1
|
Chen Y, Wang J, Zheng C, Liu Z. Cryo-Electron Microscopy in the Study of Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:177-188. [PMID: 39192129 DOI: 10.1007/978-1-0716-4108-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Cryo-electron microscopy is a powerful methodology in structural biology and has been broadly used in high-resolution structure determination for challenging samples, which are not readily available for traditional techniques. In particular, the strength of super macro-complexes and the lack of a need for crystals for cryo-EM make this technique feasible for the structural study of complexes involved in antiviral innate immunity. This chapter presents detailed information and experimental procedures of Cryo-EM for determining the structures of the complexes using STING as an example. The procedures included a sample quality check, high-resolution data acquisition, and image processing for Cryo-EM 3D structure determination.
Collapse
Affiliation(s)
- Yan Chen
- School of Medicine, Shaoguan University, Shaoguan, Guangdong, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jingyu Wang
- Distinct HealthCare Medical Center, Changsha Section, Shenzhen, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Chen L, Li Q, Nasif KFA, Xie Y, Deng B, Niu S, Pouriyeh S, Dai Z, Chen J, Xie CY. AI-Driven Deep Learning Techniques in Protein Structure Prediction. Int J Mol Sci 2024; 25:8426. [PMID: 39125995 PMCID: PMC11313475 DOI: 10.3390/ijms25158426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein structure prediction is important for understanding their function and behavior. This review study presents a comprehensive review of the computational models used in predicting protein structure. It covers the progression from established protein modeling to state-of-the-art artificial intelligence (AI) frameworks. The paper will start with a brief introduction to protein structures, protein modeling, and AI. The section on established protein modeling will discuss homology modeling, ab initio modeling, and threading. The next section is deep learning-based models. It introduces some state-of-the-art AI models, such as AlphaFold (AlphaFold, AlphaFold2, AlphaFold3), RoseTTAFold, ProteinBERT, etc. This section also discusses how AI techniques have been integrated into established frameworks like Swiss-Model, Rosetta, and I-TASSER. The model performance is compared using the rankings of CASP14 (Critical Assessment of Structure Prediction) and CASP15. CASP16 is ongoing, and its results are not included in this review. Continuous Automated Model EvaluatiOn (CAMEO) complements the biennial CASP experiment. Template modeling score (TM-score), global distance test total score (GDT_TS), and Local Distance Difference Test (lDDT) score are discussed too. This paper then acknowledges the ongoing difficulties in predicting protein structure and emphasizes the necessity of additional searches like dynamic protein behavior, conformational changes, and protein-protein interactions. In the application section, this paper introduces some applications in various fields like drug design, industry, education, and novel protein development. In summary, this paper provides a comprehensive overview of the latest advancements in established protein modeling and deep learning-based models for protein structure predictions. It emphasizes the significant advancements achieved by AI and identifies potential areas for further investigation.
Collapse
Affiliation(s)
- Lingtao Chen
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Qiaomu Li
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Kazi Fahim Ahmad Nasif
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Ying Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Bobin Deng
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Shuteng Niu
- Department of Computer Science, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Seyedamin Pouriyeh
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Zhiyu Dai
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Jiawei Chen
- College of Computing, Data Science and Society, University of California, Berkeley, CA 94720, USA;
| | - Chloe Yixin Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| |
Collapse
|
3
|
Zhang W, Liu Y, Jang H, Nussinov R. CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets. JACS AU 2024; 4:1911-1927. [PMID: 38818077 PMCID: PMC11134382 DOI: 10.1021/jacsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Ge Y, Zhou C, Ma Y, Wang Z, Wang S, Wang W, Wu B. Advancing Natural Product Discovery: A Structure-Oriented Fractions Screening Platform for Compound Annotation and Isolation. Anal Chem 2024; 96:5399-5406. [PMID: 38523322 DOI: 10.1021/acs.analchem.3c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Natural product discovery is hindered by the lack of tools that integrate untargeted nuclear magnetic resonance and mass spectrometry data on a library scale. This article describes the first application of the innovative NMR/MS-based machine learning tool, the "Structure-Oriented Fractions Screening Platform (SFSP)", enabling functional-group-guided fractionation and accelerating the discovery and characterization of undescribed natural products. The concept was applied to the extract of a marine fungus known to be a prolific producer of diverse natural products. With the assistance of SFSP, we isolated 24 flavipidin derivatives and five phenalenone analogues from Aspergillus sp. GE2-6, revealing 27 undescribed compounds. Compounds 7-22 were proposed as isomeric derivatives featuring a 5/6-ring fusion, formed by the dimerization of flavipidin E (5). Compounds 23 and 24 were envisaged as isomeric derivatives with a 6/5/6-ring fusion, generated through the degradation of two flavipidin E molecules. Furthermore, flavipidin A (1) and asperphenalenone E (28) exhibited potent anti-influenza (PR8) activities, with IC50 values of 21.9 ± 0.2 and 12.9 ± 0.1 μM, respectively. Meanwhile, asperphenalenone (26) and asperphenalenone P (27) treatments exhibited significant inhibition of HIV pseudovirus infection in 293FT cells, boasting IC50 values of 6.1 ± 0.9 and 4.6 ± 1.1 μM, respectively. Overall, SFSP streamlines natural product isolation through NMR and MS data integration, as showcased by the discovery of numerous undescribed flavipidins and phenalenones based on NMR olefinic signals and low-field hydroxy signals.
Collapse
Affiliation(s)
- Yichao Ge
- Ocean College, Zhejiang University, Zhoushan 321000, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chengzeng Zhou
- Ocean College, Zhejiang University, Zhoushan 321000, China
| | - Yihan Ma
- Ocean College, Zhejiang University, Zhoushan 321000, China
| | - Zihan Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shufan Wang
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wei Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 321000, China
| |
Collapse
|
5
|
Vallejo DD, Corstvet JL, Fernández FM. Triboelectric Nanogenerators: Low-Cost Power Supplies for Improved Electrospray Ionization. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117167. [PMID: 38053979 PMCID: PMC10695355 DOI: 10.1016/j.ijms.2023.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Electrospray ionization (ESI) is one of the most popular methods to generate ions for mass spectrometry (MS). When compared with other ionization techniques, it can generate ions from liquid-phase samples without additives, retaining covalent and non-covalent interactions of the molecules of interest. When hyphenated to liquid chromatography, it greatly expands the versatility of MS analysis of complex mixtures. However, despite the extensive growth in the application of ESI, the technique still suffers from some drawbacks when powered by direct current (DC) power supplies. Triboelectric nanogenerators promise to be a new power source for the generation of ions by ESI, improving on the analytical capabilities of traditional DC ESI. In this review we highlight the fundamentals of ESI driven by DC power supplies, its contrasting qualities to triboelectric nanogenerator power supplies, and its applications to three distinct fields of research: forensics, metabolomics, and protein structure analysis.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joseph L. Corstvet
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
7
|
Ghoreyshi ZS, George JT. Quantitative approaches for decoding the specificity of the human T cell repertoire. Front Immunol 2023; 14:1228873. [PMID: 37781387 PMCID: PMC10539903 DOI: 10.3389/fimmu.2023.1228873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method's mathematical approach, predictive performance, and limitations.
