1
|
Baati H, Siala M, Benali S, Azri C, Dunlap C, Martínez-Espinosa RM, Trigui M. Elucidating metabolic pathways through genomic analysis in highly heavy metal-resistant Halobacterium salinarum strains. Heliyon 2024; 10:e40822. [PMID: 39717611 PMCID: PMC11665356 DOI: 10.1016/j.heliyon.2024.e40822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with Halobacterium salinarum, were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy. ATP synthase, various cytochromes and aerobic respiration proteins were encoded. All strains showed fermentation capability through the arginine deiminase pathway and facultative anaerobic respiration using electron acceptors (Dimethyl sulfoxide and trimethylamine N-oxide). Several biosynthesis pathways for many amino acids were identified. Comparative and pangenome analyses between the strains and the well-studied halophilic archaea Halobacterium NRC-1 highlighted a notable dissimilarity. Besides, the strains shared a core genome of 1973 genes and an accessory genome of 767 genes. 129, 94, 67, 15 and 29 unique genes were detected in the AS1, AS2, AS8, AS11 and AS19 genomes, respectively. Most of these unique genes code for hypothetical proteins. The strains displayed plant-growth promoting characteristics under heavy metal stress (Ammonium assimilation, phosphate solubilization, chemotaxis, cell motility and production of indole acetic acid, siderophore and phenazine). Therefore, they could be used as a biofertilizer to promote plant growth. The genomes encoded numerous biotechnologically relevant genes responsible for vitamin biosynthesis, including cobalamin, folate, biotin, pantothenate, riboflavin, thiamine, menaquinone, nicotinate, and nicotinamide. The carotenogenetic pathway of the studied strains was also predicted. Consequently, the findings of this study contribute to a better understanding of the halophilic archaea metabolism providing valuable insights into their ecophysiology as well as relevant biotechnological applications.
Collapse
Affiliation(s)
- Houda Baati
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Mariem Siala
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Souad Benali
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Chafai Azri
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Christopher Dunlap
- United States Department of Agriculture, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, 1815 North University St, Peoria, IL, 61604, USA
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Mohamed Trigui
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| |
Collapse
|
2
|
Noirungsee N, Changkhong S, Phinyo K, Suwannajak C, Tanakul N, Inwongwan S. Genome-scale metabolic modelling of extremophiles and its applications in astrobiological environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13231. [PMID: 38192220 PMCID: PMC10866088 DOI: 10.1111/1758-2229.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Metabolic modelling approaches have become the powerful tools in modern biology. These mathematical models are widely used to predict metabolic phenotypes of the organisms or communities of interest, and to identify metabolic targets in metabolic engineering. Apart from a broad range of industrial applications, the possibility of using metabolic modelling in the contexts of astrobiology are poorly explored. In this mini-review, we consolidated the concepts and related applications of applying metabolic modelling in studying organisms in space-related environments, specifically the extremophilic microbes. We recapitulated the current state of the art in metabolic modelling approaches and their advantages in the astrobiological context. Our review encompassed the applications of metabolic modelling in the theoretical investigation of the origin of life within prebiotic environments, as well as the compilation of existing uses of genome-scale metabolic models of extremophiles. Furthermore, we emphasize the current challenges associated with applying this technique in extreme environments, and conclude this review by discussing the potential implementation of metabolic models to explore theoretically optimal metabolic networks under various space conditions. Through this mini-review, our aim is to highlight the potential of metabolic modelling in advancing the study of astrobiology.
Collapse
Affiliation(s)
- Nuttapol Noirungsee
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Sakunthip Changkhong
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Department of Thoracic SurgeryUniversity Hospital ZurichZurichSwitzerland
| | - Kittiya Phinyo
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research group on Earth—Space Ecology (ESE), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Office of Research AdministrationChiang Mai UniversityChiang MaiThailand
| | | | - Nahathai Tanakul
- National Astronomical Research Institute of ThailandChiang MaiThailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
3
|
Hackley RK, Vreugdenhil-Hayslette A, Darnell CL, Schmid AK. A conserved transcription factor controls gluconeogenesis via distinct targets in hypersaline-adapted archaea with diverse metabolic capabilities. PLoS Genet 2024; 20:e1011115. [PMID: 38227606 PMCID: PMC10817205 DOI: 10.1371/journal.pgen.1011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.
Collapse
Affiliation(s)
- Rylee K. Hackley
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | | | - Cynthia L. Darnell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Amy K. Schmid
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Brück P, Wasser D, Soppa J. One Advantage of Being Polyploid: Prokaryotes of Various Phylogenetic Groups Can Grow in the Absence of an Environmental Phosphate Source at the Expense of Their High Genome Copy Numbers. Microorganisms 2023; 11:2267. [PMID: 37764113 PMCID: PMC10536925 DOI: 10.3390/microorganisms11092267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Genomic DNA has high phosphate content; therefore, monoploid prokaryotes need an external phosphate source or an internal phosphate storage polymer for replication and cell division. For two polyploid prokaryotic species, the halophilic archaeon Haloferax volcanii and the cyanobacterium Synechocystis PCC 6803, it has been reported that they can grow in the absence of an external phosphate source by reducing the genome copy number per cell. To unravel whether this feature might be widespread in and typical for polyploid prokaryotes, three additional polyploid prokaryotic species were analyzed in the present study, i.e., the alphaproteobacterium Zymomonas mobilis, the gammaproteobacterium Azotobacter vinelandii, and the haloarchaeon Halobacterium salinarum. Polyploid cultures were incubated in the presence and in the absence of external phosphate, growth was recorded, and genome copy numbers per cell were quantified. Limited growth in the absence of phosphate was observed for all three species. Phosphate was added to phosphate-starved cultures to verify that the cells were still viable and growth-competent. Remarkably, stationary-phase cells grown in the absence or presence of phosphate did not become monoploid but stayed oligoploid with about five genome copies per cell. As a negative control, it was shown that monoploid Escherichia coli cultures did not exhibit any growth in the absence of phosphate. Taken together, all five polyploid prokaryotic species that have been characterized until now can grow in the absence of environmental phosphate by reducing their genome copy numbers, indicating that cell proliferation outperforms other evolutionary advantages of polyploidy.
