID: 22843979 DOI: 10.1093/bfgp/els031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.
Collapse
Affiliation(s)
- Megan Neville
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
19
|
Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 2011; 9:e1000595. [PMID: 21364973 PMCID: PMC3043000 DOI: 10.1371/journal.pbio.1000595] [Citation(s) in RCA: 370] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/11/2011] [Indexed: 11/19/2022] Open
Abstract
The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.
Collapse
Affiliation(s)
- Guillaume Rey
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Bâtiment Génopode, Université de Lausanne, Lausanne, Switzerland
| | - François Cesbron
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Jacques Rougemont
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Bâtiment Génopode, Université de Lausanne, Lausanne, Switzerland
| | - Hans Reinke
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Universität Düsseldorf, Düsseldorf, Germany
- Leibniz Institute for Molecular Preventive Medicine, Universität Düsseldorf, Düsseldorf, Germany
| | - Michael Brunner
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Felix Naef
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Bâtiment Génopode, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Baggs JE, Hogenesch JB. Genomics and systems approaches in the mammalian circadian clock. Curr Opin Genet Dev 2011; 20:581-7. [PMID: 20926286 DOI: 10.1016/j.gde.2010.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/11/2010] [Accepted: 08/31/2010] [Indexed: 11/26/2022]
Abstract
The circadian clock is an endogenous oscillator that regulates daily rhythms in behavior and physiology. In recent years, systems biology and genomics approaches re-shaped our view of the clock. Our understanding of outputs that regulate behavior and physiology has been enhanced through gene expression profiling and proteomic analyses. Systems approaches uncovered underlying principles of transcriptional regulation and robustness of the oscillator through perturbation analysis and synthetic methods. Finally, new clock components and modifiers were identified through cell-based screening efforts and proteomics.
Collapse
Affiliation(s)
- Julie E Baggs
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | | |
Collapse
|
21
|
Abstract
An internal time-keeping mechanism has been observed in almost every organism studied from archaea to humans. This circadian clock provides a competitive advantage in fitness and survival ( 18, 30, 95, 129, 137 ). Researchers have uncovered the molecular composition of this internal clock by combining enzymology, molecular biology, genetics, and modeling approaches. However, understanding the mechanistic link between the clock and output responses has been elusive. In three model organisms, Arabidopsis thaliana, Drosophila melanogaster, and Mus musculus, whole-genome expression arrays have enabled researchers to investigate how maintaining a time-keeping mechanism connects to an adaptive advantage. Here, we review the impacts transcriptomics have had on our understanding of the clock and how this molecular clock connects with system-level circadian responses. We explore the discoveries made possible by high-throughput RNA assays, the network approaches used to investigate these large transcript datasets, and potential future directions.
Collapse
Affiliation(s)
- Colleen J Doherty
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
22
|
Stratmann M, Stadler F, Tamanini F, van der Horst GT, Ripperger JA. Flexible phase adjustment of circadian albumin D site-binding protein (DBP) gene expression by CRYPTOCHROME1. Genes Dev 2010; 24:1317-28. [PMID: 20551177 PMCID: PMC2885666 DOI: 10.1101/gad.578810] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/20/2010] [Indexed: 11/25/2022]
Abstract
The albumin D site-binding protein (DBP) governs circadian transcription of a number of hepatic detoxification and metabolic enzymes prior to the activity phase and subsequent food intake of mice. However, the behavior of mice is drastically affected by the photoperiod. Therefore, continuous adjustment of the phase of circadian Dbp expression is required in the liver. Here we describe a direct impact of CRYPTOCHROME1 (CRY1) on the phase of Dbp expression. Dbp and the nuclear receptor Rev-Erbalpha are circadian target genes of BMAL1 and CLOCK. Surprisingly, dynamic CRY1 binding to the Dbp promoter region delayed BMAL1 and CLOCK-mediated transcription of Dbp compared with Rev-Erbalpha. Extended presence of CRY1 in the nucleus enabled continuous uncoupling of the phase of Dbp from Rev-Erbalpha expression upon change from short to longer photoperiods. CRY1 thus maintained the peak of DBP accumulation close to the activity phase. In contrast, Rev-Erbalpha expression was phase-locked to the circadian oscillator and shaped by accumulation of its own gene product. Our data indicate that fine-tuning of circadian transcription in the liver is even more sophisticated than expected.