Collapse
Affiliation(s)
- Zahra S. Ghoreyshi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Engineering Medicine Program, Texas A&M University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| |
Collapse
|
8
|
Cho Y, Ryu H, Lim G, Nam S, Lee J. Improving Geometric Validation Metrics and Ensuring Consistency with Experimental Data through TrioSA: An NMR Refinement Protocol. Int J Mol Sci 2023; 24:13337. [PMID: 37686144 PMCID: PMC10487420 DOI: 10.3390/ijms241713337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Protein model refinement a the crucial step in improving the quality of a predicted protein model. This study presents an NMR refinement protocol called TrioSA (torsion-angle and implicit-solvation-optimized simulated annealing) that improves the accuracy of backbone/side-chain conformations and the overall structural quality of proteins. TrioSA was applied to a subset of 3752 solution NMR protein structures accompanied by experimental NMR data: distance and dihedral angle restraints. We compared the initial NMR structures with the TrioSA-refined structures and found significant improvements in structural quality. In particular, we observed a reduction in both the maximum and number of NOE (nuclear Overhauser effect) violations, indicating better agreement with experimental NMR data. TrioSA improved geometric validation metrics of NMR protein structure, including backbone accuracy and the secondary structure ratio. We evaluated the contribution of each refinement element and found that the torsional angle potential played a significant role in improving the geometric validation metrics. In addition, we investigated protein-ligand docking to determine if TrioSA can improve biological outcomes. TrioSA structures exhibited better binding prediction compared to the initial NMR structures. This study suggests that further development and research in computational refinement methods could improve biomolecular NMR structural determination.
Collapse
Affiliation(s)
- Youngbeom Cho
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea;
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (H.R.); (G.L.)
| | - Hyojung Ryu
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (H.R.); (G.L.)
| | - Gyutae Lim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (H.R.); (G.L.)
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea;
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (H.R.); (G.L.)
| |
Collapse
|
9
|
Troisi R, Balasco N, Autiero I, Sica F, Vitagliano L. New insight into the traditional model of the coagulation cascade and its regulation: illustrated review of a three-dimensional view. Res Pract Thromb Haemost 2023; 7:102160. [PMID: 37727847 PMCID: PMC10506138 DOI: 10.1016/j.rpth.2023.102160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 09/21/2023] Open
Abstract
The coagulation process relies on an intricate network of three-dimensional structural interactions and subtle biological regulations. In the present review, we illustrate the state of the art of the structural biology of the coagulation cascade by surveying the Protein Data Bank and the EBI AlphaFold databases. Investigations performed in the last decade have provided structural information on essentially all players involved in the process. Indeed, the initial characterization of specific and rather canonical domains has been progressively extended to complicated multidomain proteins. Recently, the application of cryogenic electron microscopy techniques has unraveled the structural features of highly complex coagulation factors, which has led to enhanced understanding. This review initially focuses on the structure of the individual factors as a function of their involvement in intrinsic, extrinsic, and common pathways. A specific emphasis is given to what is known or unknown on the structural basis of each step of the cascade. Available data providing clues on the structural recognition of the factors involved in the functional partnerships of the pathways are illustrated. Recent structures of important complexes formed by these proteins with regulators are described, focusing on the drugs used as anticoagulants and on their reversal agents. Finally, we highlight the different roles that innovative biomolecules such as aptamers may have in the regulation of the cascade.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, Rome, Italy
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | | |
Collapse
|
10
|
Gadanecz M, Fazekas Z, Pálfy G, Karancsiné Menyhárd D, Perczel A. NMR-Chemical-Shift-Driven Protocol Reveals the Cofactor-Bound, Complete Structure of Dynamic Intermediates of the Catalytic Cycle of Oncogenic KRAS G12C Protein and the Significance of the Mg 2+ Ion. Int J Mol Sci 2023; 24:12101. [PMID: 37569478 PMCID: PMC10418480 DOI: 10.3390/ijms241512101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, catalytically significant states of the oncogenic G12C variant of KRAS, those of Mg2+-free and Mg2+-bound GDP-loaded forms, have been determined using CS-Rosetta software and NMR-data-driven molecular dynamics simulations. There are several Mg2+-bound G12C KRAS/GDP structures deposited in the Protein Data Bank (PDB), so this system was used as a reference, while the structure of the Mg2+-free but GDP-bound state of the RAS cycle has not been determined previously. Due to the high flexibility of the Switch-I and Switch-II regions, which also happen to be the catalytically most significant segments, only chemical shift information could be collected for the most important regions of both systems. CS-Rosetta was used to derive an "NMR ensemble" based on the measured chemical shifts, which, however, did not contain the nonprotein components of the complex. We developed a torsional restraint set for backbone torsions based on the CS-Rosetta ensembles for MD simulations, overriding the force-field-based parametrization in the presence of the reinserted cofactors. This protocol (csdMD) resulted in complete models for both systems that also retained the structural features and heterogeneity defined by the measured chemical shifts and allowed a detailed comparison of the Mg2+-bound and Mg2+-free states of G12C KRAS/GDP.
Collapse
Affiliation(s)
- Márton Gadanecz
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Zsolt Fazekas
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Dóra Karancsiné Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
11
|
Sinha A, Sangeet S, Roy S. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. ACS OMEGA 2023; 8:23283-23304. [PMID: 37426203 PMCID: PMC10324094 DOI: 10.1021/acsomega.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Novel coronavirus (SARS-CoV-2) enters its host cell through a surface spike protein. The viral spike protein has undergone several modifications/mutations at the genomic level, through which it modulated its structure-function and passed through several variants of concern. Recent advances in high-resolution structure determination and multiscale imaging techniques, cost-effective next-generation sequencing, and development of new computational methods (including information theory, statistical methods, machine learning, and many other artificial intelligence-based techniques) have hugely contributed to the characterization of sequence, structure, function of spike proteins, and its different variants to understand viral pathogenesis, evolutions, and transmission. Laying on the foundation of the sequence-structure-function paradigm, this review summarizes not only the important findings on structure/function but also the structural dynamics of different spike components, highlighting the effects of mutations on them. As dynamic fluctuations of three-dimensional spike structure often provide important clues for functional modulation, quantifying time-dependent fluctuations of mutational events over spike structure and its genetic/amino acidic sequence helps identify alarming functional transitions having implications for enhanced fusogenicity and pathogenicity of the virus. Although these dynamic events are more difficult to capture than quantifying a static, average property, this review encompasses those challenging aspects of characterizing the evolutionary dynamics of spike sequence and structure and their implications for functions.
Collapse
|
12
|
Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. Int J Mol Sci 2023; 24:ijms24054401. [PMID: 36901832 PMCID: PMC10003049 DOI: 10.3390/ijms24054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since its outbreak in December 2019, the COVID-19 pandemic has caused the death of more than 6.5 million people around the world. The high transmissibility of its causative agent, the SARS-CoV-2 virus, coupled with its potentially lethal outcome, provoked a profound global economic and social crisis. The urgency of finding suitable pharmacological tools to tame the pandemic shed light on the ever-increasing importance of computer simulations in rationalizing and speeding up the design of new drugs, further stressing the need for developing quick and reliable methods to identify novel active molecules and characterize their mechanism of action. In the present work, we aim at providing the reader with a general overview of the COVID-19 pandemic, discussing the hallmarks in its management, from the initial attempts at drug repurposing to the commercialization of Paxlovid, the first orally available COVID-19 drug. Furthermore, we analyze and discuss the role of computer-aided drug discovery (CADD) techniques, especially those that fall in the structure-based drug design (SBDD) category, in facing present and future pandemics, by showcasing several successful examples of drug discovery campaigns where commonly used methods such as docking and molecular dynamics have been employed in the rational design of effective therapeutic entities against COVID-19.
