1
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
2
|
Al Sarkhi AK. Hypothesis: The electrical properties of coronavirus. Electromagn Biol Med 2020; 39:433-436. [PMID: 33016156 DOI: 10.1080/15368378.2020.1830794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To help investigate the relationship between inflammatory and other symptoms of coronavirus and the protein-protein interactions (PPI) that occur between viral proteins and protein molecules of the host cell, I propose that the electrostatic discharge (ESD) exists including corona discharge to lead to ozone gas. I cite evidence in support of this hypothesis. I hope that the proposed will inspire new studies in finding effective treatments and vaccines for individuals with coronavirus disease in 2019. I suggest possible future studies that may lend more credibility to the proposed.
Collapse
Affiliation(s)
- Awaad K Al Sarkhi
- College of Science, Technology, Engineering, and Mathematics, University of Arkansas at Little Rock , Little Rock, USA
| |
Collapse
|
3
|
Shashikala HBM, Chakravorty A, Alexov E. Modeling Electrostatic Force in Protein-Protein Recognition. Front Mol Biosci 2019; 6:94. [PMID: 31608289 PMCID: PMC6774301 DOI: 10.3389/fmolb.2019.00094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Electrostatic interactions are important for understanding molecular interactions, since they are long-range interactions and can guide binding partners to their correct binding positions. To investigate the role of electrostatic forces in molecular recognition, we calculated electrostatic forces between binding partners separated at various distances. The investigation was done on a large set of 275 protein complexes using recently developed DelPhiForce tool and in parallel, evaluating the total electrostatic force via electrostatic association energy. To accomplish the goal, we developed a method to find an appropriate direction to move one chain of protein complex away from its bound position and then calculate the corresponding electrostatic force as a function of separation distance. It is demonstrated that at large distances between the partners, the electrostatic force (magnitude and direction) is consistent among the protocols used and the main factors contributing to it are the net charge of the partners and their interfaces. However, at short distances, where partners form specific pair-wise interactions or de-solvation penalty becomes significant, the outcome depends on the precise balance of these factors. Based on the electrostatic force profile (force as a function of distance), we group the cases into four distinctive categories, among which the most intriguing is the case termed "soft landing." In this case, the electrostatic force at large distances is favorable assisting the partners to come together, while at short distance it opposes binding, and thus slows down the approach of the partners toward their physical binding.
Collapse
|
4
|
Peng Y, Michonova E. Long-range effect of a single mutation in spermine synthase. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s021963361850030x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spermine synthase (SpmSyn) is an enzyme critical for maintaining the balance of spermine/spermidine in the cell. The amino acid sequence of SpmSyn is highly conserved among the species. Most of the mutations found in the human population are shown to be causing Snyder–Robinson syndrome, a severe mental disorder, while not so many are neutral. This is intriguing since SpmSyn is a relatively large protein and less than 10% of its amino acids are directly involved in the catalysis. Here, we demonstrated that a mutation (G191S) at a site far away from the active pocket affects the active site dynamics and thus the functionality of SpmSyn. This suggests that SpmSyn functionality is regulated by networks of interacting residues and thus expands the functional and structural importance beyond the amino acids directly involved in the catalysis. Comparing the calculated effects of G191S and a nine-residue deletion shown to decrease SpmSyn activity [Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN, Crystal structure of human spermine synthase: Implications of substrate binding and catalytic mechanism, J Biol Chem 283:16135–16146, 2008], we predict that G191S mutation also decreases SpmSyn activity and may be causing disease.