Collapse
Affiliation(s)
| | | | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany (D.W.)
| |
Collapse
|
5
|
Korenskaia AE, Matushkin YG, Lashin SA, Klimenko AI. Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes. Int J Mol Sci 2022; 23:11996. [PMID: 36233299 PMCID: PMC9570070 DOI: 10.3390/ijms231911996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Protein abundance is crucial for the majority of genetically regulated cell functions to act properly in prokaryotic organisms. Therefore, developing bioinformatic methods for assessing the efficiency of different stages of gene expression is of great importance for predicting the actual protein abundance. One of these steps is the evaluation of translation elongation efficiency based on mRNA sequence features, such as codon usage bias and mRNA secondary structure properties. In this study, we have evaluated correlation coefficients between experimentally measured protein abundance and predicted elongation efficiency characteristics for 26 prokaryotes, including non-model organisms, belonging to diverse taxonomic groups The algorithm for assessing elongation efficiency takes into account not only codon bias, but also number and energy of secondary structures in mRNA if those demonstrate an impact on predicted elongation efficiency of the ribosomal protein genes. The results show that, for a number of organisms, secondary structures are a better predictor of protein abundance than codon usage bias. The bioinformatic analysis has revealed several factors associated with the value of the correlation coefficient. The first factor is the elongation efficiency optimization type-the organisms whose genomes are optimized for codon usage only have significantly higher correlation coefficients. The second factor is taxonomical identity-bacteria that belong to the class Bacilli tend to have higher correlation coefficients among the analyzed set. The third is growth rate, which is shown to be higher for the organisms with higher correlation coefficients between protein abundance and predicted translation elongation efficiency. The obtained results can be useful for further improvement of methods for protein abundance prediction.
Collapse
Affiliation(s)
- Aleksandra E. Korenskaia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Yury G. Matushkin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Sergey A. Lashin
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Alexandra I. Klimenko
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Comprehensive Genome Analysis of Halolamina pelagica CDK2: Insights into Abiotic Stress Tolerance Genes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halophilic archaeon Halolamina pelagica CDK2, showcasing plant growth-promoting properties and endurance towards harsh environmental conditions (high salinity, heavy metals, high temperature and UV radiation) was sequenced earlier. Pan-genome of Halolamina genus was created and investigated for strain-specific genes of CDK2, which might confer it with features helping it to withstand high abiotic stress. Pathways and subsystems in CDK2 were compared with other Halolamina strain CGHMS and analysed using KEGG and RAST. A genome-scale metabolic model was reconstructed from the genome of H. pelagica CDK2. Results implicated strain-specific genes like thermostable carboxypeptidase and DNA repair protein MutS which might protect the proteins and DNA from high temperature and UV denaturation respectively. A bifunctional trehalose synthase gene responsible for trehalose biosynthesis was also annotated specifying the need for low salt compatible solute strategy, the probable reason behind the ability of this haloarchaea to survive in a wide range of salt concentrations. A modified shikimate and mevalonate pathways were also identified in CDK2, along with many ABC transporters for metal uptakes like zinc and cobalt through pathway analysis. Probable employment of one multifunctional ABC transporter in place of two for similar metals (Nickel/cobalt and molybdenum/tungsten) might be employed as a strategy for energy conservation. The findings of the present study could be utilized for future research relating metabolic model for flux balance analysis and the genetic repertoire imparting resistance to harsh conditions can be transferred to crops for improving their tolerance to abiotic stresses.
Collapse
|
7
|
Favreau C, Tribondeau A, Marugan M, Guyot F, Alpha-Bazin B, Marie A, Puppo R, Dufour T, Huguet A, Zirah S, Kish A. Molecular acclimation of Halobacterium salinarum to halite brine inclusions. Front Microbiol 2022; 13:1075274. [PMID: 36875534 PMCID: PMC9976938 DOI: 10.3389/fmicb.2022.1075274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Halophilic microorganisms have long been known to survive within the brine inclusions of salt crystals, as evidenced by the change in color for salt crystals containing pigmented halophiles. However, the molecular mechanisms allowing this survival has remained an open question for decades. While protocols for the surface sterilization of halite (NaCl) have enabled isolation of cells and DNA from within halite brine inclusions, "-omics" based approaches have faced two main technical challenges: (1) removal of all contaminating organic biomolecules (including proteins) from halite surfaces, and (2) performing selective biomolecule extractions directly from cells contained within halite brine inclusions with sufficient speed to avoid modifications in gene expression during extraction. In this study, we tested different methods to resolve these two technical challenges. Following this method development, we then applied the optimized methods to perform the first examination of the early acclimation of a model haloarchaeon (Halobacterium salinarum NRC-1) to halite brine inclusions. Examinations of the proteome of Halobacterium cells two months post-evaporation revealed a high degree of similarity with stationary phase liquid cultures, but with a sharp down-regulation of ribosomal proteins. While proteins for central metabolism were part of the shared proteome between liquid cultures and halite brine inclusions, proteins involved in cell mobility (archaellum, gas vesicles) were either absent or less abundant in halite samples. Proteins unique to cells within brine inclusions included transporters, suggesting modified interactions between cells and the surrounding brine inclusion microenvironment. The methods and hypotheses presented here enable future studies of the survival of halophiles in both culture model and natural halite systems.
