1
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
2
|
Sherman W, Grosberg A. An adapted particle swarm optimization algorithm as a model for exploring premyofibril formation. AIP ADVANCES 2020; 10:045126. [PMID: 32341885 PMCID: PMC7166122 DOI: 10.1063/1.5145010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
While the fundamental steps outlining myofibril formation share a similar scheme for different cell and species types, various granular details involved in the development of a functional contractile muscle are not well understood. Many studies of myofibrillogenesis focus on the protein interactions that are involved in myofibril maturation with the assumption that there is a fully formed premyofibril at the start of the process. However, there is little known regarding how the premyofibril is initially constructed. Fortunately, the protein α-actinin, which has been consistently identified throughout the maturation process, is found in premyofibrils as punctate aggregates known as z-bodies. We propose a theoretical model based on the particle swarm optimization algorithm that can explore how these α-actinin clusters form into the patterns observed experimentally. Our algorithm can produce different pattern configurations by manipulating specific parameters that can be related to α-actinin mobility and binding affinity. These patterns, which vary experimentally according to species and muscle cell type, speak to the versatility of α-actinin and demonstrate how its behavior may be altered through interactions with various regulatory, signaling, and metabolic proteins. The results of our simulations invite speculation that premyofibrils can be influenced toward developing different patterns by altering the behavior of individual α-actinin molecules, which may be linked to key differences present in different cell types.
Collapse
|
3
|
Lenz M. Reversal of contractility as a signature of self-organization in cytoskeletal bundles. eLife 2020; 9:51751. [PMID: 32149609 PMCID: PMC7082124 DOI: 10.7554/elife.51751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Bundles of cytoskeletal filaments and molecular motors generate motion in living cells, and have internal structures ranging from very organized to apparently disordered. The mechanisms powering the disordered structures are debated, and existing models predominantly predict that they are contractile. We reexamine this prediction through a theoretical treatment of the interplay between three well-characterized internal dynamical processes in cytoskeletal bundles: filament assembly and disassembly, the attachement-detachment dynamics of motors and that of crosslinking proteins. The resulting self-organization is easily understood in terms of motor and crosslink localization, and allows for an extensive control of the active bundle mechanics, including reversals of the filaments’ apparent velocities and the possibility of generating extension instead of contraction. This reversal mirrors some recent experimental observations, and provides a robust criterion to experimentally elucidate the underpinnings of both actomyosin activity and the dynamics of microtubule/motor assemblies in vitro as well as in diverse intracellular structures ranging from contractile bundles to the mitotic spindle.
Collapse
Affiliation(s)
- Martin Lenz
- Université Paris-Saclay, CNRS, LPTMS, Orsay, France.,PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
4
|
Sherman WF, Grosberg A. Exploring cardiac form and function: A length-scale computational biology approach. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1470. [PMID: 31793215 DOI: 10.1002/wsbm.1470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 01/14/2023]
Abstract
The ability to adequately pump blood throughout the body is the result of tightly regulated feedback mechanisms that exist across many spatial scales in the heart. Diseases which impede the function at any one of the spatial scales can cause detrimental cardiac remodeling and eventual heart failure. An overarching goal of cardiac research is to use engineered heart tissue in vitro to study the physiology of diseased heart tissue, develop cell replacement therapies, and explore drug testing applications. A commonality within the field is to manipulate the flow of mechanical signals across the various spatial scales to direct self-organization and build functional tissue. Doing so requires an understanding of how chemical, electrical, and mechanical cues can be used to alter the cellular microenvironment. We discuss how mathematical models have been used in conjunction with experimental techniques to explore various structure-function relations that exist across numerous spatial scales. We highlight how a systems biology approach can be employed to recapitulate in vivo characteristics in vitro at the tissue, cell, and subcellular scales. Specific focus is placed on the interplay between experimental and theoretical approaches. Various modeling methods are showcased to demonstrate the breadth and power afforded to the systems biology approach. An overview of modeling methodologies exemplifies how the strengths of different scientific disciplines can be used to supplement and/or inspire new avenues of experimental exploration. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Models of Systems Properties and Processes > Cellular Models Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- William F Sherman
- Center for Complex Biological Systems, University of California Irvine, Irvine, California.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California
| | - Anna Grosberg