Collapse
Affiliation(s)
- Yunhui Peng
- Department of Physics and Astronomy, Clemson University, Clemson SC 29634, USA
| | - Ekaterina Michonova
- Department of Chemistry and Physics, Erskine College, Due West SC 29639, USA
| |
Collapse
|
5
|
Computational Approaches to Prioritize Cancer Driver Missense Mutations. Int J Mol Sci 2018; 19:ijms19072113. [PMID: 30037003 PMCID: PMC6073793 DOI: 10.3390/ijms19072113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a complex disease that is driven by genetic alterations. There has been a rapid development of genome-wide techniques during the last decade along with a significant lowering of the cost of gene sequencing, which has generated widely available cancer genomic data. However, the interpretation of genomic data and the prediction of the association of genetic variations with cancer and disease phenotypes still requires significant improvement. Missense mutations, which can render proteins non-functional and provide a selective growth advantage to cancer cells, are frequently detected in cancer. Effects caused by missense mutations can be pinpointed by in silico modeling, which makes it more feasible to find a treatment and reverse the effect. Specific human phenotypes are largely determined by stability, activity, and interactions between proteins and other biomolecules that work together to execute specific cellular functions. Therefore, analysis of missense mutations’ effects on proteins and their complexes would provide important clues for identifying functionally important missense mutations, understanding the molecular mechanisms of cancer progression and facilitating treatment and prevention. Herein, we summarize the major computational approaches and tools that provide not only the classification of missense mutations as cancer drivers or passengers but also the molecular mechanisms induced by driver mutations. This review focuses on the discussion of annotation and prediction methods based on structural and biophysical data, analysis of somatic cancer missense mutations in 3D structures of proteins and their complexes, predictions of the effects of missense mutations on protein stability, protein-protein and protein-nucleic acid interactions, and assessment of conformational changes in protein conformations induced by mutations.
Collapse
|
6
|
Li L, Chakravorty A, Alexov E. DelPhiForce, a tool for electrostatic force calculations: Applications to macromolecular binding. J Comput Chem 2017; 38:584-593. [PMID: 28130775 PMCID: PMC5315605 DOI: 10.1002/jcc.24715] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/10/2016] [Indexed: 12/31/2022]
Abstract
Long-range electrostatic forces play an important role in molecular biology, particularly in macromolecular interactions. However, calculating the electrostatic forces for irregularly shaped molecules immersed in water is a difficult task. Here, we report a new tool, DelPhiForce, which is a tool in the DelPhi package that calculates and visualizes the electrostatic forces in biomolecular systems. In parallel, the DelPhi algorithm for modeling electrostatic potential at user-defined positions has been enhanced to include triquadratic and tricubic interpolation methods. The tricubic interpolation method has been tested against analytical solutions and it has been demonstrated that the corresponding errors are negligibly small at resolution 4 grids/Å. The DelPhiForce is further applied in the study of forces acting between partners of three protein-protein complexes. It has been demonstrated that electrostatic forces play a dual role by steering binding partners (so that the partners recognize their native interfaces) and exerting an electrostatic torque (if the mutual orientations of the partners are not native-like). The output of DelPhiForce is in a format that VMD can read and visualize, and provides additional options for analysis of protein-protein binding. DelPhiForce is available for download from the DelPhi webpage at http://compbio.clemson.edu/downloadDir/delphiforce.tar.gz © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lin Li
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| | | | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Mallik S, Kundu S. Modular Organization of Residue-Level Contacts Shapes the Selection Pressure on Individual Amino Acid Sites of Ribosomal Proteins. Genome Biol Evol 2017; 9:916-931. [PMID: 28338825 PMCID: PMC5388290 DOI: 10.1093/gbe/evx036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Understanding the molecular evolution of macromolecular complexes in the light of their structure, assembly, and stability is of central importance. Here, we address how the modular organization of native molecular contacts shapes the selection pressure on individual residue sites of ribosomal complexes. The bacterial ribosomal complex is represented as a residue contact network where nodes represent amino acid/nucleotide residues and edges represent their van der Waals interactions. We find statistically overrepresented native amino acid-nucleotide contacts (OaantC, one amino acid contacts one or multiple nucleotides, internucleotide contacts are disregarded). Contact number is defined as the number of nucleotides contacted. Involvement of individual amino acids in OaantCs with smaller contact numbers is more random, whereas only a few amino acids significantly contribute to OaantCs with higher contact numbers. An investigation of structure, stability, and assembly of bacterial ribosome depicts the involvement of these OaantCs in diverse biophysical interactions stabilizing the complex, including high-affinity protein-RNA contacts, interprotein cooperativity, intersubunit bridge, packing of multiple ribosomal RNA domains, etc. Amino acid-nucleotide constituents of OaantCs with higher contact numbers are generally associated with significantly slower substitution rates compared with that of OaantCs with smaller contact numbers. This evolutionary rate heterogeneity emerges from the strong purifying selection pressure that conserves the respective amino acid physicochemical properties relevant to the stabilizing interaction with OaantC nucleotides. An analysis of relative molecular orientations of OaantC residues and their interaction energetics provides the biophysical ground of purifying selection conserving OaantC amino acid physicochemical properties.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, India
| |
Collapse
|
8
|
Chakravorty A, Jia Z, Li L, Alexov E. A New DelPhi Feature for Modeling Electrostatic Potential around Proteins: Role of Bound Ions and Implications for Zeta-Potential. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2283-2295. [PMID: 28181811 PMCID: PMC9831612 DOI: 10.1021/acs.langmuir.6b04430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new feature of the popular software DelPhi is developed and reported, allowing for computing the surface averaged electrostatic potential (SAEP) of macromolecules. The user is given the option to specify the distance from the van der Waals surface where the electrostatic potential will be outputted. In conjunction with DelPhiPKa and the BION server, the user can adjust the charges of titratable groups according to specific pH values, and add explicit ions bound to the macromolecular surface. This approach is applied to a set of four proteins with "experimentally" delivered zeta (ζ)-potentials at different pH values and salt concentrations. It has been demonstrated that the protocol is capable of predicting ζ-potentials in the case of proteins with relatively large net charges. This protocol has been less successful for proteins with low net charges. The work demonstrates that in the case of proteins with large net charges, the electrostatic potential should be collected at distances about 4 Å away from the vdW surface and explicit ions should be added at a binding energy cutoff larger than 1-2kT, in order to accurately predict ζ-potentials. The low salt conditions substantiate this effect of ions on SAEP.