Collapse
Affiliation(s)
- Charly Favreau
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - Alicia Tribondeau
- Unité Physiologie Moléculaire et Adaptation (PhyMA), MNHN, CNRS, Paris, France
| | - Marie Marugan
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, Sorbonne Université, CNRS, IRD, Paris, France
| | - Beatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - Remy Puppo
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - Thierry Dufour
- Laboratoire de Physique des Plasma (LPP), Sorbonne Université, CNRS, École Polytechnique, Université Paris-Sud, Observatoire de Paris, Paris, France
| | - Arnaud Huguet
- Unité Milieux Environnementaux Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), Sorbonne Université, CNRS, EPHE, PSL, Paris, France
| | - Séverine Zirah
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - Adrienne Kish
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| |
Collapse
|
8
|
Sakrikar S, Schmid A. An archaeal histone-like protein regulates gene expression in response to salt stress. Nucleic Acids Res 2021; 49:12732-12743. [PMID: 34883507 PMCID: PMC8682779 DOI: 10.1093/nar/gkab1175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Histones, ubiquitous in eukaryotes as DNA-packing proteins, find their evolutionary origins in archaea. Unlike the characterized histone proteins of a number of methanogenic and themophilic archaea, previous research indicated that HpyA, the sole histone encoded in the model halophile Halobacterium salinarum, is not involved in DNA packaging. Instead, it was found to have widespread but subtle effects on gene expression and to maintain wild type cell morphology. However, the precise function of halophilic histone-like proteins remain unclear. Here we use quantitative phenotyping, genetics, and functional genomics to investigate HpyA function. These experiments revealed that HpyA is important for growth and rod-shaped morphology in reduced salinity. HpyA preferentially binds DNA at discrete genomic sites under low salt to regulate expression of ion uptake, particularly iron. HpyA also globally but indirectly activates other ion uptake and nucleotide biosynthesis pathways in a salt-dependent manner. Taken together, these results demonstrate an alternative function for an archaeal histone-like protein as a transcriptional regulator, with its function tuned to the physiological stressors of the hypersaline environment.
Collapse
Affiliation(s)
- Saaz Sakrikar
- Biology Department, Duke University, Durham, NC27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC27708, USA
| | - Amy K Schmid
- Biology Department, Duke University, Durham, NC27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC27708, USA
| |
Collapse
|
9
|
Gelsinger DR, Reddy R, Whittington K, Debic S, DiRuggiero J. Post-transcriptional regulation of redox homeostasis by the small RNA SHOxi in haloarchaea. RNA Biol 2021; 18:1867-1881. [PMID: 33522404 PMCID: PMC8583180 DOI: 10.1080/15476286.2021.1874717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
While haloarchaea are highly resistant to oxidative stress, a comprehensive understanding of the processes regulating this remarkable response is lacking. Oxidative stress-responsive small non-coding RNAs (sRNAs) have been reported in the model archaeon, Haloferax volc anii, but targets and mechanisms have not been elucidated. Using a combination of high throughput and reverse molecular genetic approaches, we elucidated the functional role of the most up-regulated intergenic sRNA during oxidative stress in H. volcanii, named Small RNA in Haloferax Oxidative Stress (SHOxi). SHOxi was predicted to form a stable secondary structure with a conserved stem-loop region as the potential binding site for trans-targets. NAD-dependent malic enzyme mRNA, identified as a putative target of SHOxi, interacted directly with a putative 'seed' region within the predicted stem loop of SHOxi. Malic enzyme catalyzes the oxidative decarboxylation of malate into pyruvate using NAD+ as a cofactor. The destabilization of malic enzyme mRNA, and the decrease in the NAD+/NADH ratio, resulting from the direct RNA-RNA interaction between SHOxi and its trans-target was essential for the survival of H. volcanii to oxidative stress. These findings indicate that SHOxi likely regulates redox homoeostasis during oxidative stress by the post-transcriptional destabilization of malic enzyme mRNA. SHOxi-mediated regulation provides evidence that the fine-tuning of metabolic cofactors could be a core strategy to mitigate damage from oxidative stress and confer resistance. This study is the first to establish the regulatory effects of sRNAs on mRNAs during the oxidative stress response in Archaea.
Collapse
Affiliation(s)
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sara Debic
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Niessen N, Soppa J. Regulated Iron Siderophore Production of the Halophilic Archaeon Haloferax volcanii. Biomolecules 2020; 10:biom10071072. [PMID: 32709147 PMCID: PMC7407949 DOI: 10.3390/biom10071072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
Iron is part of many redox and other enzymes and, thus, it is essential for all living beings. Many oxic environments have extremely low concentrations of free iron. Therefore, many prokaryotic species evolved siderophores, i.e., small organic molecules that complex Fe3+ with very high affinity. Siderophores of bacteria are intensely studied, in contrast to those of archaea. The haloarchaeon Haloferax volcanii contains a gene cluster that putatively encodes siderophore biosynthesis genes, including four iron uptake chelate (iuc) genes. Underscoring this hypothesis, Northern blot analyses revealed that a hexacistronic transcript is generated that is highly induced under iron starvation. A quadruple iuc deletion mutant was generated, which had a growth defect solely at very low concentrations of Fe3+, not Fe2+. Two experimental approaches showed that the wild type produced and exported an Fe3+-specific siderophore under low iron concentrations, in contrast to the iuc deletion mutant. Bioinformatic analyses revealed that haloarchaea obtained the gene cluster by lateral transfer from bacteria and enabled the prediction of enzymatic functions of all six gene products. Notably, a biosynthetic pathway is proposed that starts with aspartic acid, uses several group donors and citrate, and leads to the hydroxamate siderophore Schizokinen.
Collapse
Affiliation(s)
- Natalie Niessen
- Institute for Molecular Biosciences, Goethe-University, Biocentre, Max-von-Laue-str. 9, D-60439 Frankfurt, Germany;
- Campus Callaghan, Faculty of Health and Medicine, School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Jörg Soppa
- Institute for Molecular Biosciences, Goethe-University, Biocentre, Max-von-Laue-str. 9, D-60439 Frankfurt, Germany;
- Correspondence:
| |
Collapse
|
11
|
Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family Methanoperedenaceae. mBio 2020; 11:mBio.01325-20. [PMID: 32605988 PMCID: PMC7327174 DOI: 10.1128/mbio.01325-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) is an important biological process responsible for controlling the flux of methane into the atmosphere. Members of the archaeal family Methanoperedenaceae (formerly ANME-2d) have been demonstrated to couple AOM to the reduction of nitrate, iron, and manganese. Here, comparative genomic analysis of 16 Methanoperedenaceae metagenome-assembled genomes (MAGs), recovered from diverse environments, revealed novel respiratory strategies acquired through lateral gene transfer (LGT) events from diverse archaea and bacteria. Comprehensive phylogenetic analyses suggests that LGT has allowed members of the Methanoperedenaceae to acquire genes for the oxidation of hydrogen and formate and the reduction of arsenate, selenate, and elemental sulfur. Numerous membrane-bound multiheme c-type cytochrome complexes also appear to have been laterally acquired, which may be involved in the direct transfer of electrons to metal oxides, humic substances, and syntrophic partners.IMPORTANCE AOM by microorganisms limits the atmospheric release of the potent greenhouse gas methane and has consequent importance for the global carbon cycle and climate change modeling. While the oxidation of methane coupled to sulfate by consortia of anaerobic methanotrophic (ANME) archaea and bacteria is well documented, several other potential electron acceptors have also been reported to support AOM. In this study, we identify a number of novel respiratory strategies that appear to have been laterally acquired by members of the Methanoperedenaceae, as they are absent from related archaea and other ANME lineages. Expanding the known metabolic potential for members of the Methanoperedenaceae provides important insight into their ecology and suggests their role in linking methane oxidation to several global biogeochemical cycles.
