1
|
Mikami T, Wakita D, Kobayashi R, Ishiguro A, Kano T. Elongating, entwining, and dragging: mechanism for adaptive locomotion of tubificine worm blobs in a confined environment. Front Neurorobot 2023; 17:1207374. [PMID: 37706011 PMCID: PMC10495593 DOI: 10.3389/fnbot.2023.1207374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023] Open
Abstract
Worms often aggregate through physical connections and exhibit remarkable functions such as efficient migration, survival under environmental changes, and defense against predators. In particular, entangled blobs demonstrate versatile behaviors for their survival; they form spherical blobs and migrate collectively by flexibly changing their shape in response to the environment. In contrast to previous studies on the collective behavior of worm blobs that focused on locomotion in a flat environment, we investigated the mechanisms underlying their adaptive motion in confined environments, focusing on tubificine worm collectives. We first performed several behavioral experiments to observe the aggregation process, collective response to aversive stimuli, the motion of a few worms, and blob motion in confined spaces with and without pegs. We found the blob deformed and passed through a narrow passage using environmental heterogeneities. Based on these behavioral findings, we constructed a simple two-dimensional agent-based model wherein the flexible body of a worm was described as a cross-shaped agent that could deform, rotate, and translate. The simulations demonstrated that the behavioral findings were well-reproduced. Our findings aid in understanding how physical interactions contribute to generating adaptive collective behaviors in real-world environments as well as in designing novel swarm robotic systems consisting of soft agents.
Collapse
Affiliation(s)
- Taishi Mikami
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Daiki Wakita
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Ryo Kobayashi
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Carlesso D, McNab JM, Lustri CJ, Garnier S, Reid CR. A simple mechanism for collective decision-making in the absence of payoff information. Proc Natl Acad Sci U S A 2023; 120:e2216217120. [PMID: 37428910 PMCID: PMC10629567 DOI: 10.1073/pnas.2216217120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/28/2023] [Indexed: 07/12/2023] Open
Abstract
Animals are often faced with time-critical decisions without prior information about their actions' outcomes. In such scenarios, individuals budget their investment into the task to cut their losses in case of an adverse outcome. In animal groups, this may be challenging because group members can only access local information, and consensus can only be achieved through distributed interactions among individuals. Here, we combined experimental analyses with theoretical modeling to investigate how groups modulate their investment into tasks in uncertain conditions. Workers of the arboreal weaver ant Oecophylla smaragdina form three-dimensional chains using their own bodies to bridge vertical gaps between existing trails and new areas to explore. The cost of a chain increases with its length because ants participating in the structure are prevented from performing other tasks. The payoffs of chain formation, however, remain unknown to the ants until the chain is complete and they can explore the new area. We demonstrate that weaver ants cap their investment into chains, and do not form complete chains when the gap is taller than 90 mm. We show that individual ants budget the time they spend in chains depending on their distance to the ground, and propose a distance-based model of chain formation that explains the emergence of this tradeoff without the need to invoke complex cognition. Our study provides insights into the proximate mechanisms that lead individuals to engage (or not) in collective actions and furthers our knowledge of how decentralized groups make adaptive decisions in uncertain conditions.