- Center for Complex Biological Systems, University of California Irvine, Irvine, California.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California.,Department of Biomedical Engineering, University of California Irvine, Irvine, California.,Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California.,NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, California
| |
Collapse
|
5
|
Chandrasekaran A, Upadhyaya A, Papoian GA. Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling. PLoS Comput Biol 2019; 15:e1007156. [PMID: 31287817 PMCID: PMC6615854 DOI: 10.1371/journal.pcbi.1007156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Bundled actin structures play a key role in maintaining cellular shape, in aiding force transmission to and from extracellular substrates, and in affecting cellular motility. Recent studies have also brought to light new details on stress generation, force transmission and contractility of actin bundles. In this work, we are primarily interested in the question of what determines the stability of actin bundles and what network geometries do unstable bundles eventually transition to. To address this problem, we used the MEDYAN mechano-chemical force field, modeling several micron-long actin bundles in 3D, while accounting for a comprehensive set of chemical, mechanical and transport processes. We developed a hierarchical clustering algorithm for classification of the different long time scale morphologies in our study. Our main finding is that initially unipolar bundles are significantly more stable compared with an apolar initial configuration. Filaments within the latter bundles slide easily with respect to each other due to myosin activity, producing a loose network that can be subsequently severely distorted. At high myosin concentrations, a morphological transition to aster-like geometries was observed. We also investigated how actin treadmilling rates influence bundle dynamics, and found that enhanced treadmilling leads to network fragmentation and disintegration, while this process is opposed by myosin and crosslinking activities. Interestingly, treadmilling bundles with an initial apolar geometry eventually evolve to a whole gamut of network morphologies based on relative positions of filament ends, such as sarcomere-like organization. We found that apolar bundles show a remarkable sensitivity to environmental conditions, which may be important in enabling rapid cytoskeletal structural reorganization and adaptation in response to intracellular and extracellular cues.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Physics, University of Maryland, College Park, United States of America
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
6
|
Chatzifrangkeskou M, Yadin D, Marais T, Chardonnet S, Cohen-Tannoudji M, Mougenot N, Schmitt A, Crasto S, Di Pasquale E, Macquart C, Tanguy Y, Jebeniani I, Pucéat M, Morales Rodriguez B, Goldmann WH, Dal Ferro M, Biferi MG, Knaus P, Bonne G, Worman HJ, Muchir A. Cofilin-1 phosphorylation catalyzed by ERK1/2 alters cardiac actin dynamics in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 2018; 27:3060-3078. [PMID: 29878125 PMCID: PMC6097156 DOI: 10.1093/hmg/ddy215] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Maria Chatzifrangkeskou
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - David Yadin
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thibaut Marais
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, UPMC Paris 06, INSERM, UMS29 Omique, F-75013 Paris, France
| | - Mathilde Cohen-Tannoudji
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Paris 06, INSERM, UMS28 Phénotypage du Petit Animal, Paris F-75013, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Silvia Crasto
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Elisa Di Pasquale
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Coline Macquart
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Yannick Tanguy
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Imen Jebeniani
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Michel Pucéat
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Wolfgang H Goldmann
- Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Matteo Dal Ferro
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Maria-Grazia Biferi
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Howard J Worman
- Department of Medicine
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
7
|
Bonnet A, Lambert G, Ernest S, Dutrieux FX, Coulpier F, Lemoine S, Lobbardi R, Rosa FM. Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin. Dev Cell 2017; 42:527-541.e4. [PMID: 28867488 DOI: 10.1016/j.devcel.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/26/2017] [Accepted: 08/03/2017] [Indexed: 10/24/2022]
Abstract
Skeletal muscle contraction is mediated by myofibrils, complex multi-molecular scaffolds structured into repeated units, the sarcomeres. Myofibril structure and function have been extensively studied, but the molecular processes regulating its formation within the differentiating muscle cell remain largely unknown. Here we show in zebrafish that genetic interference with the Quaking RNA-binding proteins disrupts the initial steps of myofibril assembly without affecting early muscle differentiation. Using RNA sequencing, we demonstrate that Quaking is required for accumulation of the muscle-specific tropomyosin-3 transcript, tpm3.12. Further functional analyses reveal that Tpm3.12 mediates Quaking control of myofibril formation. Moreover, we identified a Quaking-binding site in the 3' UTR of tpm3.12 transcript, which is required in vivo for tpm3.12 accumulation and myofibril formation. Our work uncovers a Quaking/Tpm3 pathway controlling de novo myofibril assembly. This unexpected developmental role for Tpm3 could be at the origin of muscle defects observed in human congenital myopathies associated with tpm3 mutation.