Collapse
|
12
|
Pfeiffer F, Losensky G, Marchfelder A, Habermann B, Dyall‐Smith M. Whole-genome comparison between the type strain of Halobacterium salinarum (DSM 3754 T ) and the laboratory strains R1 and NRC-1. Microbiologyopen 2020; 9:e974. [PMID: 31797576 PMCID: PMC7002104 DOI: 10.1002/mbo3.974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/04/2023] Open
Abstract
Halobacterium salinarum is an extremely halophilic archaeon that is widely distributed in hypersaline environments and was originally isolated as a spoilage organism of salted fish and hides. The type strain 91-R6 (DSM 3754T ) has seldom been studied and its genome sequence has only recently been determined by our group. The exact relationship between the type strain and two widely used model strains, NRC-1 and R1, has not been described before. The genome of Hbt. salinarum strain 91-R6 consists of a chromosome (2.17 Mb) and two large plasmids (148 and 102 kb, with 39,230 bp being duplicated). Cytosine residues are methylated (m4 C) within CTAG motifs. The genomes of type and laboratory strains are closely related, their chromosomes sharing average nucleotide identity (ANIb) values of 98% and in silico DNA-DNA hybridization (DDH) values of 95%. The chromosomes are completely colinear, do not show genome rearrangement, and matching segments show <1% sequence difference. Among the strain-specific sequences are three large chromosomal replacement regions (>10 kb). The well-studied AT-rich island (61 kb) of the laboratory strains is replaced by a distinct AT-rich sequence (47 kb) in 91-R6. Another large replacement (91-R6: 78 kb, R1: 44 kb) codes for distinct homologs of proteins involved in motility and N-glycosylation. Most (107 kb) of plasmid pHSAL1 (91-R6) is very closely related to part of plasmid pHS3 (R1) and codes for essential genes (e.g. arginine-tRNA ligase and the pyrimidine biosynthesis enzyme aspartate carbamoyltransferase). Part of pHS3 (42.5 kb total) is closely related to the largest strain-specific sequence (164 kb) in the type strain chromosome. Genome sequencing unraveled the close relationship between the Hbt. salinarum type strain and two well-studied laboratory strains at the DNA and protein levels. Although an independent isolate, the type strain shows a remarkably low evolutionary difference to the laboratory strains.
Collapse
Affiliation(s)
- Friedhelm Pfeiffer
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Gerald Losensky
- Microbiology and ArchaeaDepartment of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | | | - Bianca Habermann
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- CNRSIBDM UMR 7288Aix Marseille UniversitéMarseilleFrance
| | - Mike Dyall‐Smith
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- Veterinary BiosciencesFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
13
|
Investigation of factors influencing oxygen content in Halobacterium salinarum growth medium for improved bacteriorhodopsin production. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2019. [DOI: 10.1007/s40090-019-0189-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
15
|
Abstract
Microorganisms can move towards favorable growth conditions as a response to environmental stimuli. This process requires a motility structure and a system to direct the movement. For swimming motility, archaea employ a rotating filament, the archaellum. This archaea-specific structure is functionally equivalent, but structurally different, from the bacterial flagellum. To control the directionality of movement, some archaea make use of the chemotaxis system, which is used for the same purpose by bacteria. Over the past decades, chemotaxis has been studied in detail in several model bacteria. In contrast, archaeal chemotaxis is much less explored and largely restricted to analyses in halophilic archaea. In this review, we summarize the available information on archaeal taxis. We conclude that archaeal chemotaxis proteins function similarly as their bacterial counterparts. However, because the motility structures are fundamentally different, an archaea-specific docking mechanism is required, for which initial experimental data have only recently been obtained.
Collapse
|
16
|
Li F, Xie W, Yuan Q, Luo H, Li P, Chen T, Zhao X, Wang Z, Ma H. Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB Express 2018; 8:106. [PMID: 29946801 PMCID: PMC6038301 DOI: 10.1186/s13568-018-0635-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/18/2018] [Indexed: 12/02/2022] Open
Abstract
Marine ammonia-oxidizing archaea (AOA) play an important role in the global nitrogen cycle by obtaining energy for biomass production from CO2 via oxidation of ammonium. The isolation of Candidatus “Nitrosopumilus maritimus” strain SCM1, which represents the globally distributed AOA in the ocean, provided an opportunity for uncovering the contributions of those AOA to carbon and nitrogen cycles in ocean. Although several ammonia oxidation pathways have been proposed for SCM1, little is known about its ATP production efficiency. Here, based on the published genome of Nitrosopumilus maritimus SCM1, a genome-scale metabolic model named NmrFL413 was reconstructed. Based on the model NmrFL413, the estimated ATP/NH4+ yield (0.149–0.276 ATP/NH4+) is tenfold lower than the calculated theoretical yield of the proposed ammonia oxidation pathways in marine AOA (1.5–1.75 ATP/NH4+), indicating a low energy production efficiency of SCM1. Our model also suggested the minor contribution of marine AOA to carbon cycle comparing with their significant contribution to nitrogen cycle in the ocean.