Collapse
Affiliation(s)
- Daniele Carlesso
- School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Justin M. McNab
- School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Christopher J. Lustri
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW2006, Australia
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ07102
| | - Chris R. Reid
- School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| |
Collapse
|
3
|
Muratore IB, Garnier S. Ontogeny of collective behaviour. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220065. [PMID: 36802780 PMCID: PMC9939274 DOI: 10.1098/rstb.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/21/2022] [Indexed: 02/21/2023] Open
Abstract
During their lifetime, superorganisms, like unitary organisms, undergo transformations that change the machinery of their collective behaviour. Here, we suggest that these transformations are largely understudied and propose that more systematic research into the ontogeny of collective behaviours is needed if we hope to better understand the link between proximate behavioural mechanisms and the development of collective adaptive functions. In particular, certain social insects engage in self-assemblage, forming dynamic and physically connected architectures with striking similarities to developing multicellular organisms, making them good model systems for ontogenetic studies of collective behaviour. However, exhaustive time series and three-dimensional data are required to thoroughly characterize the different life stages of the collective structures and the transitions between these stages. The well-established fields of embryology and developmental biology offer practical tools and theoretical frameworks that could speed up the acquisition of new knowledge about the formation, development, maturity and dissolution of social insect self-assemblages and, by extension, other superorganismal behaviours. We hope that this review will encourage an expansion of the ontogenetic perspective in the field of collective behaviour and, in particular, in self-assemblage research, which has far-reaching applications in robotics, computer science and regenerative medicine. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Hysteresis stabilizes dynamic control of self-assembled army ant constructions. Nat Commun 2022; 13:1160. [PMID: 35246567 PMCID: PMC8897433 DOI: 10.1038/s41467-022-28773-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/07/2022] [Indexed: 12/03/2022] Open
Abstract
Biological systems must adjust to changing external conditions, and their resilience depends on their control mechanisms. How is dynamic control implemented in noisy, decentralized systems? Army ants’ self-assembled bridges are built on unstable features, like leaves, which frequently move. Using field experiments and simulations, we characterize the bridges’ response as the gaps they span change in size, identify the control mechanism, and explore how this emerges from individuals’ decisions. For a given gap size, bridges were larger after the gap increased rather than decreased. This hysteresis was best explained by an accumulator model, in which individual decisions to join or leave a bridge depend on the difference between its current and equilibrium state. This produces robust collective structures that adjust to lasting perturbations while ignoring small, momentary shifts. Our field data support separate joining and leaving cues; joining is prompted by high bridge performance and leaving by an excess of ants. This leads to stabilizing hysteresis, an important feature of many biological and engineered systems. Army ant bridges are a remarkable example of self-assembled living structures. Here, the authors investigate experimentally how army ant bridges respond to unstable ground, revealing how responses emerge from the decentralized actions of individuals.
Collapse
|
5
|
Xu 徐焕 H, Huang 黄求应 Q, Gao 高勇勇 Y, Wu 吴佳 J, Hassan A, Liu 刘昱彤 Y. IDH knockdown alters foraging behavior in the termite Odontotermes formosanus in different social contexts. Curr Zool 2021; 67:609-620. [PMID: 34805537 PMCID: PMC8599053 DOI: 10.1093/cz/zoab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Foraging, as an energy-consuming behavior, is very important for colony survival in termites. How energy metabolism related to glucose decomposition and adenosine triphosphate (ATP) production influences foraging behavior in termites is still unclear. Here, we analyzed the change in energy metabolism in the whole organism and brain after silencing the key metabolic gene isocitrate dehydrogenase (IDH) and then investigated its impact on foraging behavior in the subterranean termite Odontotermes formosanus in different social contexts. The IDH gene exhibited higher expression in the abdomen and head of O. formosanus. The knockdown of IDH resulted in metabolic disorders in the whole organism. The dsIDH-injected workers showed significantly reduced walking activity but increased foraging success. Interestingly, IDH knockdown altered brain energy metabolism, resulting in a decline in ATP levels and an increase in IDH activity. Additionally, the social context affected brain energy metabolism and, thus, altered foraging behavior in O. formosanus. We found that the presence of predator ants increased the negative influence on the foraging behavior of dsIDH-injected workers, including a decrease in foraging success. However, an increase in the number of nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on worker foraging behavior. Our orthogonal experiments further verified that the role of the IDH gene as an inherent factor was dominant in manipulating termite foraging behavior compared with external social contexts, suggesting that energy metabolism, especially brain energy metabolism, plays a crucial role in regulating termite foraging behavior.