Collapse
|
13
|
Yang L, Zhang W, Xu W. Efficient protein conformation dynamics characterization enabled by mobility-mass spectrometry. Anal Chim Acta 2023; 1243:340800. [PMID: 36697173 DOI: 10.1016/j.aca.2023.340800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Protein structure dynamics in solution and from solution to gas phase are important but challenging topics. Great efforts and advances have been made especially since the wide application of ion mobility mass spectrometry (IM-MS), by which protein collision cross section (CCS) in gas phase could be measured. Due to the lack of efficient experimental methods, protein structures in protein databank are typically referred as their structures in solution. Although conventional structural biology techniques provide high-resolution protein structures, complicated and stringent processes also limit their applicability under different solvent conditions, thus preventing the capture of protein dynamics in solution. Enabled by the combination of mobility capillary electrophoresis (MCE) and IM-MS, an efficient experimental protocol was developed to characterize protein conformation dynamics in solution and from solution to gas phase. As a first attempt, key factors that affecting protein conformations were distinguished and evaluated separately, including pH, temperature, softness of ionization process, presence and specific location of disulfide bonds. Although similar extent of unfolding could be observed for different proteins, in-depth analysis reveals that pH decrease from 7.0 to 3.0 dominates the unfolding of proteins without disulfide bonds in conventional ESI-MS experiments; while harshness of the ionization process dominates the unfolding of proteins with disulfide bonds. Second, disulfide bonds show capability of preserving protein conformations in acidic solution environments. However, by monitoring protein conformation dynamics and comparing results from different proteins, it is also found that their capability is position dependent. Surprisingly, disulfide bonds did not show the capability of preserving protein conformations during ionization processes.
Collapse
Affiliation(s)
- Lei Yang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenjing Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
14
|
Nagaraju M, Liu H. A scoring function for the prediction of protein complex interfaces based on the neighborhood preferences of amino acids. Acta Crystallogr D Struct Biol 2023; 79:31-39. [PMID: 36601805 DOI: 10.1107/s2059798322011858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Proteins often assemble into functional complexes, the structures of which are more difficult to obtain than those of the individual protein molecules. Given the structures of the subunits, it is possible to predict plausible complex models via computational methods such as molecular docking. Assessing the quality of the predicted models is crucial to obtain correct complex structures. Here, an energy-scoring function was developed based on the interfacial residues of structures in the Protein Data Bank. The statistically derived energy function (Nepre) imitates the neighborhood preferences of amino acids, including the types and relative positions of neighboring residues. Based on the preference statistics, a program iNepre was implemented and its performance was evaluated with several benchmarking decoy data sets. The results show that iNepre scores are powerful in model ranking to select the best protein complex structures.
Collapse
Affiliation(s)
- Mulpuri Nagaraju
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| |
Collapse
|
15
|
Zegers J, Peters M, Albada B. DNA G-quadruplex-stabilizing metal complexes as anticancer drugs. J Biol Inorg Chem 2023; 28:117-138. [PMID: 36456886 PMCID: PMC9981530 DOI: 10.1007/s00775-022-01973-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field.
Collapse
Affiliation(s)
- Jaccoline Zegers
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maartje Peters
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
17
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
18
|
Zhao W, Deligey F, Chandra Shekar S, Mentink-Vigier F, Wang T. Current limitations of solid-state NMR in carbohydrate and cell wall research. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107263. [PMID: 35809516 DOI: 10.1016/j.jmr.2022.107263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
High-resolution investigation of cell wall materials has emerged as an important application of biomolecular solid-state NMR (ssNMR). Multidimensional correlation experiments have become a standard method for obtaining sufficient spectral resolution to determine the polymorphic structure of carbohydrates and address biochemical questions regarding the supramolecular organization of cell walls. Using plant cellulose and matrix polysaccharides as examples, we will review how the multifaceted complexity of polysaccharide structure is impeding the resonance assignment process and assess the available biochemical and spectroscopic approaches that could circumvent this barrier. We will emphasize the ineffectiveness of the current methods in reconciling the ever-growing dataset and deriving structural information. We will evaluate the protocols for achieving efficient and homogeneous hyperpolarization across the cell wall material using magic-angle spinning dynamic nuclear polarization (MAS-DNP). Critical questions regarding the line-broadening effects of cell wall molecules at cryogenic temperature and by paramagnetic biradicals will be considered. Finally, the MAS-DNP method will be placed into a broader context with other structural characterization techniques, such as cryo-electron microscopy, to advance ssNMR research in carbohydrate and cell wall biomaterials.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - S Chandra Shekar
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
19
|
Huang J, Chu X, Luo Y, Wang Y, Zhang Y, Zhang Y, Li H. Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem Biol 2022; 17:1951-1962. [PMID: 35675581 DOI: 10.1021/acschembio.2c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric regulation plays a fundamental role in innumerable biological processes. Understanding its dynamic mechanism and impact at the molecular level is of great importance in disease diagnosis and drug discovery. Glycogen phosphorylase (GP) is a phosphoprotein responding to allosteric regulation and has significant biological importance to glycogen metabolism. Although the atomic structures of GP have been previously solved, the conformational dynamics of GP related to allostery regulation remain largely elusive due to its macromolecular size (∼196 kDa). Here, we integrated native top-down mass spectrometry (nTD-MS), hydrogen-deuterium exchange MS (HDX-MS), protection factor (PF) analysis, molecular dynamics (MD) simulations, and allostery signaling analysis to examine the structural basis and dynamics for the allosteric regulation of GP by phosphorylation. nTD-MS reveals differences in structural stability as well as oligomeric state between the unphosphorylated (GPb) and phosphorylated (GPa) forms. HDX-MS, PF analysis, and MD simulations further pinpoint the structural differences between GPb and GPa involving the binding interfaces (the N-terminal and tower-tower helices), catalytic site, and PLP-binding region. More importantly, it also allowed us to complete the missing link of the long-range communication process from the N-terminal tail to the catalytic site caused by phosphorylation. This integrative MS and in silico-based platform is highly complementary to biophysical approaches and yields valuable insights into protein structures and dynamic regulation.
Collapse
Affiliation(s)
- Jing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, College of Life Sciences, Shanghai Institute for Advanced Study, Institute of Quantitative Biology, Zhejiang University, Haining 314400, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
20
|
Cai D, Wei J, Huang F, Feng H, Peng T, Luo J, Yang F. The detoxification activities and mechanisms of microcystinase towards MC-LR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113436. [PMID: 35367885 DOI: 10.1016/j.ecoenv.2022.113436] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) are the most common and toxic cyanotoxins that are hazardous to human health and ecosystems. Microcystinase is the enzyme in charge of the initial step in the biodegradation of MCs. The characterization, application conditions, and detoxification mechanisms of microcystinase from an indigenous bacterium Sphingopyxis sp. YF1 towards MC-LR were investigated in the current study. The microcystinase gene of strain YF1 was most similar to Sphingomonas sp. USTB-05 and contained a CAAX-family conversed abortive Infection (ABI) domain. The microcystinase was successful obtained and purified by overexpression in Escherichia coli. The highest degradation rate of MC-LR was 1.0 μg/mL/min under the optimal condition of 30 ℃, pH 7, 20 μg/mL MC-LR, and 400 μg/mL microcystinase. The MC-degrading product was identified as linearized MC-LR, which possessed a much lower inhibitory activity against protein phosphatase 2A than MC-LR. Microcystinase interacted with MC-LR via amino acid residues involved in through the formation of conventional Hydrogen Bond, Pi-Pi T-shapes, Van der Waals force, and so on. The optimal MC-degrading condition of pure microcystinase and its detoxification mechanisms against MC-LR were revealed. The toxicity of purified linearized MC-LR was explored for the first time. These findings suggest that pure microcystinase may efficiently detoxify MCs and it is promising in the bioremediation of MC-polluted environments.