Collapse
|
17
|
Shrestha N, Chilkoor G, Vemuri B, Rathinam N, Sani RK, Gadhamshetty V. Extremophiles for microbial-electrochemistry applications: A critical review. BIORESOURCE TECHNOLOGY 2018; 255:318-330. [PMID: 29433771 DOI: 10.1016/j.biortech.2018.01.151] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Extremophiles, notably archaea and bacteria, offer a good platform for treating industrial waste streams that were previously perceived as hostile to the model organisms in microbial electrochemical systems (MESs). Here we present a critical overview of the fundamental and applied biology aspects of halophiles and thermophiles in MESs. The current study suggests that extremophiles enable the MES operations under a seemingly harsh conditions imposed by the physical (pressure, radiation, and temperature) and geochemical extremes (oxygen levels, pH, and salinity). We highlight a need to identify the underpinning mechanisms that define the exceptional electrocatalytic performance of extremophiles in MESs.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Bhuvan Vemuri
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Navanietha Rathinam
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Rajesh K Sani
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States; Surface Engineering Research Center, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States.
| |
Collapse
|
18
|
Genome-Scale Metabolic Modeling of Archaea Lends Insight into Diversity of Metabolic Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:9763848. [PMID: 28133437 PMCID: PMC5241448 DOI: 10.1155/2017/9763848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023]
Abstract
Decades of biochemical, bioinformatic, and sequencing data are currently being systematically compiled into genome-scale metabolic reconstructions (GEMs). Such reconstructions are knowledge-bases useful for engineering, modeling, and comparative analysis. Here we review the fifteen GEMs of archaeal species that have been constructed to date. They represent primarily members of the Euryarchaeota with three-quarters comprising representative of methanogens. Unlike other reviews on GEMs, we specially focus on archaea. We briefly review the GEM construction process and the genealogy of the archaeal models. The major insights gained during the construction of these models are then reviewed with specific focus on novel metabolic pathway predictions and growth characteristics. Metabolic pathway usage is discussed in the context of the composition of each organism's biomass and their specific energy and growth requirements. We show how the metabolic models can be used to study the evolution of metabolism in archaea. Conservation of particular metabolic pathways can be studied by comparing reactions using the genes associated with their enzymes. This demonstrates the utility of GEMs to evolutionary studies, far beyond their original purpose of metabolic modeling; however, much needs to be done before archaeal models are as extensively complete as those for bacteria.
Collapse
|
19
|
Modeling the Growth of Archaeon Halobacterium halobium Affected by Temperature and Light. Appl Biochem Biotechnol 2016; 181:1080-1095. [DOI: 10.1007/s12010-016-2270-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
20
|
Kellermann MY, Yoshinaga MY, Valentine RC, Wörmer L, Valentine DL. Important roles for membrane lipids in haloarchaeal bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2940-2956. [PMID: 27565574 DOI: 10.1016/j.bbamem.2016.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Recent advances in lipidomic analysis in combination with various physiological experiments set the stage for deciphering the structure-function of haloarchaeal membrane lipids. Here we focused primarily on changes in lipid composition of Haloferax volcanii, but also performed a comparative analysis with four other haloarchaeal species (Halobacterium salinarum, Halorubrum lacusprofundi, Halorubrum sodomense and Haloplanus natans) all representing distinctive cell morphologies and behaviors (i.e., rod shape vs. pleomorphic behavior). Common to all five haloarchaea, our data reveal an extraordinary high level of menaquinone, reaching up to 72% of the total lipids. This ubiquity suggests that menaquinones may function beyond their ordinary role as electron and proton transporter, acting simultaneously as ion permeability barriers and as powerful shield against oxidative stress. In addition, we aimed at understanding the role of cations interacting with the characteristic negatively charged surface of haloarchaeal membranes. We propose for instance that by bridging the negative charges of adjacent anionic phospholipids, Mg2+ acts as surrogate for cardiolipin, a molecule that is known to control curvature stress of membranes. This study further provides a bioenergetic perspective as to how haloarchaea evolved following oxygenation of Earth's atmosphere. The success of the aerobic lifestyle of haloarchaea includes multiple membrane-based strategies that successfully balance the need for a robust bilayer structure with the need for high rates of electron transport - collectively representing the molecular basis to inhabit hypersaline water bodies around the planet.
Collapse
Affiliation(s)
- Matthias Y Kellermann
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Marcos Y Yoshinaga
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
| | | | - Lars Wörmer
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
21
|
Abstract
In many species of phytoplankton, simple photoreceptors monitor ambient lighting. Photoreceptors provide a number of selective advantages including the ability to assess the time of day for circadian rhythms, seasonal changes, and the detection of excessive light intensities and harmful UV light. Photoreceptors also serve as depth gauges in the water column for behaviors such as diurnal vertical migration. Photoreceptors can be organized together with screening pigment into visible eyespots. In a wide variety of motile phytoplankton, including Chlamydomonas, Volvox, Euglena, and Kryptoperidinium, eyespots are light-sensitive organelles residing within the cell. Eyespots are composed of photoreceptor proteins and typically red to orange carotenoid screening pigments. This association of photosensory pigment with screening pigment allows for detection of light directionality, needed for light-guided behaviors such as positive and negative phototaxis. In Chlamydomonas, the eyespot is located in the chloroplast and Chlamydomonas expresses a number of photosensory pigments including the microbial channelrhodopsins (ChR1 and ChR2). Dinoflagellates are unicellular protists that are ecologically important constituents of the phytoplankton. They display a great deal of diversity in morphology, nutritional modes and symbioses, and can be photosynthetic or heterotrophic, feeding on smaller phytoplankton. Dinoflagellates, such as Kryptoperidinium foliaceum, have eyespots that are used for light-mediated tasks including phototaxis. Dinoflagellates belonging to the family Warnowiaceae have a more elaborate eye. Their eye-organelle, called an ocelloid, is a large, elaborate structure consisting of a focusing lens, highly ordered retinal membranes, and a shield of dark pigment. This complex eye-organelle is similar to multicellular camera eyes, such as our own. Unraveling the molecular makeup, structure and function of dinoflagellate eyes, as well as light-guided behaviors in phytoplankton can inform us about the selective forces that drove evolution in the important steps from light detection to vision. We show here that the evolution from simple photoreception to vision seems to have independently followed identical paths and principles in phytoplankton and animals, significantly strengthening our understanding of this important biological process.