Collapse
Affiliation(s)
- Markus Stratmann
- Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Frédéric Stadler
- Department of Medicine, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | - Filippo Tamanini
- Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | - Jürgen A. Ripperger
- Department of Medicine, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
23
|
Abstract
Systems biology is a natural extension of molecular biology; it can be defined as biology after identification of key gene(s). Systems-biological research is a multistage process beginning with (a) the comprehensive identification and (b) quantitative analysis of individual system components and their networked interactions, which lead to the ability to (c) control existing systems toward the desired state and (d) design new ones based on an understanding of the underlying structure and dynamical principles. In this review, we use the mammalian circadian clock as a model system and describe the application of systems-biological approaches to fundamental problems in this model. This application has allowed the identification of transcriptional/posttranscriptional circuits, the discovery of a temperature-insensitive period-determining process, and the discovery of desynchronization of individual clock cells underlying the singularity behavior of mammalian clocks.
Collapse
Affiliation(s)
- Hideki Ukai
- Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Hyogo, Japan
| | | |
Collapse
|
24
|
|
25
|
Fustin JM, O'Neill JS, Hastings MH, Hazlerigg DG, Dardente H. Cry1 circadian phase in vitro: wrapped up with an E-box. J Biol Rhythms 2009; 24:16-24. [PMID: 19150926 DOI: 10.1177/0748730408329267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The circadian timing of gene expression is determined by transcriptional regulation through upstream response elements present throughout the genome. Central to this regulation are the actions of a core group of transcriptional activators and repressors, which act through, and are themselves regulated by, a small set of canonical circadian response elements. Among these, the E-box (CACGTG) is crucial for daytime transcriptional activity. The mammalian Period (Per1-3) and Cryptochrome (Cry1-2) genes are E-box-regulated genes, but in peripheral tissues peak Cry1 mRNA expression is delayed by several hours relative to that of Per. It has been proposed that this delay originates from interactions between the proximal E-box and retinoic acid-related orphan receptor response elements (RORE) present in the Cry1 promoter. By using real-time luciferase reporter assays in NIH3T3 cells the authors show here that a proximal 47-bp E-box containing region of the Cry1 promoter is both necessary and sufficient to drive circadian Cry1 transcription with an appropriate phase delay (around 4 h) relative to Per2. The results therefore suggest that, at least in this in vitro model of the clock, RORE are not necessary for the appropriate circadian regulation of Cry1 expression and rather suggest that sequences surrounding the proximal E-boxes confer gene-specific circadian phasing.
Collapse
Affiliation(s)
- J M Fustin
- Aberdeen University, School of Biological Sciences, Aberdeen, UK
| | | | | | | | | |
Collapse
|
26
|
Kumaki Y, Ukai-Tadenuma M, Uno KID, Nishio J, Masumoto KH, Nagano M, Komori T, Shigeyoshi Y, Hogenesch JB, Ueda HR. Analysis and synthesis of high-amplitude Cis-elements in the mammalian circadian clock. Proc Natl Acad Sci U S A 2008; 105:14946-51. [PMID: 18815372 PMCID: PMC2553039 DOI: 10.1073/pnas.0802636105] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Indexed: 01/06/2023] Open
Abstract
Mammalian circadian clocks consist of regulatory loops mediated by Clock/Bmal1-binding elements, DBP/E4BP4 binding elements, and RevErbA/ROR binding elements. As a step toward system-level understanding of the dynamic transcriptional regulation of the oscillator, we constructed and used a mammalian promoter/enhancer database (http://promoter.cdb.riken.jp/) with computational models of the Clock/Bmal1-binding elements, DBP/E4BP4 binding elements, and RevErbA/ROR binding elements to predict new targets of the clock and subsequently validated these targets at the level of the cell and organism. We further demonstrated the predictive nature of these models by generating and testing synthetic regulatory elements that do not occur in nature and showed that these elements produced high-amplitude circadian gene regulation. Biochemical experiments to characterize these synthetic elements revealed the importance of the affinity balance between transactivators and transrepressors in generating high-amplitude circadian transcriptional output. These results highlight the power of comparative genomics approaches for system-level identification and knowledge-based design of dynamic regulatory circuits.
Collapse
Affiliation(s)
- Yuichi Kumaki
- *Laboratory for Systems Biology and
- INTEC Systems Institute, Inc., 1-3-3 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | | | - Ken-ichiro D. Uno
- Functional Genomics Unit, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Junko Nishio
- Functional Genomics Unit, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Koh-hei Masumoto
- *Laboratory for Systems Biology and
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; and
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; and
| | - Takashi Komori
- INTEC Systems Institute, Inc., 1-3-3 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; and
| | - John B. Hogenesch
- Institute for Translational Medicine and Therapeutics and the Department of Pharmacology, University of Pennsylvania School of Medicine, 810 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160
| | - Hiroki R. Ueda
- *Laboratory for Systems Biology and
- Functional Genomics Unit, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|