Collapse
Affiliation(s)
- Danping Cai
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Feiyu Huang
- The First People's Hospital of Jingzhou, Jingzhou, China.
| | - Hai Feng
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
21
|
Soares BS, Rocha SLG, Bastos VA, Lima DB, Carvalho PC, Gozzo FC, Demeler B, Williams TL, Arnold J, Henrickson A, Jørgensen TJD, Souza TACB, Perales J, Valente RH, Lomonte B, Gomes-Neto F, Neves-Ferreira AGC. Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II From Bothrops asper Venom. Front Mol Biosci 2022; 8:787368. [PMID: 35155563 PMCID: PMC8830425 DOI: 10.3389/fmolb.2021.787368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023] Open
Abstract
DM64 is a toxin-neutralizing serum glycoprotein isolated from Didelphis aurita, an ophiophagous marsupial naturally resistant to snake envenomation. This 64 kDa antitoxin targets myotoxic phospholipases A2, which account for most local tissue damage of viperid snakebites. We investigated the noncovalent complex formed between native DM64 and myotoxin II, a myotoxic phospholipase-like protein from Bothrops asper venom. Analytical ultracentrifugation (AUC) and size exclusion chromatography indicated that DM64 is monomeric in solution and binds equimolar amounts of the toxin. Attempts to crystallize native DM64 for X-ray diffraction were unsuccessful. Obtaining recombinant protein to pursue structural studies was also challenging. Classical molecular modeling techniques were impaired by the lack of templates with more than 25% sequence identity with DM64. An integrative structural biology approach was then applied to generate a three-dimensional model of the inhibitor bound to myotoxin II. I-TASSER individually modeled the five immunoglobulin-like domains of DM64. Distance constraints generated by cross-linking mass spectrometry of the complex guided the docking of DM64 domains to the crystal structure of myotoxin II, using Rosetta. AUC, small-angle X-ray scattering (SAXS), molecular modeling, and molecular dynamics simulations indicated that the DM64-myotoxin II complex is structured, shows flexibility, and has an anisotropic shape. Inter-protein cross-links and limited hydrolysis analyses shed light on the inhibitor's regions involved with toxin interaction, revealing the critical participation of the first, third, and fifth domains of DM64. Our data showed that the fifth domain of DM64 binds to myotoxin II amino-terminal and beta-wing regions. The third domain of the inhibitor acts in a complementary way to the fifth domain. Their binding to these toxin regions presumably precludes dimerization, thus interfering with toxicity, which is related to the quaternary structure of the toxin. The first domain of DM64 interacts with the functional site of the toxin putatively associated with membrane anchorage. We propose that both mechanisms concur to inhibit myotoxin II toxicity by DM64 binding. The present topological characterization of this toxin-antitoxin complex constitutes an essential step toward the rational design of novel peptide-based antivenom therapies targeting snake venom myotoxins.
Collapse
Affiliation(s)
- Barbara S. Soares
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Viviane A. Bastos
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Diogo B. Lima
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Paulo C. Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Curitiba, Brazil
| | - Fabio C. Gozzo
- Dalton Mass Spectrometry Laboratory, University of Campinas, Campinas, Brazil
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Tayler L. Williams
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Janelle Arnold
- Department of Environmental Science, Princeton University, Princeton, NJ, United States
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tatiana A. C. B. Souza
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Curitiba, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Richard H. Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Bruno Lomonte
- Clodomiro Picado Institute, University of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
22
|
Kawale AA, Burmann BM. Characterization of backbone dynamics using solution NMR spectroscopy to discern the functional plasticity of structurally analogous proteins. STAR Protoc 2021; 2:100919. [PMID: 34761231 PMCID: PMC8567434 DOI: 10.1016/j.xpro.2021.100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
The comprehensive delineation of inherent dynamic motions embedded in proteins, which can be crucial for their functional repertoire, is often essential yet remains poorly understood in the majority of cases. In this protocol, we outline detailed descriptions of the necessary steps for employing solution NMR spectroscopy for the in-depth amino acid level understanding of backbone dynamics of proteins. We describe the application of the protocol on the structurally analogous Tudor domains with disparate functionalities as a model system. For complete details on the use and execution of this protocol, please refer to Kawale and Burmann (2021).
Collapse
Affiliation(s)
- Ashish A Kawale
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
23
|
McCabe JW, Jones BJ, Walker TE, Schrader RL, Huntley AP, Lyu J, Hoffman NM, Anderson GA, Reilly PTA, Laganowsky A, Wysocki VH, Russell DH. Implementing Digital-Waveform Technology for Extended m/ z Range Operation on a Native Dual-Quadrupole FT-IM-Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2812-2820. [PMID: 34797072 PMCID: PMC9026758 DOI: 10.1021/jasms.1c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we describe a digital-waveform dual-quadrupole mass spectrometer that enhances the performance of our drift tube FT-IMS high-resolution Orbitrap mass spectrometer (MS). The dual-quadrupole analyzer enhances the instrument capabilities for studies of large protein and protein complexes. The first quadrupole (q) provides a means for performing low-energy collisional activation of ions to reduce or eliminate noncovalent adducts, viz., salts, buffers, detergents, and/or endogenous ligands. The second quadrupole (Q) is used to mass-select ions of interest for further interrogation by ion mobility spectrometry and/or collision-induced dissociation (CID). Q is operated using digital-waveform technology (DWT) to improve the mass selection compared to that achieved using traditional sinusoidal waveforms at floated DC potentials (>500 V DC). DWT allows for increased precision of the waveform for a fraction of the cost of conventional RF drivers and with readily programmable operation and precision (Hoffman, N. M. . A comparison-based digital-waveform generator for high-resolution duty cycle. Review of Scientific Instruments 2018, 89, 084101).
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Benjamin J Jones
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Robert L Schrader
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Adam P Huntley
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Nathan M Hoffman
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | | | - Peter T A Reilly
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
24
|
Tsegaye S, Dedefo G, Mehdi M. Biophysical applications in structural and molecular biology. Biol Chem 2021; 402:1155-1177. [PMID: 34218543 DOI: 10.1515/hsz-2021-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022]
Abstract
The main objective of structural biology is to model proteins and other biological macromolecules and link the structural information to function and dynamics. The biological functions of protein molecules and nucleic acids are inherently dependent on their conformational dynamics. Imaging of individual molecules and their dynamic characteristics is an ample source of knowledge that brings new insights about mechanisms of action. The atomic-resolution structural information on most of the biomolecules has been solved by biophysical techniques; either by X-ray diffraction in single crystals or by nuclear magnetic resonance (NMR) spectroscopy in solution. Cryo-electron microscopy (cryo-EM) is emerging as a new tool for analysis of a larger macromolecule that couldn't be solved by X-ray crystallography or NMR. Now a day's low-resolution Cryo-EM is used in combination with either X-ray crystallography or NMR. The present review intends to provide updated information on applications like X-ray crystallography, cryo-EM and NMR which can be used independently and/or together in solving structures of biological macromolecules for our full comprehension of their biological mechanisms.