Collapse
Affiliation(s)
- Nansi Jo Colley
- *Department of Ophthalmology and Visual Sciences, Department of Genetics, McPherson Eye Research Institute, University of Wisconsin, Madison, 53792 WI, USA
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, University of Lund, Lund, SE-221 00, Sweden
| |
Collapse
|
22
|
Talaue CO, del Rosario RCH, Pfeiffer F, Mendoza ER, Oesterhelt D. Model Construction and Analysis of Respiration in Halobacterium salinarum. PLoS One 2016; 11:e0151839. [PMID: 27011330 PMCID: PMC4806987 DOI: 10.1371/journal.pone.0151839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 03/05/2016] [Indexed: 12/05/2022] Open
Abstract
The archaeon Halobacterium salinarum can produce energy using three different processes, namely photosynthesis, oxidative phosphorylation and fermentation of arginine, and is thus a model organism in bioenergetics. Compared to its bacteriorhodopsin-driven photosynthesis, less attention has been devoted to modeling its respiratory pathway. We created a system of ordinary differential equations that models its oxidative phosphorylation. The model consists of the electron transport chain, the ATP synthase, the potassium uniport and the sodium-proton antiport. By fitting the model parameters to experimental data, we show that the model can explain data on proton motive force generation, ATP production, and the charge balancing of ions between the sodium-proton antiporter and the potassium uniport. We performed sensitivity analysis of the model parameters to determine how the model will respond to perturbations in parameter values. The model and the parameters we derived provide a resource that can be used for analytical studies of the bioenergetics of H. salinarum.
Collapse
Affiliation(s)
- Cherryl O. Talaue
- Institute of Mathematics, University of the Philippines, Diliman, Quezon City, Philippines
| | - Ricardo C. H. del Rosario
- Institute of Mathematics, University of the Philippines, Diliman, Quezon City, Philippines
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Martinsried, Germany
- * E-mail:
| | - Friedhelm Pfeiffer
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Martinsried, Germany
| | - Eduardo R. Mendoza
- Institute of Mathematics, University of the Philippines, Diliman, Quezon City, Philippines
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Martinsried, Germany
| | - Dieter Oesterhelt
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Martinsried, Germany
| |
Collapse
|
23
|
Schut GJ, Zadvornyy O, Wu CH, Peters JW, Boyd ES, Adams MWW. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:958-70. [PMID: 26808919 DOI: 10.1016/j.bbabio.2016.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/26/2015] [Accepted: 01/18/2016] [Indexed: 11/29/2022]
Abstract
Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Gerrit J Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Oleg Zadvornyy
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Chang-Hao Wu
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Michael W W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
24
|
Winters YD, Lowenstein TK, Timofeeff MN. Starvation-Survival in Haloarchaea. Life (Basel) 2015; 5:1587-609. [PMID: 26569313 PMCID: PMC4695838 DOI: 10.3390/life5041587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/09/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022] Open
Abstract
Recent studies claiming to revive ancient microorganisms trapped in fluid inclusions in halite have warranted an investigation of long-term microbial persistence. While starvation-survival is widely reported for bacteria, it is less well known for halophilic archaea-microorganisms likely to be trapped in ancient salt crystals. To better understand microbial survival in fluid inclusions in ancient evaporites, laboratory experiments were designed to simulate growth of halophilic archaea under media-rich conditions, complete nutrient deprivation, and a controlled substrate condition (glycerol-rich) and record their responses. Haloarchaea used for this work included Hbt. salinarum and isolate DV582A-1 (genus Haloterrigena) sub-cultured from 34 kyear Death Valley salt. Hbt. salinarum and DV582A-1 reacted to nutrient limitation with morphological and population changes. Starved populations increased and most cells converted from rods to small cocci within 56 days of nutrient deprivation. The exact timing of starvation adaptations and the physical transformations differed between species, populations of the same species, and cells of the same population. This is the first study to report the timing of starvation strategies for Hbt. salinarum and DV582A-1. The morphological states in these experiments may allow differentiation between cells trapped with adequate nutrients (represented here by early stages in nutrient-rich media) from cells trapped without nutrients (represented here by experimental starvation) in ancient salt. The hypothesis that glycerol, leaked from Dunaliella, provides nutrients for the survival of haloarchaea trapped in fluid inclusions in ancient halite, is also tested. Hbt. salinarum and DV582A-1 were exposed to a mixture of lysed and intact Dunaliella for 56 days. The ability of these organisms to utilize glycerol from Dunaliella cells was assessed by documenting population growth, cell length, and cell morphology. Hbt. salinarum and DV582A-1 experienced size reductions and shape transitions from rods to cocci. In the short-term, these trends more closely resembled the response of these organisms to starvation conditions than to nutrient-rich media. Results from this experiment reproduced the physical state of cells (small cocci) in ancient halite where prokaryotes co-exist with single-celled algae. We conclude that glycerol is not the limiting factor in the survival of haloarchaea for thousands of years in fluid inclusions in halite.
Collapse
|
25
|
Todor H, Gooding J, Ilkayeva OR, Schmid AK. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences. PLoS One 2015; 10:e0135693. [PMID: 26284786 PMCID: PMC4540570 DOI: 10.1371/journal.pone.0135693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/24/2015] [Indexed: 02/04/2023] Open
Abstract
Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.
Collapse
Affiliation(s)
- Horia Todor
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Jessica Gooding
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Olga R. Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Amy K. Schmid
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Development of New Modular Genetic Tools for Engineering the Halophilic Archaeon Halobacterium salinarum. PLoS One 2015; 10:e0129215. [PMID: 26061363 PMCID: PMC4465625 DOI: 10.1371/journal.pone.0129215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
Our ability to genetically manipulate living organisms is usually constrained by the efficiency of the genetic tools available for the system of interest. In this report, we present the design, construction and characterization of a set of four new modular vectors, the pHsal series, for engineering Halobacterium salinarum, a model halophilic archaeon widely used in systems biology studies. The pHsal shuttle vectors are organized in four modules: (i) the E. coli’s specific part, containing a ColE1 origin of replication and an ampicillin resistance marker, (ii) the resistance marker and (iii) the replication origin, which are specific to H. salinarum and (iv) the cargo, which will carry a sequence of interest cloned in a multiple cloning site, flanked by universal M13 primers. Each module was constructed using only minimal functional elements that were sequence edited to eliminate redundant restriction sites useful for cloning. This optimization process allowed the construction of vectors with reduced sizes compared to currently available platforms and expanded multiple cloning sites. Additionally, the strong constitutive promoter of the fer2 gene was sequence optimized and incorporated into the platform to allow high-level expression of heterologous genes in H. salinarum. The system also includes a new minimal suicide vector for the generation of knockouts and/or the incorporation of chromosomal tags, as well as a vector for promoter probing using a GFP gene as reporter. This new set of optimized vectors should strongly facilitate the engineering of H. salinarum and similar strategies could be implemented for other archaea.