Collapse
Affiliation(s)
- Aline Bonnet
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France.
| | - Guillaume Lambert
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Sylvain Ernest
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - François Xavier Dutrieux
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Fanny Coulpier
- INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France; IBENS, Institut de Biologie de l'Ecole Normale Supérieure, Plateforme Génomique, 75005 Paris, France
| | - Sophie Lemoine
- INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France; IBENS, Institut de Biologie de l'Ecole Normale Supérieure, Plateforme Génomique, 75005 Paris, France
| | - Riadh Lobbardi
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Frédéric Marc Rosa
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France.
| |
Collapse
|
8
|
Weitkunat M, Brasse M, Bausch AR, Schnorrer F. Mechanical tension and spontaneous muscle twitching precede the formation of cross-striated muscle in vivo. Development 2017; 144:1261-1272. [PMID: 28174246 PMCID: PMC5399620 DOI: 10.1242/dev.140723] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/28/2017] [Indexed: 02/05/2023]
Abstract
Muscle forces are produced by repeated stereotypical actomyosin units called sarcomeres. Sarcomeres are chained into linear myofibrils spanning the entire muscle fiber. In mammalian body muscles, myofibrils are aligned laterally, resulting in their typical cross-striated morphology. Despite this detailed textbook knowledge about the adult muscle structure, it is still unclear how cross-striated myofibrils are built in vivo. Here, we investigate the morphogenesis of Drosophila abdominal muscles and establish them as an in vivo model for cross-striated muscle development. By performing live imaging, we find that long immature myofibrils lacking a periodic actomyosin pattern are built simultaneously in the entire muscle fiber and then align laterally to give mature cross-striated myofibrils. Interestingly, laser micro-lesion experiments demonstrate that mechanical tension precedes the formation of the immature myofibrils. Moreover, these immature myofibrils do generate spontaneous Ca2+-dependent contractions in vivo, which, when chemically blocked, result in cross-striation defects. Taken together, these results suggest a myofibrillogenesis model in which mechanical tension and spontaneous muscle twitching synchronize the simultaneous self-organization of different sarcomeric protein complexes to build highly regular cross-striated myofibrils spanning the length of large muscle fibers. Summary: In Drosophila, immature myofibrils are built simultaneously across an entire muscle fiber, and then self-organize in a manner dependent on spontaneous contractions and mechanical tension.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Martina Brasse
- Lehrstuhl für Biophysik E27, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany .,Developmental Biology Institute of Marseille (IBDM), CNRS, UMR 7288, Aix-Marseille Université, Case 907, Parc Scientifique de Luminy, Marseille 13288, France
| |
Collapse
|
9
|
A Combination of Actin Treadmilling and Cross-Linking Drives Contraction of Random Actomyosin Arrays. Biophys J 2016; 109:1818-29. [PMID: 26536259 DOI: 10.1016/j.bpj.2015.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 01/02/2023] Open
Abstract
We investigate computationally the self-organization and contraction of an initially random actomyosin ring. In the framework of a detailed physical model for a ring of cross-linked actin filaments and myosin-II clusters, we derive the force balance equations and solve them numerically. We find that to contract, actin filaments have to treadmill and to be sufficiently cross linked, and myosin has to be processive. The simulations reveal how contraction scales with mechanochemical parameters. For example, they show that the ring made of longer filaments generates greater force but contracts slower. The model predicts that the ring contracts with a constant rate proportional to the initial ring radius if either myosin is released from the ring during contraction and actin filaments shorten, or if myosin is retained in the ring, while the actin filament number decreases. We demonstrate that a balance of actin nucleation and compression-dependent disassembly can also sustain contraction. Finally, the model demonstrates that with time pattern formation takes place in the ring, worsening the contractile process. The more random the actin dynamics are, the higher the contractility will be.