Collapse
Affiliation(s)
- Solomon Tsegaye
- Department of Biochemistry, College of Health Sciences, Arsi University, Oromia, Ethiopia
| | - Gobena Dedefo
- Department of Medical Laboratory Technology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
25
|
Molecular insights on CALX-CBD12 interdomain dynamics from MD simulations, RDCs, and SAXS. Biophys J 2021; 120:3664-3675. [PMID: 34310942 DOI: 10.1016/j.bpj.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
Na+/Ca2+ exchangers (NCXs) are secondary active transporters that couple the translocation of Na+ with the transport of Ca2+ in the opposite direction. The exchanger is an essential Ca2+ extrusion mechanism in excitable cells. It consists of a transmembrane domain and a large intracellular loop that contains two Ca2+-binding domains, CBD1 and CBD2. The two CBDs are adjacent to each other and form a two-domain Ca2+ sensor called CBD12. Binding of intracellular Ca2+ to CBD12 activates the NCX but inhibits the NCX of Drosophila, CALX. NMR spectroscopy and SAXS studies showed that CALX and NCX CBD12 constructs display significant interdomain flexibility in the apo state but assume rigid interdomain arrangements in the Ca2+-bound state. However, detailed structure information on CBD12 in the apo state is missing. Structural characterization of proteins formed by two or more domains connected by flexible linkers is notoriously challenging and requires the combination of orthogonal information from multiple sources. As an attempt to characterize the conformational ensemble of CALX-CBD12 in the apo state, we applied molecular dynamics (MD) simulations, NMR (1H-15N residual dipolar couplings), and small-angle x-ray scattering (SAXS) data in a combined strategy to select an ensemble of conformations in agreement with the experimental data. This joint approach demonstrated that CALX-CBD12 preferentially samples closed conformations, whereas the wide-open interdomain arrangement characteristic of the Ca2+-bound state is less frequently sampled. These results are consistent with the view that Ca2+ binding shifts the CBD12 conformational ensemble toward extended conformers, which could be a key step in the NCXs' allosteric regulation mechanism. This strategy, combining MD with NMR and SAXS, provides a powerful approach to select ensembles of conformations that could be applied to other flexible multidomain systems.
Collapse
|
26
|
Zhou L, Wang D, Iftikhar M, Lu Y, Zhou M. Conformational changes and binding property of the periplasmic binding protein BtuF during vitamin B 12 transport revealed by collision-induced unfolding, hydrogen-deuterium exchange mass spectrometry and molecular dynamic simulation. Int J Biol Macromol 2021; 187:350-360. [PMID: 34303738 DOI: 10.1016/j.ijbiomac.2021.07.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The periplasmic binding protein (PBP) BtuF plays a key role in transporting vitamin B12 from periplasm to the ATP-binding cassette (ABC) transporter BtuCD. Conformational changes of BtuF during transport can hardly be captured by traditional biophysical methods and the exact mechanism regarding B12 and BtuF recognition is still under debate. In the present work, conformational changes of BtuF upon B12 binding and release were investigated using hybrid approaches including collision-induced unfolding (CIU), hydrogen deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulation. It was found that B12 binding increased the stability of BtuF. In addition, fast exchange regions of BtuF were localized. Most importantly, midpoint of hinge helix in BtuF was found highly flexible, and binding of B12 proceed in a manner similar to the Venus flytrap mechanism. Our study therefore delineates a clear view of BtuF delivering B12, and demonstrated a hybrid approach encompassing MS and computer based methods that holds great potential to the probing of conformational dynamics of proteins in action.
Collapse
Affiliation(s)
- Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Defu Wang
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mehwish Iftikhar
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yinghong Lu
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
27
|
Kawale AA, Burmann BM. Inherent backbone dynamics fine-tune the functional plasticity of Tudor domains. Structure 2021; 29:1253-1265.e4. [PMID: 34197736 DOI: 10.1016/j.str.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Tudor domains are crucial for mediating a diversity of protein-protein or protein-DNA interactions involved in nucleic acid metabolism. Using solution NMR spectroscopy, we assess the comprehensive understanding of the dynamical properties of the respective Tudor domains from four different bacterial (Escherichia coli) proteins UvrD, Mfd, RfaH, and NusG involved in different aspects of bacterial transcription regulation and associated processes. These proteins are benchmarked to the canonical Tudor domain fold from the human SMN protein. The detailed analysis of protein backbone dynamics and subsequent analysis by the Lipari-Szabo model-free approach revealed subtle differences in motions of the amide-bond vector on both pico- to nanosecond and micro- to millisecond timescales. On these timescales, our comparative approach reveals the usefulness of discrete amplitudes of dynamics to discern the different functionalities for Tudor domains exhibiting promiscuous binding, including the metamorphic Tudor domain included in the study.
Collapse
Affiliation(s)
- Ashish A Kawale
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
28
|
Maleckis A, Herath ID, Otting G. Synthesis of 13C/ 19F/ 2H labeled indoles for use as tryptophan precursors for protein NMR spectroscopy. Org Biomol Chem 2021; 19:5133-5147. [PMID: 34032255 DOI: 10.1039/d1ob00611h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of indoles labeled with 13C-1H and 13C-19F spin pairs is described. All syntheses utilize inexpensive carbon-13C dioxide as the 13C isotope source. Ruthenium-mediated ring-closing metathesis is the key step in construction of the 13C containing indole carbocycle. Fluorine is introduced via electrophilic fluorination at the 7-position and via palladium-mediated cross-coupling at the 4-position. Indole and fluoroindoles are viable tryptophan precursors for in vivo protein expression. We show that they are viable also in in vitro protein synthesis using standard E. coli S30 extracts. Incorporation of the synthesized 13C-1H and 13C-19F spin pair labeled tryptophans into proteins enables high-resolution and high-sensitivity nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - Iresha D Herath
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
29
|
Mitra S, Werling K, Berquist EJ, Lambrecht DS, Garrett-Roe S. CH Mode Mixing Determines the Band Shape of the Carboxylate Symmetric Stretch in Apo-EDTA, Ca 2+-EDTA, and Mg 2+-EDTA. J Phys Chem A 2021; 125:4867-4881. [PMID: 34042451 DOI: 10.1021/acs.jpca.1c03061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The infrared spectra of EDTA complexed with Ca2+ and Mg2+ contain, to date, unidentified vibrational bands. This study assigns the peaks in the linear and two-dimensional infrared spectra of EDTA, with and without either Ca2+ or Mg2+ ions. Two-dimensional infrared spectroscopy and DFT calculations reveal that, in both the presence and absence of ions, the carboxylate symmetric stretch and the terminal CH bending vibrations mix. We introduce a method to calculate participation coefficients that quantify the contribution of the carboxylate symmetric stretch, CH wag, CH twist, and CH scissor in the 1400-1550 cm-1 region. With the help of participation coefficients, we assign the 1400-1430 cm-1 region to the carboxylate symmetric stretch, which can mix with CH modes. We assign the 1000-1380 cm-1 region to CH twist modes, the 1380-1430 cm-1 region to wag modes, and the 1420-1650 cm-1 region to scissor modes. The difference in binding geometry between the carboxylate-Ca2+ and carboxylate-Mg2+ complex manifests as new diagonal and cross-peaks between the mixed modes in the two complexes. The small Mg2+ ion binds EDTA tighter than the Ca2+ ion, which causes a redshift of the COO symmetric stretches of the sagittal carboxylates. Energy decomposition analysis further characterizes the importance of electrostatics and deformation energy in the bound complexes.