Collapse
|
27
|
Pfeiffer F, Oesterhelt D. A manual curation strategy to improve genome annotation: application to a set of haloarchael genomes. Life (Basel) 2015; 5:1427-44. [PMID: 26042526 PMCID: PMC4500146 DOI: 10.3390/life5021427] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022] Open
Abstract
Genome annotation errors are a persistent problem that impede research in the biosciences. A manual curation effort is described that attempts to produce high-quality genome annotations for a set of haloarchaeal genomes (Halobacterium salinarum and Hbt. hubeiense, Haloferax volcanii and Hfx. mediterranei, Natronomonas pharaonis and Nmn. moolapensis, Haloquadratum walsbyi strains HBSQ001 and C23, Natrialba magadii, Haloarcula marismortui and Har. hispanica, and Halohasta litchfieldiae). Genomes are checked for missing genes, start codon misassignments, and disrupted genes. Assignments of a specific function are preferably based on experimentally characterized homologs (Gold Standard Proteins). To avoid overannotation, which is a major source of database errors, we restrict annotation to only general function assignments when support for a specific substrate assignment is insufficient. This strategy results in annotations that are resistant to the plethora of errors that compromise public databases. Annotation consistency is rigorously validated for ortholog pairs from the genomes surveyed. The annotation is regularly crosschecked against the UniProt database to further improve annotations and increase the level of standardization. Enhanced genome annotations are submitted to public databases (EMBL/GenBank, UniProt), to the benefit of the scientific community. The enhanced annotations are also publically available via HaloLex.
Collapse
Affiliation(s)
- Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemisty, Am Klopferspitz 18, Martinsried 82152, Germany.
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemisty, Am Klopferspitz 18, Martinsried 82152, Germany.
| |
Collapse
|
28
|
Darnell CL, Schmid AK. Systems biology approaches to defining transcription regulatory networks in halophilic archaea. Methods 2015; 86:102-14. [PMID: 25976837 DOI: 10.1016/j.ymeth.2015.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022] Open
Abstract
To survive complex and changing environmental conditions, microorganisms use gene regulatory networks (GRNs) composed of interacting regulatory transcription factors (TFs) to control the timing and magnitude of gene expression. Genome-wide datasets; such as transcriptomics and protein-DNA interactions; and experiments such as high throughput growth curves; facilitate the construction of GRNs and provide insight into TF interactions occurring under stress. Systems biology approaches integrate these datasets into models of GRN architecture as well as statistical and/or dynamical models to understand the function of networks occurring in cells. Previously, these types of studies have focused on traditional model organisms (e.g. Escherichia coli, yeast). However, recent advances in archaeal genetics and other tools have enabled a systems approach to understanding GRNs in these relatively less studied archaeal model organisms. In this report, we outline a systems biology workflow for generating and integrating data focusing on the TF regulator. We discuss experimental design, outline the process of data collection, and provide the tools required to produce high confidence regulons for the TFs of interest. We provide a case study as an example of this workflow, describing the construction of a GRN centered on multi-TF coordinate control of gene expression governing the oxidative stress response in the hypersaline-adapted archaeon Halobacterium salinarum.
Collapse
Affiliation(s)
| | - Amy K Schmid
- Biology Department, Duke University, Durham, NC 27708, USA; Center for Systems Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
29
|
Abstract
Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- *Corresponding author: E-mail:
| |
Collapse
|
30
|
Abstract
Genomic analysis of H. salinarum indicated that the de novo pathway for aromatic amino acid (AroAA) biosynthesis does not follow the classical pathway but begins from non-classical precursors, as is the case for M. jannaschii. The first two steps in the pathway were predicted to be carried out by genes OE1472F and OE1475F, while the 3rd step follows the canonical pathway involving gene OE1477R. The functions of these genes and their products were tested by biochemical and genetic methods. In this study, we provide evidence that supports the role of proteins OE1472F and OE1475F catalyzing consecutive enzymatic reactions leading to the production of 3-dehydroquinate (DHQ), after which AroAA production proceeds via the canonical pathway starting with the formation of DHS (dehydroshikimate), catalyzed by the product of ORF OE1477R. Nutritional requirements and AroAA uptake studies of the mutants gave results that were consistent with the proposed roles of these ORFs in AroAA biosynthesis. DNA microarray data indicated that the 13 genes of the canonical pathway appear to be utilised for AroAA biosynthesis in H. salinarum, as they are differentially expressed when cells are grown in medium lacking AroAA.
Collapse
|
31
|
Bagkos G, Koufopoulos K, Piperi C. A new model for mitochondrial membrane potential production and storage. Med Hypotheses 2014; 83:175-81. [PMID: 24907229 DOI: 10.1016/j.mehy.2014.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/10/2014] [Indexed: 02/05/2023]
Abstract
Mitochondrial membrane potential (MMP) is the most reliable indicator of mitochondrial function. The MMP value range of -136 to -140mV has been considered optimal for maximum ATP production for all living organisms. Even small changes from the above range result in a large fall in ATP production and a large increase in ROS production. The resulting bioenergetic deregulation is considered as the causative agent for numerous major human diseases. Normalization of MMP value improves mitochondrial function and gives excellent therapeutic results. In order for a systematic effective treatment of these diseases to be developed, a detailed knowledge of the mechanism of MMP production is absolutely necessary. However, despite the long-standing research efforts, a concrete mechanism for MMP production has not been found yet. The present paper proposes a novel mechanism of MMP production based on new considerations underlying the function of the two basic players of MMP production, the electron transport chain (ETC) and the F1F0 ATP synthase. Under normal conditions, MMP is almost exclusively produced by the electron flow through ETC complexes I-IV, creating a direct electric current that stops in subunit II of complex IV and gradually charges MMP. However, upon ETC dysfunction F1F0 ATP synthase reverses its action and starts to hydrolyze ATP. ATP hydrolysis further produces electric energy which is transferred, in the form of a direct electric current, from F1 to F0 where is used to charge MMP. This new model is expected to redirect current experimental research on mitochondrial bioenergetics and indicate new therapeutic schemes for mitochondrial disorders.