Collapse
|
10
|
Popov K, Komianos J, Papoian GA. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks. PLoS Comput Biol 2016; 12:e1004877. [PMID: 27120189 PMCID: PMC4847874 DOI: 10.1371/journal.pcbi.1004877] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament’s resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the biological implications of these findings for the arc formation in lamellipodium-to-lamellum architectural remodeling. Lastly, our simulations produce force-dependent accumulation of myosin II, which is thought to be responsible for their mechanosensation ability, also spontaneously generating myosin II concentration gradients in the solution phase of the simulation volume. Active matter systems have the distinct ability to convert energy from their surroundings into mechanical work, which gives rise to them having highly dynamic properties. Modeling active matter systems and capturing their complex behavior has been a great challenge in past years due to the many coupled interactions between their constituent parts, including not only distinct chemical and mechanical properties, but also feedback between them. One of the most intriguing biological active matter systems is the cell cytoskeleton, which can dynamically respond to chemical and mechanical cues to control cell structure and shape, playing a central role in many higher-order cellular processes. To model these systems and reproduce their behavior, we present a new modeling approach which combines the chemical, mechanical, and molecular transport aspects of active matter systems, all represented with equivalent complexity, while also allowing for various forms of mechanochemical feedback. This modeling approach, named MEDYAN, and software implementation is flexible so that a wide range of active matter systems can be simulated with a high level of detail, and ultimately can help to describe active matter phenomena, and in particular, the dynamics of the cell cytoskeleton. In this work, we have used MEDYAN to simulate a cytoskeletal network consisting of actin filaments, cross-linking proteins, and myosin II molecular motors. We found that these systems show rich dynamical behaviors, undergoing alignment and bundling transitions, with an emergent contractility, as the concentrations of myosin II and cross-linking proteins, as well as actin filament turnover rates, are varied.
Collapse
Affiliation(s)
- Konstantin Popov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - James Komianos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Biophysics Graduate Program, University of Maryland, College Park, Maryland, United States of America
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Williams J, Boin NG, Valera JM, Johnson AN. Noncanonical roles for Tropomyosin during myogenesis. Development 2015; 142:3440-52. [PMID: 26293307 DOI: 10.1242/dev.117051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/12/2015] [Indexed: 01/21/2023]
Abstract
For skeletal muscle to produce movement, individual myofibers must form stable contacts with tendon cells and then assemble sarcomeres. The myofiber precursor is the nascent myotube, and during myogenesis the myotube completes guided elongation to reach its target tendons. Unlike the well-studied events of myogenesis, such as myoblast specification and myoblast fusion, the molecules that regulate myotube elongation are largely unknown. In Drosophila, hoi polloi (hoip) encodes a highly conserved RNA-binding protein and hoip mutant embryos are largely paralytic due to defects in myotube elongation and sarcomeric protein expression. We used the hoip mutant background as a platform to identify novel regulators of myogenesis, and uncovered surprising developmental functions for the sarcomeric protein Tropomyosin 2 (Tm2). We have identified Hoip-responsive sequences in the coding region of the Tm2 mRNA that are essential for Tm2 protein expression in developing myotubes. Tm2 overexpression rescued the hoip myogenic phenotype by promoting F-actin assembly at the myotube leading edge, by restoring the expression of additional sarcomeric RNAs, and by promoting myoblast fusion. Embryos that lack Tm2 also showed reduced sarcomeric protein expression, and embryos that expressed a gain-of-function Tm2 allele showed both fusion and elongation defects. Tropomyosin therefore dictates fundamental steps of myogenesis prior to regulating contraction in the sarcomere.