Collapse
Affiliation(s)
- Arghya Chakravorty
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634, United States
| | - Zhe Jia
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634, United States
| | - Lin Li
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634, United States
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634, United States
| |
Collapse
|
9
|
Sensoy O, Atilgan AR, Atilgan C. FbpA iron storage and release are governed by periplasmic microenvironments. Phys Chem Chem Phys 2017; 19:6064-6075. [DOI: 10.1039/c6cp06961d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Maruri-López I, Hernández-Sánchez IE, Ferrando A, Carbonell J, Jiménez-Bremont JF. Characterization of maize spermine synthase 1 (ZmSPMS1): Evidence for dimerization and intracellular location. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:264-71. [PMID: 26500203 DOI: 10.1016/j.plaphy.2015.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Polyamines are ubiquitous positively charged metabolites that play an important role in wide fundamental cellular processes; because of their importance, the homeostasis of these amines is tightly regulated. Spermine synthase catalyzes the formation of polyamine spermine, which is necessary for growth and development in higher eukaryotes. Previously, we reported a stress inducible spermine synthase 1 (ZmSPMS1) gene from maize. The ZmSPMS1 enzyme differs from their dicot orthologous by a C-terminal extension, which contains a degradation PEST sequence involved in its turnover. Herein, we demonstrate that ZmSPMS1 protein interacts with itself in split yeast two-hybrid (Y2H) assays. A Bimolecular Fluorescence Complementation (BiFC) assay revealed that ZmSPMS1 homodimer has a cytoplasmic localization. In order to gain a better understanding about ZmSPMS1 interaction, two deletion constructs of ZmSPMS1 protein were obtained. The ΔN-ZmSPMS1 version, where the first 74 N-terminal amino acids were eliminated, showed reduced capability of dimer formation, whereas the ΔC-ZmSPMS1 version, lacking the last 40 C-terminal residues, dramatically abated the ZmSPMS1-ZmSPMS1 protein interaction. Recombinant protein expression in Escherichia coli of ZmSPMS1 derived versions revealed that deletion of its N-terminal domain affected the spermine biosynthesis, whereas C-terminal ZmSPMS1 truncated version fail to generate this polyamine. These data suggest that N- and C-terminal domains of ZmSPMS1 play a role in a functional homodimer.
Collapse
Affiliation(s)
- Israel Maruri-López
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, AP 3-74 Tangamanga, San Luis Potosí, San Luis Potosí, Mexico
| | - Itzell E Hernández-Sánchez
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, AP 3-74 Tangamanga, San Luis Potosí, San Luis Potosí, Mexico
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022, Valencia, Spain
| | - Juan Carbonell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022, Valencia, Spain
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, AP 3-74 Tangamanga, San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
11
|
Structural and physico-chemical effects of disease and non-disease nsSNPs on proteins. Curr Opin Struct Biol 2015; 32:18-24. [PMID: 25658850 DOI: 10.1016/j.sbi.2015.01.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/20/2014] [Accepted: 01/09/2015] [Indexed: 11/23/2022]
Abstract
This review emphasizes the effects of naturally occurring mutations on structural features and physico-chemical properties of proteins. The basic protein characteristics considered are stability, dynamics, and the binding of proteins and methods for assessing effects of mutations on these macromolecular characteristics are briefly outlined. It is emphasized that the above entities mostly reflect global characteristics of considered macromolecules, while given mutations may alter the local structural features such as salt bridges and hydrogen bonds without affecting the global ones. Furthermore, it is pointed out that disease-causing mutations frequently involve a drastic change of amino acid physico-chemical properties such as charge, hydrophobicity, and geometry, and are less surface exposed than polymorphic mutations.