Collapse
Affiliation(s)
- Huan Xu 徐焕
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiuying Huang 黄求应
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongyong Gao 高勇勇
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia Wu 吴佳
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yutong Liu 刘昱彤
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
6
|
Abstract
Human-designed infrastructures and networks relying on centralized or hierarchical control are susceptible to single-point catastrophic failure when disrupted. By contrast, most complex biological systems employ distributed control and can be more robust to perturbations. In field experiments with Eciton burchellii army ants, we show that scaffold structures, self-assembled by living ants, emerge in response to disrupted traffic on inclines, facilitating traffic flow and stemming losses of foragers and prey. Informed by our observations, we present a theoretical model based on proportional control and negative feedback, which may be relevant to many distributed systems in which group-level properties can be modified through individual error sensing and correction. The mechanism is simple, and ants only require information about their individual state. An inherent strength of evolved collective systems is their ability to rapidly adapt to dynamic environmental conditions, offering resilience in the face of disruption. This is thought to arise when individual sensory inputs are filtered through local interactions, producing an adaptive response at the group level. To understand how simple rules encoded at the individual level can lead to the emergence of robust group-level (or distributed) control, we examined structures we call “scaffolds,” self-assembled by Eciton burchellii army ants on inclined surfaces that aid travel during foraging and migration. We conducted field experiments with wild E. burchellii colonies, manipulating the slope over which ants traversed, to examine the formation of scaffolds and their effects on foraging traffic. Our results show that scaffolds regularly form on inclined surfaces and that they reduce losses of foragers and prey, by reducing slipping and/or falling of ants, thus facilitating traffic flow. We describe the relative effects of environmental geometry and traffic on their growth and present a theoretical model to examine how the individual behaviors underlying scaffold formation drive group-level effects. Our model describes scaffold growth as a control response at the collective level that can emerge from individual error correction, requiring no complex communication among ants. We show that this model captures the dynamics observed in our experiments and is able to predict the growth—and final size—of scaffolds, and we show how the analytical solution allows for estimation of these dynamics.
Collapse
|
7
|
Kano T, Naito E, Aoshima T, Ishiguro A. Decentralized Control for Swarm Robots That Can Effectively Execute Spatially Distributed Tasks. ARTIFICIAL LIFE 2020; 26:242-259. [PMID: 32271634 DOI: 10.1162/artl_a_00317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A swarm robotic system is a system in which multiple robots cooperate to fulfill a macroscopic function. Many swarm robots have been developed for various purposes. This study aims to design swarm robots capable of executing spatially distributed tasks effectively, which can be potentially used for tasks such as search-and-rescue operation and gathering scattered garbage in rooms. We propose a simple decentralized control scheme for swarm robots by extending our previously proposed non-reciprocal-interaction-based model. Each robot has an internal state, called its workload. Each robot first moves randomly to find a task, and when it does, its workload increases, and then it attracts its neighboring robots to ask for their help. We demonstrate, via simulations, that the proposed control scheme enables the robots to effectively execute multiple tasks in parallel under various environments. Fault tolerance of the proposed system is also demonstrated.
Collapse
Affiliation(s)
- Takeshi Kano
- Tohoku University, Research Institute of Electrical Communication.
| | - Eiichi Naito
- Panasonic Corporation, Business Innovation Division
| | | | - Akio Ishiguro
- Tohoku University, Research Institute of Electrical Communication
| |
Collapse
|
8
|
Nave GK, Mitchell NT, Chan Dick JA, Schuessler T, Lagarrigue JA, Peleg O. Attraction, Dynamics, and Phase Transitions in Fire Ant Tower-Building. Front Robot AI 2020; 7:25. [PMID: 33501194 PMCID: PMC7806095 DOI: 10.3389/frobt.2020.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Many insect species, and even some vertebrates, assemble their bodies to form multi-functional materials that combine sensing, computation, and actuation. The tower-building behavior of red imported fire ants, Solenopsis invicta, presents a key example of this phenomenon of collective construction. While biological studies of collective construction focus on behavioral assays to measure the dynamics of formation and studies of swarm robotics focus on developing hardware that can assemble and interact, algorithms for designing such collective aggregations have been mostly overlooked. We address this gap by formulating an agent-based model for collective tower-building with a set of behavioral rules that incorporate local sensing of neighboring agents. We find that an attractive force makes tower building possible. Next, we explore the trade-offs between attraction and random motion to characterize the dynamics and phase transition of the tower building process. Lastly, we provide an optimization tool that may be used to design towers of specific shapes, mechanical loads, and dynamical properties, such as mechanical stability and mobility of the center of mass.