Collapse
Affiliation(s)
- Jessica Williams
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| | - Nathan G Boin
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| | - Juliana M Valera
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| | - Aaron N Johnson
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
12
|
Letort G, Politi AZ, Ennomani H, Théry M, Nedelec F, Blanchoin L. Geometrical and mechanical properties control actin filament organization. PLoS Comput Biol 2015; 11:e1004245. [PMID: 26016478 DOI: 10.1371/journal.pcbi.1004245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/17/2015] [Indexed: 12/23/2022] Open
Abstract
The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model.
Collapse
Affiliation(s)
- Gaëlle Letort
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France; Laboratoire d'Imagerie et Systèmes d'Acquisition, CEA, LETI, MINATEC Campus, Grenoble, France, Univ. Grenoble-Alpes, Grenoble, France
| | | | - Hajer Ennomani
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France
| | - Manuel Théry
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France
| | | | - Laurent Blanchoin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France
| |
Collapse
|
13
|
Nie W, Wei MT, Ou-Yang HD, Jedlicka SS, Vavylonis D. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization. Cytoskeleton (Hoboken) 2015; 72:29-46. [PMID: 25641802 DOI: 10.1002/cm.21207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/31/2014] [Indexed: 12/24/2022]
Abstract
The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.
Collapse
Affiliation(s)
- Wei Nie
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | | | | | | | |
Collapse
|
14
|
Dasbiswas K, Majkut S, Discher DE, Safran SA. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating. Nat Commun 2015; 6:6085. [PMID: 25597833 DOI: 10.1038/ncomms7085] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/11/2014] [Indexed: 11/09/2022] Open
Abstract
Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.
Collapse
Affiliation(s)
- K Dasbiswas
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - S Majkut
- 1] Department of Molecular and Biophysical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Physics and Astronomy Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - D E Discher
- 1] Department of Molecular and Biophysical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Physics and Astronomy Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samuel A Safran
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Identification and characterization of a differentially expressed protein (CAPZB) in skeletal muscle between Meishan and Large White pigs. Gene 2014; 544:107-13. [PMID: 24792893 DOI: 10.1016/j.gene.2014.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/08/2014] [Accepted: 05/01/2014] [Indexed: 11/22/2022]
Abstract
Actin capping protein beta (CAPZB) protein was identified with considerable differences in the longissimus dorsi muscle between Large White and Meishan pigs using proteomics approach. However, in pigs, the information on CAPZB is very limited. In this study, we cloned and characterized the porcine actin capping protein beta (CAPZB) gene. In addition, we present two novel porcine CAPZB splice variants CAPZB1 and CAPZB2. CAPZB1 was expressed in all twenty tissues. However, CAPZB2 was predominantly expressed in the skeletal muscle and heart. In addition, the two isoforms had different expression profiles during the skeletal muscle development and between breeds. Moreover, the SNP T394G was identified in the coding region of the CAPZB gene, which was significantly associated with the carcass traits including the LFW, CFW, SFT and LEA. Data presented in our study suggests that the CAPZB gene may be a candidate gene of meat production trait and provides useful information for further studies on its roles in porcine skeletal muscle.