Collapse
|
12
|
Schutt TC, Bharadwaj VS, Granum DM, Maupin CM. The impact of active site protonation on substrate ring conformation in Melanocarpus albomyces cellobiohydrolase Cel7B. Phys Chem Chem Phys 2015; 17:16947-58. [DOI: 10.1039/c5cp01801c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding how the protonation state of active site residues impacts the enzyme's structure and substrate conformation is important for improving the efficiency and economic viability of the degradation of cellulosic materials as feedstock for liquid fuel and value-added chemicals.
Collapse
Affiliation(s)
- Timothy C. Schutt
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Vivek S. Bharadwaj
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - David M. Granum
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - C. Mark Maupin
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
13
|
Dias RP, Lin L, Soares TA, Alexov E. Modeling the electrostatic potential of asymmetric lipopolysaccharide membranes: the MEMPOT algorithm implemented in DelPhi. J Comput Chem 2014; 35:1418-1429. [PMID: 24799021 PMCID: PMC4057312 DOI: 10.1002/jcc.23632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/21/2014] [Indexed: 01/10/2023]
Abstract
Four chemotypes of the rough lipopolysaccharides (LPS) membrane from Pseudomonas aeruginosa were investigated by a combined approach of explicit water molecular dynamics (MD) simulations and Poisson-Boltzmann continuum electrostatics with the goal to deliver the distribution of the electrostatic potential across the membrane. For the purpose of this investigation, a new tool for modeling the electrostatic potential profile along the axis normal to the membrane, MEMbrane POTential (MEMPOT), was developed and implemented in DelPhi. Applying MEMPOT on the snapshots obtained by MD simulations, two observations were made: (a) the average electrostatic potential has a complex profile but is mostly positive inside the membrane due to the presence of Ca(2+) ions, which overcompensate for the negative potential created by lipid phosphate groups; and (b) correct modeling of the electrostatic potential profile across the membrane requires taking into account the water phase, while neglecting it (vacuum calculations) results in dramatic changes including a reversal of the sign of the potential inside the membrane. Furthermore, using DelPhi to assign different dielectric constants for different regions of the LPS membranes, it was investigated whether a single frame structure before MD simulations with appropriate dielectric constants for the lipid tails, inner, and the external leaflet regions, can deliver the same average electrostatic potential distribution as obtained from the MD-generated ensemble of structures. Indeed, this can be attained by using smaller dielectric constant for the tail and inner leaflet regions (mostly hydrophobic) than for the external leaflet region (hydrophilic) and the optimal dielectric constant values are chemotype-specific.
Collapse
Affiliation(s)
- Roberta P. Dias
- Federal University of Pernambuco, Department of Fundamental Chemistry, Cidade Universitária, Recife, PE 50740-560, Brazil
| | - Lin Lin
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, SC 29634, USA
| | - Thereza A. Soares
- Federal University of Pernambuco, Department of Fundamental Chemistry, Cidade Universitária, Recife, PE 50740-560, Brazil
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, SC 29634, USA
| |
Collapse
|
14
|
Advances in Human Biology: Combining Genetics and Molecular Biophysics to Pave the Way for Personalized Diagnostics and Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/471836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in several biology-oriented initiatives such as genome sequencing and structural genomics, along with the progress made through traditional biological and biochemical research, have opened up a unique opportunity to better understand the molecular effects of human diseases. Human DNA can vary significantly from person to person and determines an individual’s physical characteristics and their susceptibility to diseases. Armed with an individual’s DNA sequence, researchers and physicians can check for defects known to be associated with certain diseases by utilizing various databases. However, for unclassified DNA mutations or in order to reveal molecular mechanism behind the effects, the mutations have to be mapped onto the corresponding networks and macromolecular structures and then analyzed to reveal their effect on the wild type properties of biological processes involved. Predicting the effect of DNA mutations on individual’s health is typically referred to as personalized or companion diagnostics. Furthermore, once the molecular mechanism of the mutations is revealed, the patient should be given drugs which are the most appropriate for the individual genome, referred to as pharmacogenomics. Altogether, the shift in focus in medicine towards more genomic-oriented practices is the foundation of personalized medicine. The progress made in these rapidly developing fields is outlined.