Collapse
Affiliation(s)
- Gary K. Nave
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
- Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Nelson T. Mitchell
- Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Jordan A. Chan Dick
- Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Tyler Schuessler
- Applied Mathematics, University of Colorado Boulder, Boulder, CO, United States
| | - Joaquin A. Lagarrigue
- Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Orit Peleg
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
- Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
9
|
How Approaches to Animal Swarm Intelligence Can Improve the Study of Collective Intelligence in Human Teams. J Intell 2020; 8:jintelligence8010009. [PMID: 32131559 PMCID: PMC7151228 DOI: 10.3390/jintelligence8010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/20/2023] Open
Abstract
Researchers of team behavior have long been interested in the essential components of effective teamwork. Much existing research focuses on examining correlations between team member traits, team processes, and team outcomes, such as collective intelligence or team performance. However, these approaches are insufficient for providing insight into the dynamic, causal mechanisms through which the components of teamwork interact with one another and impact the emergence of team outcomes. Advances in the field of animal behavior have enabled a precise understanding of the behavioral mechanisms that enable groups to perform feats that surpass the capabilities of the individuals that comprise them. In this manuscript, we highlight how studies of animal swarm intelligence can inform research on collective intelligence in human teams. By improving the ability to obtain precise, time-varying measurements of team behaviors and outcomes and building upon approaches used in studies of swarm intelligence to analyze and model individual and group-level behaviors, researchers can gain insight into the mechanisms underlying the emergence of collective intelligence. Such understanding could inspire targeted interventions to improve team effectiveness and support the development of a comparative framework of group-level intelligence in animal and human groups.
Collapse
|
10
|
Borowiec ML. Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics. Syst Biol 2019; 68:642-656. [DOI: 10.1093/sysbio/syy088] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/09/2018] [Accepted: 12/15/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marek L Borowiec
- Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, University of Idaho, Moscow, ID 83844, USA
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ 85287, USA
- Department of Entomology and Nematology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Ireland T, Garnier S. Architecture, space and information in constructions built by humans and social insects: a conceptual review. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170244. [PMID: 29967305 PMCID: PMC6030583 DOI: 10.1098/rstb.2017.0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
The similarities between the structures built by social insects and by humans have led to a convergence of interests between biologists and architects. This new, de facto interdisciplinary community of scholars needs a common terminology and theoretical framework in which to ground its work. In this conceptually oriented review paper, we review the terms 'information', 'space' and 'architecture' to provide definitions that span biology and architecture. A framework is proposed on which interdisciplinary exchange may be better served, with the view that this will aid better cross-fertilization between disciplines, working in the areas of collective behaviour and analysis of the structures and edifices constructed by non-humans; and to facilitate how this area of study may better contribute to the field of architecture. We then use these definitions to discuss the informational content of constructions built by organisms and the influence these have on behaviour, and vice versa. We review how spatial constraints inform and influence interaction between an organism and its environment, and examine the reciprocity of space and information on construction and the behaviour of humans and social insects.This article is part of the theme issue 'Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour'.
Collapse
Affiliation(s)
- Tim Ireland
- Kent School of Architecture, University of Kent, Canterbury, CT2 7NR, UK
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ07102, USA
| |
Collapse
|
12
|
Graham JM, Kao AB, Wilhelm DA, Garnier S. Optimal construction of army ant living bridges. J Theor Biol 2017; 435:184-198. [PMID: 28939347 DOI: 10.1016/j.jtbi.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 11/30/2022]
Abstract
Integrating the costs and benefits of collective behaviors is a fundamental challenge to understanding the evolution of group living. These costs and benefits can rarely be quantified simultaneously due to the complexity of the interactions within the group, or even compared to each other because of the absence of common metrics between them. The construction of 'living bridges' by New World army ants - which they use to shorten their foraging trails - is a unique example of a collective behavior where costs and benefits have been experimentally measured and related to each other. As a result, it is possible to make quantitative predictions about when and how the behavior will be observed. In this paper, we extend a previous mathematical model of these costs and benefits to much broader domain of applicability. Specifically, we exhibit a procedure for analyzing the optimal formation, and final configuration, of army ant living bridges given a means to express the geometrical configuration of foraging path obstructions. Using this procedure, we provide experimentally testable predictions of the final bridge position, as well as the optimal formation process for certain cases, for a wide range of scenarios, which more closely resemble common terrain obstacles that ants encounter in nature. As such, our framework offers a rare benchmark for determining the evolutionary pressures governing the evolution of a naturally occurring collective animal behavior.