Collapse
|
16
|
Weitkunat M, Kaya-Çopur A, Grill SW, Schnorrer F. Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Curr Biol 2014; 24:705-16. [PMID: 24631244 DOI: 10.1016/j.cub.2014.02.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Higher animals generate an elaborate muscle-tendon network to perform their movements. To build a functional network, developing muscles must establish stable connections with tendons and assemble their contractile apparatuses. Current myofibril assembly models do not consider the impact of muscle-tendon attachment on myofibrillogenesis. However, if attachment and myofibrillogenesis are not properly coordinated, premature muscle contractions can destroy an unstable myotendinous system, leading to severe myopathies. RESULTS Here, we use Drosophila indirect flight muscles to investigate how muscle-tendon attachment and myofibrillogenesis are coordinated. We find that flight muscles first stably attach to tendons and then assemble their myofibrils. Interestingly, this myofibril assembly is triggered simultaneously throughout the entire muscle, suggesting a self-assembly mechanism. By applying laser-cutting experiments, we show that muscle attachment coincides with an increase in mechanical tension before periodic myofibrils can be detected. We manipulated tension buildup within the myotendinous system either by genetically compromising attachment initiation and integrin recruitment to the myotendinous junction or by optically severing tendons from muscle. Both treatments cause strong myofibrillogenesis defects. We find that myosin motor activity is required for both tension formation and myofibril assembly, suggesting that myofibril assembly itself contributes to tension buildup. CONCLUSIONS Our results demonstrate that force-resistant attachment enables a stark tension increase in the myotendinous system. Subsequently, this tension increase triggers simultaneous myofibril self-assembly throughout the entire muscle fiber. As myofibril and sarcomeric architecture as well as their molecular components are evolutionarily conserved, we propose a similar tension-based mechanism to regulate myofibrillogenesis in vertebrates.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Aynur Kaya-Çopur
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stephan W Grill
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
17
|
Majkut S, Idema T, Swift J, Krieger C, Liu A, Discher DE. Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr Biol 2013; 23:2434-9. [PMID: 24268417 PMCID: PMC4116639 DOI: 10.1016/j.cub.2013.10.057] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/05/2013] [Accepted: 10/22/2013] [Indexed: 01/08/2023]
Abstract
In development and differentiation, morphological changes often accompany mechanical changes [1], but it is unclear whether or when cells in embryos sense tissue elasticity. The earliest embryo is uniformly pliable, while adult tissues vary widely in mechanics from soft brain and stiff heart to rigid bone [2]. However, cell sensitivity to microenvironment elasticity is debated based in part on results from complex three-dimensional culture models [3]. Regenerative cardiology provides strong motivation to clarify any cell-level sensitivities to tissue elasticity because rigid postinfarct regions limit pumping by the adult heart [4]. Here, we focus on the spontaneously beating embryonic heart and sparsely cultured cardiomyocytes, including cells derived from pluripotent stem cells. Tissue elasticity, Et, increases daily for heart to 1-2 kPa by embryonic day 4 (E4), and although this is ~10-fold softer than adult heart, the beating contractions of E4 cardiomyocytes prove optimal at ~Et,E4 both in vivo and in vitro. Proteomics reveals daily increases in a small subset of proteins, namely collagen plus cardiac-specific excitation-contraction proteins. Rapid softening of the heart's matrix with collagenase or stiffening it with enzymatic crosslinking suppresses beating. Sparsely cultured E4 cardiomyocytes on collagen-coated gels likewise show maximal contraction on matrices with native E4 stiffness, highlighting cell-intrinsic mechanosensitivity. While an optimal elasticity for striation proves consistent with the mathematics of force-driven sarcomere registration, contraction wave speed is linear in Et as theorized for excitation-contraction coupled to matrix elasticity. Pluripotent stem cell-derived cardiomyocytes also prove to be mechanosensitive to matrix and thus generalize the main observation that myosin II organization and contractile function are optimally matched to the load contributed by matrix elasticity.