Collapse
|
15
|
Campbell B, Petukh M, Alexov E, Li C. On the electrostatic properties of homodimeric proteins. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014; 13. [PMID: 25419028 DOI: 10.1142/s0219633614400070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A large fraction of proteins function as homodimers, but it is not always clear why the dimerization is important for functionality since frequently each monomer possesses a distinctive active site. Recent work (PLoS Computational Biology, 9(2), e1002924) indicates that homodimerization may be important for forming an electrostatic funnel in the spermine synthase homodimer which guides changed substrates toward the active centers. This prompted us to investigate the electrostatic properties of a large set of homodimeric proteins and resulted in an observation that in a vast majority of the cases the dimerization indeed results in specific electrostatic features, although not necessarily in an electrostatic funnel. It is demonstrated that the electrostatic dipole moment of the dimer is predominantly perpendicular to the axis connecting the centers of the mass of the monomers. In addition, the surface points with highest potential are located in the proximity of the interfacial plane of the homodimeric complexes. These findings indicate that frequently homodimerization provides specific electrostatic features needed for the function of proteins.
Collapse
Affiliation(s)
- Brandon Campbell
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| | - Marharyta Petukh
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| | - Chuan Li
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| |
Collapse
|
16
|
Pegg AE. The function of spermine. IUBMB Life 2014; 66:8-18. [PMID: 24395705 DOI: 10.1002/iub.1237] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 12/22/2022]
Abstract
Polyamines play important roles in cell physiology including effects on the structure of cellular macromolecules, gene expression, protein function, nucleic acid and protein synthesis, regulation of ion channels, and providing protection from oxidative damage. Vertebrates contain two polyamines, spermidine and spermine, as well as their precursor, the diamine putrescine. Although spermidine has an essential and unique role as the precursor of hypusine a post-translational modification of the elongation factor eIF5A, which is necessary for this protein to function in protein synthesis, no unique role for spermine has been identified unequivocally. The existence of a discrete spermine synthase enzyme that converts spermidine to spermine suggest that spermine must be needed and this is confirmed by studies with Gy mice and human patients with Snyder-Robinson syndrome in which spermine synthase is absent or greatly reduced. In both cases, this leads to a severe phenotype with multiple effects among which are intellectual disability, other neurological changes, hypotonia, and reduced growth of muscle and bone. This review describes these alterations and focuses on the roles of spermine which may contribute to these phenotypes including reducing damage due to reactive oxygen species, protection from stress, permitting correct current flow through inwardly rectifying K(+) channels, controlling activity of brain glutamate receptors involved in learning and memory, and affecting growth responses. Additional possibilities include acting as storage reservoir for maintaining appropriate levels of free spermidine and a possible non-catalytic role for spermine synthase protein.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
17
|
Sai Ramesh A, Sethumadhavan R, Thiagarajan P. Structure–Function Studies on Non-synonymous SNPs of Chemokine Receptor Gene Implicated in Cardiovascular Disease: A Computational Approach. Protein J 2013; 32:657-65. [DOI: 10.1007/s10930-013-9529-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Stefl S, Nishi H, Petukh M, Panchenko AR, Alexov E. Molecular mechanisms of disease-causing missense mutations. J Mol Biol 2013; 425:3919-36. [PMID: 23871686 DOI: 10.1016/j.jmb.2013.07.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/23/2022]
Abstract
Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on stability, hydrogen bond network, conformational dynamics, activity and many other physiologically important properties of proteins. The substitutions of only one residue in a protein sequence, so-called missense mutations, can be related to many pathological conditions and may influence susceptibility to disease and drug treatment. The plausible effects of missense mutations range from affecting the macromolecular stability to perturbing macromolecular interactions and cellular localization. Here we review the individual cases and genome-wide studies that illustrate the association between missense mutations and diseases. In addition, we emphasize that the molecular mechanisms of effects of mutations should be revealed in order to understand the disease origin. Finally, we report the current state-of-the-art methodologies that predict the effects of mutations on protein stability, the hydrogen bond network, pH dependence, conformational dynamics and protein function.
Collapse
Affiliation(s)
- Shannon Stefl
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|