Collapse
Affiliation(s)
- Jason M Graham
- Department of Mathematics, University of Scranton, USA; Department of Biological Sciences, New Jersey Institute of Technology, USA.
| | - Albert B Kao
- Department of Organismic and Evolutionary Biology, Harvard University, USA
| | - Dylana A Wilhelm
- Department of Mathematics and Statistics, James Madison University, USA; Department of Biological Sciences, New Jersey Institute of Technology, USA
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, USA
| |
Collapse
|
13
|
Powell S, Donaldson‐Matasci M, Woodrow‐Tomizuka A, Dornhaus A. Context‐dependent defences in turtle ants: Resource defensibility and threat level induce dynamic shifts in soldier deployment. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott Powell
- Department of Biological Sciences George Washington University Washington DC USA
| | | | - Augustus Woodrow‐Tomizuka
- Department of Ecology & Evolutionary Biology University of Arizona Tucson AZ USA
- Sonoran Science Academy –Tucson (6‐12) Tucson AZ USA
| | - Anna Dornhaus
- Department of Ecology & Evolutionary Biology University of Arizona Tucson AZ USA
| |
Collapse
|
14
|
Phonekeo S, Mlot N, Monaenkova D, Hu DL, Tovey C. Fire ants perpetually rebuild sinking towers. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170475. [PMID: 28791170 PMCID: PMC5541565 DOI: 10.1098/rsos.170475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.
Collapse
Affiliation(s)
- Sulisay Phonekeo
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nathan Mlot
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Daria Monaenkova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David L. Hu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Craig Tovey
- Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Ant workers exhibit specialization and memory during raft formation. Naturwissenschaften 2016; 103:36. [PMID: 27056046 DOI: 10.1007/s00114-016-1360-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/17/2016] [Accepted: 03/26/2016] [Indexed: 10/22/2022]
Abstract
By working together, social insects achieve tasks that are beyond the reach of single individuals. A striking example of collective behaviour is self-assembly, a process in which individuals link their bodies together to form structures such as chains, ladders, walls or rafts. To get insight into how individual behavioural variation affects the formation of self-assemblages, we investigated the presence of task specialization and the role of past experience in the construction of ant rafts. We subjected groups of Formica selysi workers to two consecutive floods and monitored the position of individuals in rafts. Workers showed specialization in their positions when rafting, with the same individuals consistently occupying the top, middle, base or side position in the raft. The presence of brood modified workers' position and raft shape. Surprisingly, workers' experience in the first rafting trial with brood influenced their behaviour and raft shape in the subsequent trial without brood. Overall, this study sheds light on the importance of workers' specialization and memory in the formation of self-assemblages.
Collapse
|
16
|
|
17
|
Rapid radiation in bacteria leads to a division of labour. Nat Commun 2016; 7:10508. [PMID: 26852925 PMCID: PMC4748119 DOI: 10.1038/ncomms10508] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/12/2015] [Indexed: 12/24/2022] Open
Abstract
The division of labour is a central feature of the most sophisticated biological systems, including genomes, multicellular organisms and societies, which took millions of years to evolve. Here we show that a well-organized and robust division of labour can evolve in a matter of days. Mutants emerge within bacterial colonies and work with the parent strain to gain new territory. The two strains self-organize in space: one provides a wetting polymer at the colony edge, whereas the other sits behind and pushes them both along. The emergence of the interaction is repeatable, bidirectional and only requires a single mutation to alter production of the intracellular messenger, cyclic-di-GMP. Our work demonstrates the power of the division of labour to rapidly solve biological problems without the need for long-term evolution or derived sociality. We predict that the division of labour will evolve frequently in microbial populations, where rapid genetic diversification is common.