Collapse
Affiliation(s)
- Stephanie Majkut
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timon Idema
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Joe Swift
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine Krieger
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E. Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Luo T, Mohan K, Iglesias PA, Robinson DN. Molecular mechanisms of cellular mechanosensing. NATURE MATERIALS 2013; 12:1064-71. [PMID: 24141449 PMCID: PMC3838893 DOI: 10.1038/nmat3772] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/04/2013] [Indexed: 05/03/2023]
Abstract
Mechanical forces direct a host of cellular and tissue processes. Although much emphasis has been placed on cell-adhesion complexes as force sensors, the forces must nevertheless be transmitted through the cortical cytoskeleton. Yet how the actin cortex senses and transmits forces and how cytoskeletal proteins interact in response to the forces is poorly understood. Here, by combining molecular and mechanical experimental perturbations with theoretical multiscale modelling, we decipher cortical mechanosensing from molecular to cellular scales. We show that forces are shared between myosin II and different actin crosslinkers, with myosin having potentiating or inhibitory effects on certain crosslinkers. Different types of cell deformation elicit distinct responses, with myosin and α-actinin responding to dilation, and filamin mainly reacting to shear. Our observations show that the accumulation kinetics of each protein may be explained by its molecular mechanisms, and that protein accumulation and the cell's viscoelastic state can explain cell contraction against mechanical load.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Correspondence to or
| | - Krithika Mohan
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Douglas N. Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Science, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Correspondence to or
| |
Collapse
|
19
|
Danuser G, Allard J, Mogilner A. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu Rev Cell Dev Biol 2013; 29:501-28. [PMID: 23909278 DOI: 10.1146/annurev-cellbio-101512-122308] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A migrating cell is a molecular machine made of tens of thousands of short-lived and interacting parts. Understanding migration means understanding the self-organization of these parts into a system of functional units. This task is one of tackling complexity: First, the system integrates numerous chemical and mechanical component processes. Second, these processes are connected in feedback interactions and over a large range of spatial and temporal scales. Third, many processes are stochastic, which leads to heterogeneous migration behaviors. Early on in the research of cell migration it became evident that this complexity exceeds human intuition. Thus, the cell migration community has led the charge to build mathematical models that could integrate the diverse experimental observations and measurements in consistent frameworks, first in conceptual and more recently in molecularly explicit models. The main goal of this review is to sift through a series of important conceptual and explicit mathematical models of cell migration and to evaluate their contribution to the field in their ability to integrate critical experimental data.
Collapse
Affiliation(s)
- Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
20
|
Alp/Enigma family proteins cooperate in Z-disc formation and myofibril assembly. PLoS Genet 2013; 9:e1003342. [PMID: 23505387 PMCID: PMC3591300 DOI: 10.1371/journal.pgen.1003342] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila Alp/Enigma family protein Zasp52 localizes to myotendinous junctions and Z-discs. It is required for terminal muscle differentiation and muscle attachment. Its vertebrate ortholog ZASP/Cypher also localizes to Z-discs, interacts with α-actinin through its PDZ domain, and is involved in Z-disc maintenance. Human mutations in ZASP cause myopathies and cardiomyopathies. Here we show that Drosophila Zasp52 is one of the earliest markers of Z-disc assembly, and we use a Zasp52-GFP fusion to document myofibril assembly by live imaging. We demonstrate that Zasp52 is required for adult Z-disc stability and pupal myofibril assembly. In addition, we show that two closely related proteins, Zasp66 and the newly identified Zasp67, are also required for adult Z-disc stability and are participating with Zasp52 in Z-disc assembly resulting in more severe, synergistic myofibril defects in double mutants. Zasp52 and Zasp66 directly bind to α-actinin, and they can also form a ternary complex. Our results indicate that Alp/Enigma family members cooperate in Z-disc assembly and myofibril formation; and we propose, based on sequence analysis, a novel class of PDZ domain likely involved in α-actinin binding.
Collapse
|
21
|
Lee SL, Nekouzadeh A, Butler B, Pryse KM, McConnaughey WB, Nathan AC, Legant WR, Schaefer PM, Pless RB, Elson EL, Genin GM. Physically-induced cytoskeleton remodeling of cells in three-dimensional culture. PLoS One 2012; 7:e45512. [PMID: 23300512 PMCID: PMC3531413 DOI: 10.1371/journal.pone.0045512] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/20/2012] [Indexed: 01/15/2023] Open
Abstract
Characterizing how cells in three-dimensional (3D) environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension.
Collapse
Affiliation(s)
- Sheng-Lin Lee
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Ali Nekouzadeh
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Boyd Butler
- Department of Biological Sciences Texas Tech University, Lubbock, Texas, United States of America
| | - Kenneth M. Pryse
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William B. McConnaughey
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Adam C. Nathan
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Wesley R. Legant
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Pascal M. Schaefer
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Robert B. Pless
- Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Elliot L. Elson
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guy M. Genin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|