Collapse
Affiliation(s)
- Sunayana Mitra
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Keith Werling
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Eric J Berquist
- Q-Chem Incorporated, 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| | - Daniel S Lambrecht
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
30
|
Feng CJ, Sinitskiy A, Pande V, Tokmakoff A. Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity. J Phys Chem B 2021; 125:4620-4633. [PMID: 33929849 DOI: 10.1021/acs.jpcb.1c00399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have investigated the structure and conformational dynamics of insulin dimer using a Markov state model (MSM) built from extensive unbiased atomistic molecular dynamics simulations and performed infrared spectral simulations of the insulin MSM to describe how structural variation within the dimer can be experimentally resolved. Our model reveals two significant conformations to the dimer: a dominant native state consistent with other experimental structures of the dimer and a twisted state with a structure that appears to reflect a ∼55° clockwise rotation of the native dimer interface. The twisted state primarily influences the contacts involving the C-terminus of insulin's B chain, shifting the registry of its intermolecular hydrogen bonds and reorganizing its side-chain packing. The MSM kinetics predict that these configurations exchange on a 14 μs time scale, largely passing through two Markov states with a solvated dimer interface. Computational amide I spectroscopy of site-specifically 13C18O labeled amides indicates that the native and twisted conformation can be distinguished through a series of single and dual labels involving the B24F, B25F, and B26Y residues. Additional structural heterogeneity and disorder is observed within the native and twisted states, and amide I spectroscopy can also be used to gain insight into this variation. This study will provide important interpretive tools for IR spectroscopic investigations of insulin structure and transient IR kinetics experiments studying the conformational dynamics of insulin dimer.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Anton Sinitskiy
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Vijay Pande
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
31
|
Kozak F, Kurzbach D. How to assess the structural dynamics of transcription factors by integrating sparse NMR and EPR constraints with molecular dynamics simulations. Comput Struct Biotechnol J 2021; 19:2097-2105. [PMID: 33995905 PMCID: PMC8085671 DOI: 10.1016/j.csbj.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
We review recent advances in modeling structural ensembles of transcription factors from nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopic data, integrated with molecular dynamics (MD) simulations. We focus on approaches that confirm computed conformational ensembles by sparse constraints obtained from magnetic resonance. This combination enables the deduction of functional and structural protein models even if nuclear Overhauser effects (NOEs) are too scarce for conventional structure determination. We highlight recent insights into the folding-upon-DNA binding transitions of intrinsically disordered transcription factors that could be assessed using such integrative approaches.
Collapse
Affiliation(s)
- Fanny Kozak
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Waehringer Str. 38, 1090 Vienna, Austria
| | - Dennis Kurzbach
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
32
|
Plata M, Hale W, Sharma M, Werner JM, Utz M. Microfluidic platform for serial mixing experiments with in operando nuclear magnetic resonance spectroscopy. LAB ON A CHIP 2021; 21:1598-1603. [PMID: 33662071 DOI: 10.1039/d0lc01100b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a microfluidic platform that allows in operando nuclear magnetic resonance (NMR) observation of serial mixing experiments. Gradually adding one reagent to another is a fundamental experimental modality, widely used to quantify equilibrium constants, for titrations, and in chemical kinetics studies. NMR provides a non-invasive means to quantify concentrations and to follow structural changes at the molecular level as a function of exchanged volume. Using active pneumatic valving on the microfluidic device directly inside an NMR spectrometer equipped with a transmission-line NMR microprobe, the system allows injection of aliquots and in situ mixing in a sample volume of less than 10 μL.
Collapse
Affiliation(s)
- Marek Plata
- School of Chemistry, University of Southampton, SO17 1BJ, UK. and Institute for Life Sciences, University of Southampton, SO17 1BJ, UK and School of Biological Sciences, University of Southampton, SO17 1BJ, UK
| | - William Hale
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| | | | - Jörn M Werner
- Institute for Life Sciences, University of Southampton, SO17 1BJ, UK and School of Biological Sciences, University of Southampton, SO17 1BJ, UK
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK. and Institute for Life Sciences, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
33
|
Blundell TL, Chaplin AK. The resolution revolution in X-ray diffraction, Cryo-EM and other Technologies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:2-4. [PMID: 33485852 DOI: 10.1016/j.pbiomolbio.2021.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
34
|
Gao W, Mahajan SP, Sulam J, Gray JJ. Deep Learning in Protein Structural Modeling and Design. PATTERNS (NEW YORK, N.Y.) 2020; 1:100142. [PMID: 33336200 PMCID: PMC7733882 DOI: 10.1016/j.patter.2020.100142] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deep learning is catalyzing a scientific revolution fueled by big data, accessible toolkits, and powerful computational resources, impacting many fields, including protein structural modeling. Protein structural modeling, such as predicting structure from amino acid sequence and evolutionary information, designing proteins toward desirable functionality, or predicting properties or behavior of a protein, is critical to understand and engineer biological systems at the molecular level. In this review, we summarize the recent advances in applying deep learning techniques to tackle problems in protein structural modeling and design. We dissect the emerging approaches using deep learning techniques for protein structural modeling and discuss advances and challenges that must be addressed. We argue for the central importance of structure, following the "sequence → structure → function" paradigm. This review is directed to help both computational biologists to gain familiarity with the deep learning methods applied in protein modeling, and computer scientists to gain perspective on the biologically meaningful problems that may benefit from deep learning techniques.
Collapse
Affiliation(s)
- Wenhao Gao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
35
|
Pálfy G, Menyhárd DK, Perczel A. Dynamically encoded reactivity of Ras enzymes: opening new frontiers for drug discovery. Cancer Metastasis Rev 2020; 39:1075-1089. [PMID: 32815102 PMCID: PMC7680338 DOI: 10.1007/s10555-020-09917-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Decoding molecular flexibility in order to understand and predict biological processes-applying the principles of dynamic-structure-activity relationships (DSAR)-becomes a necessity when attempting to design selective and specific inhibitors of a protein that has overlapping interaction surfaces with its upstream and downstream partners along its signaling cascade. Ras proteins are molecular switches that meet this definition perfectly. The close-lying P-loop and the highly flexible switch I and switch II regions are the site of nucleotide-, assisting-, and effector-protein binding. Oncogenic mutations that also appear in this region do not cause easily characterized overall structural changes, due partly to the inherent conformational heterogeneity and pliability of these segments. In this review, we present an overview of the results obtained using approaches targeting Ras dynamics, such as nuclear magnetic resonance (NMR) measurements and experiment-based modeling calculations (mostly molecular dynamics (MD) simulations). These methodologies were successfully used to decipher the mutant- and isoform-specific nature of certain transient states, far-lying allosteric sites, and the internal interaction networks, as well as the interconnectivity of the catalytic and membrane-binding regions. This opens new therapeutic potential: the discovered interaction hotspots present hitherto not targeted, selective sites for drug design efforts in diverse locations of the protein matrix.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| |
Collapse
|
36
|
Allain F, Mareuil F, Ménager H, Nilges M, Bardiaux B. ARIAweb: a server for automated NMR structure calculation. Nucleic Acids Res 2020; 48:W41-W47. [PMID: 32383755 PMCID: PMC7319541 DOI: 10.1093/nar/gkaa362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a method of choice to study the dynamics and determine the atomic structure of macromolecules in solution. The standalone program ARIA (Ambiguous Restraints for Iterative Assignment) for automated assignment of nuclear Overhauser enhancement (NOE) data and structure calculation is well established in the NMR community. To ultimately provide a perfectly transparent and easy to use service, we designed an online user interface to ARIA with additional functionalities. Data conversion, structure calculation setup and execution, followed by interactive visualization of the generated 3D structures are all integrated in ARIAweb and freely accessible at https://ariaweb.pasteur.fr.