Collapse
|
18
|
Reid CR, Lutz MJ, Powell S, Kao AB, Couzin ID, Garnier S. Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Proc Natl Acad Sci U S A 2015; 112:15113-8. [PMID: 26598673 PMCID: PMC4679032 DOI: 10.1073/pnas.1512241112] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges" of linked individuals that are constructed to span gaps in the colony's foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit's having information on global benefits or costs.
Collapse
Affiliation(s)
- Chris R Reid
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102;
| | - Matthew J Lutz
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544;
| | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - Albert B Kao
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz D-78457, Germany; Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102
| |
Collapse
|
19
|
Quevillon LE, Hanks EM, Bansal S, Hughes DP. Social, spatial, and temporal organization in a complex insect society. Sci Rep 2015; 5:13393. [PMID: 26300390 PMCID: PMC4547134 DOI: 10.1038/srep13393] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 07/23/2015] [Indexed: 12/01/2022] Open
Abstract
High-density living is often associated with high disease risk due to density-dependent epidemic spread. Despite being paragons of high-density living, the social insects have largely decoupled the association with density-dependent epidemics. It is hypothesized that this is accomplished through prophylactic and inducible defenses termed 'collective immunity'. Here we characterise segregation of carpenter ants that would be most likely to encounter infectious agents (i.e. foragers) using integrated social, spatial, and temporal analyses. Importantly, we do this in the absence of disease to establish baseline colony organization. Behavioural and social network analyses show that active foragers engage in more trophallaxis interactions than their nest worker and queen counterparts and occupy greater area within the nest. When the temporal ordering of social interactions is taken into account, active foragers and inactive foragers are not observed to interact with the queen in ways that could lead to the meaningful transfer of disease. Furthermore, theoretical resource spread analyses show that such temporal segregation does not appear to impact the colony-wide flow of food. This study provides an understanding of a complex society's organization in the absence of disease that will serve as a null model for future studies in which disease is explicitly introduced.
Collapse
Affiliation(s)
- Lauren E. Quevillon
- Center for Infectious Disease Dynamics, Penn State University, University Park, Pennsylvania, USA
- Department of Biology, Penn State University, University Park, Pennsylvania, USA
| | - Ephraim M. Hanks
- Center for Infectious Disease Dynamics, Penn State University, University Park, Pennsylvania, USA
- Department of Statistics, Penn State University, University Park, Pennsylvania, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, D.C., USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - David P. Hughes
- Center for Infectious Disease Dynamics, Penn State University, University Park, Pennsylvania, USA
- Department of Biology, Penn State University, University Park, Pennsylvania, USA
- Department of Entomology, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
20
|
Evolutionary genetic bases of longevity and senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 847:1-44. [PMID: 25916584 DOI: 10.1007/978-1-4939-2404-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Senescence, as a time-dependent developmental process, affects all organisms at every stage in their development and growth. During this process, genetic, epigenetic and environmental factors are known to introduce a wide range of variation for longevity among individuals. As an important life-history trait, longevity shows ontogenetic relationships with other complex traits, and hence may be viewed as a composite trait. Factors that influence the origin and maintenance of diversity of life are ultimately governed by Darwinian processes. Here we review evolutionary genetic mechanisms underlying longevity and senescence in humans from a life-history and genotype-epigenetic-phenotype (G-E-P) map prospective. We suggest that synergistic and cascading effects of cis-ruptive mechanisms in the genome, and epigenetic disruptive processes in relation to environmental factors may lead to sequential slippage in the G-E-P space. These mechanisms accompany age, stage and individual specific senescent processes, influenced by positive pleiotropy of certain genes, superior genome integrity, negative-frequency dependent selection and other factors that universally regulate rarity in nature. Finally we interpret life span as an inherent property of self-organizing systems that, accordingly, maintain species-specific limits for the entire complex of fitness traits. We conclude that Darwinian approaches provide unique opportunities to discover the biological bases of longevity as well as devise individual specific medical or other interventions toward improving health span.
Collapse
|
21
|
Bechstein’s bats maintain individual social links despite a complete reorganisation of their colony structure. Naturwissenschaften 2013; 100:895-8. [PMID: 23949307 DOI: 10.1007/s00114-013-1090-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
|