Collapse
Affiliation(s)
- Georgios Bagkos
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Kostas Koufopoulos
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece.
| |
Collapse
|
32
|
Schlesner M, Miller A, Besir H, Aivaliotis M, Streif J, Scheffer B, Siedler F, Oesterhelt D. The protein interaction network of a taxis signal transduction system in a halophilic archaeon. BMC Microbiol 2012; 12:272. [PMID: 23171228 PMCID: PMC3579733 DOI: 10.1186/1471-2180-12-272] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/20/2012] [Indexed: 11/28/2022] Open
Abstract
Background The taxis signaling system of the extreme halophilic archaeon Halobacterium (Hbt.) salinarum differs in several aspects from its model bacterial counterparts Escherichia coli and Bacillus subtilis. We studied the protein interactions in the Hbt. salinarum taxis signaling system to gain an understanding of its structure, to gain knowledge about its known components and to search for new members. Results The interaction analysis revealed that the core signaling proteins are involved in different protein complexes and our data provide evidence for dynamic interchanges between them. Fifteen of the eighteen taxis receptors (halobacterial transducers, Htrs) can be assigned to four different groups depending on their interactions with the core signaling proteins. Only one of these groups, which contains six of the eight Htrs with known signals, shows the composition expected for signaling complexes (receptor, kinase CheA, adaptor CheW, response regulator CheY). From the two Hbt. salinarum CheW proteins, only CheW1 is engaged in signaling complexes with Htrs and CheA, whereas CheW2 interacts with Htrs but not with CheA. CheY connects the core signaling structure to a subnetwork consisting of the two CheF proteins (which build a link to the flagellar apparatus), CheD (the hub of the subnetwork), two CheC complexes and the receptor methylesterase CheB. Conclusions Based on our findings, we propose two hypotheses. First, Hbt. salinarum might have the capability to dynamically adjust the impact of certain Htrs or Htr clusters depending on its current needs or environmental conditions. Secondly, we propose a hypothetical feedback loop from the response regulator to Htr methylation made from the CheC proteins, CheD and CheB, which might contribute to adaptation analogous to the CheC/CheD system of B. subtilis.
Collapse
Affiliation(s)
- Matthias Schlesner
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Functional genomic and advanced genetic studies reveal novel insights into the metabolism, regulation, and biology of Haloferax volcanii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:602408. [PMID: 22190865 PMCID: PMC3235422 DOI: 10.1155/2011/602408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/04/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022]
Abstract
The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolomic studies are discussed. Notably, Hfx. volcanii is together with Halobacterium salinarum the only prokaryotic species for which a translatome analysis has been performed. The results revealed that the fraction of translationally-regulated genes in haloarchaea is as high as in eukaryotes. A highly efficient genetic system has been established that enables the application of libraries as well as the parallel generation of genomic deletion mutants. Facile mutant generation is complemented by the possibility to culture Hfx. volcanii in microtiter plates, allowing the phenotyping of mutant collections. Genetic approaches are currently used to study diverse biological questions–from replication to posttranslational modification—and selected results are discussed. Taken together, the wealth of functional genomic and genetic tools make Hfx. volcanii a bona fide archaeal model species, which has enabled the generation of important results in recent years and will most likely generate further breakthroughs in the future.
Collapse
|
34
|
Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis. PLoS Comput Biol 2010; 6:e1000799. [PMID: 20543878 PMCID: PMC2881530 DOI: 10.1371/journal.pcbi.1000799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 04/28/2010] [Indexed: 12/03/2022] Open
Abstract
Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment. Extremophiles are organisms that thrive in physically or geochemically extreme conditions that are detrimental, even lethal, to the majority of life on Earth. Natronomonas pharaonis is one that has been able to adapt to both high salt concentration and an alkaline pH. In this study, we investigate the chemical reactions that occur within the microorganism, collectively referred to as its metabolic network, that allow it to convert the nutrients in its environment to biomass and energy. Specifically, we reconstructed the network by collecting evidence for the existence of reactions from the literature, and then supplemented them with computational approaches, for example by searching the genome of Natronomonas pharaonis for genes that could potentially encode analogs of known enzymes from other organisms. Finally, with the network in hand, we developed a computational model which we used to simulate growth. Among other results, we found indications that Natronomonas pharaonis regulates its metabolism such that energy production and growth are maximized. Despite this however, we also found that Natronomonas pharaonis is only able to incorporate a very small fraction of the total carbon that it consumes (approximately 35%), likely in no small part due to the difficulties posed by its environment.
Collapse
|
35
|
Heinemann M, Sauer U. Systems biology of microbial metabolism. Curr Opin Microbiol 2010; 13:337-43. [PMID: 20219420 DOI: 10.1016/j.mib.2010.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/13/2010] [Indexed: 12/20/2022]
Abstract
One current challenge in metabolic systems biology is to map out the regulation networks that control metabolism. From progress in this area, we conclude that non-transcriptional mechanisms (e.g. metabolite-protein interactions and protein phosphorylation) are highly relevant in actually controlling metabolic function. Furthermore, recent results highlight more functions of enzymes and metabolites than currently appreciated in genome-scale metabolic reconstructions, thereby adding another level of complexity. Combining experimental analyses and modeling efforts we are also beginning to understand how metabolic behavior emerges. Particularly, we recognize that metabolism is not simply a dull workhorse process but rather takes very active control of itself and other cellular processes, rendering true system-level understanding of metabolism possibly more difficult than for other cellular systems.
Collapse
Affiliation(s)
- Matthias Heinemann
- ETH Zurich, Institute of Molecular Systems Biology, Wolfgang-Pauli-Str. 16, 8093 Zurich, Switzerland.
| | | |
Collapse
|