Collapse
Affiliation(s)
- Fabrice Allain
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, Institut Pasteur, Paris, 75015, France
| | - Fabien Mareuil
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, CNRS USR 3756, Institut Pasteur, Paris, 75015, France
| | - Hervé Ménager
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, CNRS USR 3756, Institut Pasteur, Paris, 75015, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, Institut Pasteur, Paris, 75015, France
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, Institut Pasteur, Paris, 75015, France
| |
Collapse
|
37
|
McCabe JW, Mallis CS, Kocurek KI, Poltash ML, Shirzadeh M, Hebert MJ, Fan L, Walker TE, Zheng X, Jiang T, Dong S, Lin CW, Laganowsky A, Russell DH. First-Principles Collision Cross Section Measurements of Large Proteins and Protein Complexes. Anal Chem 2020; 92:11155-11163. [PMID: 32662991 PMCID: PMC7967297 DOI: 10.1021/acs.analchem.0c01285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rotationally averaged collision cross section (CCS) values for a series of proteins and protein complexes ranging in size from 8.6 to 810 kDa are reported. The CCSs were obtained using a native electrospray ionization drift tube ion mobility-Orbitrap mass spectrometer specifically designed to enhance sensitivity while having high-resolution ion mobility and mass capabilities. Periodic focusing (PF)-drift tube (DT)-ion mobility (IM) provides first-principles determination of the CCS of large biomolecules that can then be used as CCS calibrants. The experimental, first-principles CCS values are compared to previously reported experimentally determined and computationally calculated CCS using projected superposition approximation (PSA), the Ion Mobility Projection Approximation Calculation Tool (IMPACT), and Collidoscope. Experimental CCS values are generally in agreement with previously reported CCSs, with values falling within ∼5.5%. In addition, an ion mobility resolution (CCS centroid divided by CCS fwhm) of ∼60 is obtained for pyruvate kinase (MW ∼ 233 kDa); however, ion mobility resolution for bovine serum albumin (MW ∼ 68 kDa) is less than ∼20, which arises from sample impurities and underscores the importance of sample quality. The high resolution afforded by the ion mobility-Orbitrap mass analyzer provides new opportunities to understand the intricate details of protein complexes such as the impact of post-translational modifications (PTMs), stoichiometry, and conformational changes induced by ligand binding.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christopher S Mallis
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Klaudia I Kocurek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael L Poltash
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xueyun Zheng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ting Jiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Vermeyen T, Merten C. Solvation and the secondary structure of a proline-containing dipeptide: insights from VCD spectroscopy. Phys Chem Chem Phys 2020; 22:15640-15648. [PMID: 32617548 DOI: 10.1039/d0cp02283g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study we investigate the IR and VCD spectra of the diastereomeric dipeptide Boc-Pro-Phe-(n-propyl) 1 in chloroform-d1 (CDCl3) and the strongly hydrogen bonding solvent dimethylsulfoxide-d6 (DMSO-d6). From comparison of the experimental spectra, the amide II spectral region is identified as marker signature for the stereochemistry of the dipeptide: the homochiral LL-1 features a (+/-)-pattern in the amide II region of the VCD spectrum, while the amide II signature of the diastereomer LD-1 is inverted. Computational analysis of the IR and VCD spectra of LL-1 reveals that the experimentally observed amide II signature is characteristic for a βI-turn structure of the peptide. Likewise, the inverted pattern found for LD-1 arises from a βII-turn structure of the dipeptide. Following a micro-solvation approach, the experimental spectra recorded in DMSO-d6 are computationally well reproduced by considering only a single solvent molecule in a hydrogen bond with N-H groups. Considering a second solvent molecule, which would lead to a cleavage of intramolecular hydrogen bonds in 1, is found to give a significantly worse match with the experiment. Hence, the detailed computational analysis of the spectra of LL- and LD-1 recorded in DMSO-d6 confirms that the intramolecular hydrogen bonding pattern, that stabilizes the β-turns and other conformations of LL- and LD-1 in apolar solvents, remains intact. Our findings also show that it is essential to consider solvation explicitly in the analysis of the IR and VCD spectra of dipeptides in strongly hydrogen bonding solvents. As the solute-solvent interactions affect both conformational preferences and spectral signatures, it is also demonstrated that this inclusion of solvent molecules cannot be circumvented by applying fitting procedures to non-solvated structures.
Collapse
Affiliation(s)
- Tom Vermeyen
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany. and University of Antwerp, Department of Chemistry, MolSpec Group, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
39
|
Li Q, Kang C. A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules 2020; 25:molecules25132974. [PMID: 32605297 PMCID: PMC7411973 DOI: 10.3390/molecules25132974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| |
Collapse
|
40
|
Mesophilic Pyrophosphatase Function at High Temperature: A Molecular Dynamics Simulation Study. Biophys J 2020; 119:142-150. [PMID: 32533942 DOI: 10.1016/j.bpj.2020.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
The mesophilic inorganic pyrophosphatase from Escherichia coli (EcPPase) retains function at 353 K, the physiological temperature of hyperthermophilic Thermococcus thioreducens, whereas the homolog protein (TtPPase) from this hyperthermophilic organism cannot function at room temperature. To explain this asymmetric behavior, we examined structural and dynamical properties of the two proteins using molecular dynamics simulations. The global flexibility of TtPPase is significantly higher than its mesophilic homolog at all tested temperature/pressure conditions. However, at 353 K, EcPPase reduces its solvent-exposed surface area and increases subunit compaction while maintaining flexibility in its catalytic pocket. In contrast, TtPPase lacks this adaptability and has increased rigidity and reduced protein/water interactions in its catalytic pocket at room temperature, providing a plausible explanation for its inactivity near room temperature.
Collapse
|
41
|
Denis M, Softley C, Giuntini S, Gentili M, Ravera E, Parigi G, Fragai M, Popowicz G, Sattler M, Luchinat C, Cerofolini L, Nativi C. The Photocatalyzed Thiol-ene reaction: A New Tag to Yield Fast, Selective and reversible Paramagnetic Tagging of Proteins. Chemphyschem 2020; 21:863-869. [PMID: 32092218 PMCID: PMC7384118 DOI: 10.1002/cphc.202000071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand. Here we describe a photo-catalyzed thiol-ene reaction for the cysteine-selective paramagnetic tagging of proteins. As a model, we designed an LBT with a vinyl-pyridine moiety which was used to attach our tag to the protein GB1 in fast and irreversible fashion. Our tag T1 yields magnetic susceptibility tensors of significant size with different lanthanides and has been characterized using NMR and relaxometry measurements.
Collapse
Affiliation(s)
- Maxime Denis
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| | - Charlotte Softley
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Stefano Giuntini
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Matteo Gentili
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Giacomo Parigi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Grzegorz Popowicz
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Michael Sattler
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| |
Collapse
|
42
|
Liu S, Xiang X, Gao X, Liu H. Neighborhood Preference of Amino Acids in Protein Structures and its Applications in Protein Structure Assessment. Sci Rep 2020; 10:4371. [PMID: 32152349 PMCID: PMC7062742 DOI: 10.1038/s41598-020-61205-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/24/2020] [Indexed: 12/02/2022] Open
Abstract
Amino acids form protein 3D structures in unique manners such that the folded structure is stable and functional under physiological conditions. Non-specific and non-covalent interactions between amino acids exhibit neighborhood preferences. Based on structural information from the protein data bank, a statistical energy function was derived to quantify amino acid neighborhood preferences. The neighborhood of one amino acid is defined by its contacting residues, and the energy function is determined by the neighboring residue types and relative positions. The neighborhood preference of amino acids was exploited to facilitate structural quality assessment, which was implemented in the neighborhood preference program NEPRE. The source codes are available via https://github.com/LiuLab-CSRC/NePre.
Collapse
Affiliation(s)
- Siyuan Liu
- Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, China
- School of Software Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xilun Xiang
- Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, China
- School of Software Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Gao
- Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, China
- School of Software Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, China.
- Physics Department, Beijing Normal University, Haidian, Beijing, 100875, China.
| |
Collapse
|
43
|
Marchand A, Czar MF, Eggel EN, Kaeslin J, Zenobi R. Studying biomolecular folding and binding using temperature-jump mass spectrometry. Nat Commun 2020; 11:566. [PMID: 31992698 PMCID: PMC6987177 DOI: 10.1038/s41467-019-14179-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023] Open
Abstract
Characterizing folding and complex formation of biomolecules provides a view into their thermodynamics, kinetics and folding pathways. Deciphering kinetic intermediates is particularly important because they can often be targeted by drugs. The key advantage of native mass spectrometry over conventional methods that monitor a single observable is its ability to identify and quantify coexisting species. Here, we show the design of a temperature-jump electrospray source for mass spectrometry that allows one to perform fast kinetics experiments (0.16-32 s) at different temperatures (10-90 °C). The setup allows recording of both folding and unfolding kinetics by using temperature jumps from high to low, and low to high, temperatures. Six biological systems, ranging from peptides to proteins to DNA complexes, exemplify the use of this device. Using temperature-dependent experiments, the folding and unfolding of a DNA triplex are studied, providing detailed information on its thermodynamics and kinetics.
Collapse
Affiliation(s)
- Adrien Marchand
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Martin F Czar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Elija N Eggel
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Jérôme Kaeslin
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland.
| |
Collapse
|
44
|
Zheng J, Strutzenberg T, Pascal BD, Griffin PR. Protein dynamics and conformational changes explored by hydrogen/deuterium exchange mass spectrometry. Curr Opin Struct Biol 2019; 58:305-313. [DOI: 10.1016/j.sbi.2019.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
|
45
|
Chemical Modification of 1-Aminocyclopropane Carboxylic Acid (ACC) Oxidase: Cysteine Mutational Analysis, Characterization, and Bioconjugation with a Nitroxide Spin Label. Mol Biotechnol 2019; 61:650-662. [DOI: 10.1007/s12033-019-00191-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Edington SC, Halling DB, Bennett SM, Middendorf TR, Aldrich RW, Baiz CR. Non-Additive Effects of Binding Site Mutations in Calmodulin. Biochemistry 2019; 58:2730-2739. [PMID: 31124357 DOI: 10.1021/acs.biochem.9b00096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite decades of research on ion-sensing proteins, gaps persist in the understanding of ion binding affinity and selectivity even in well-studied proteins such as calmodulin. Site-directed mutagenesis is a powerful and popular tool for addressing outstanding questions about biological ion binding and is employed to selectively deactivate binding sites and insert chromophores at advantageous positions within ion binding structures. However, even apparently nonperturbative mutations can distort the binding dynamics they are employed to measure. We use Fourier transform infrared (FTIR) and ultrafast two-dimensional infrared (2D IR) spectroscopy of the carboxylate asymmetric stretching mode in calmodulin as a mutation- and label-independent probe of the conformational perturbations induced in calmodulin's binding sites by two classes of mutation, tryptophan insertion and carboxylate side-chain deletion, commonly used to study ion binding in proteins. Our results show that these mutations not only affect ion binding but also induce changes in calmodulin's conformational landscape along coordinates not probed by vibrational spectroscopy, remaining invisible without additional perturbation of binding site structure. Comparison of FTIR line shapes with 2D IR diagonal slices provides a clear example of how nonlinear spectroscopy produces well-resolved line shapes, refining otherwise featureless spectral envelopes into more informative vibrational spectra of proteins.
Collapse
Affiliation(s)
- Sean C Edington
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - D Brent Halling
- Department of Neuroscience , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Suzanna M Bennett
- Department of Neuroscience , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Thomas R Middendorf
- Department of Neuroscience , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Richard W Aldrich
- Department of Neuroscience , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Carlos R Baiz
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
47
|
Bansal R, Care A, Lord MS, Walsh TR, Sunna A. Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides. N Biotechnol 2019; 52:9-18. [PMID: 30954671 DOI: 10.1016/j.nbt.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
The interactions between biomolecules and solid surfaces play an important role in designing new materials and applications which mimic nature. Recently, solid-binding peptides (SBPs) have emerged as potential molecular building blocks in nanobiotechnology. SBPs exhibit high selectivity and binding affinity towards a wide range of inorganic and organic materials. Although these peptides have been widely used in various applications, there is a need to understand the interaction mechanism between the peptide and its material substrate, which is challenging both experimentally and theoretically. This review describes the main characterisation techniques currently available to study SBP-surface interactions and their contribution to gain a better insight for designing new peptides for tailored binding.
Collapse
Affiliation(s)
- Rachit Bansal
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
48
|
Ion Mobility in Structural Biology. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Jenne A, Soong R, Bermel W, Sharma N, Masi A, Tabatabaei Anaraki M, Simpson A. Focusing on “the important” through targeted NMR experiments: an example of selective13C–12C bond detection in complex mixtures. Faraday Discuss 2019; 218:372-394. [DOI: 10.1039/c8fd00213d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, a targeted NMR experiment is introduced which selectively detects the formation of13C–12C bonds in mixtures.
Collapse
Affiliation(s)
- Amy Jenne
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| | - Ronald Soong
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| | | | - Nisha Sharma
- Department of Agronomy, Food, Natural Resources, Animals and the Environment
- University of Padova
- Padova
- Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment
- University of Padova
- Padova
- Italy
| | | | - Andre Simpson
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
50
|
Möckel C, Kubiak J, Schillinger O, Kühnemuth R, Della Corte D, Schröder GF, Willbold D, Strodel B, Seidel CAM, Neudecker P. Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics. J Phys Chem B 2018; 123:1453-1480. [DOI: 10.1021/acs.jpcb.8b08903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christina Möckel
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jakub Kubiak
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Oliver Schillinger
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dennis Della Corte
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gunnar F. Schröder
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Claus A. M. Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Neudecker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|