1
|
Blanco-Rodriguez R, Miura TA, Hernandez-Vargas E. CrossLabFit: A Novel Framework for Integrating Qualitative and Quantitative Data Across Multiple Labs for Model Calibration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.08.627398. [PMID: 39713390 PMCID: PMC11661082 DOI: 10.1101/2024.12.08.627398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The integration of computational models with experimental data is a cornerstone for gaining insight into biomedical applications. However, parameter fitting procedures often require a vast availability and frequency of data that are challenging to obtain from a single source. Here, we present a novel methodology "CrossLabFit" designed to integrate qualitative data from multiple laboratories, overcoming the constraints of single-lab data collection. Our approach harmonizes disparate qualitative assessments-ranging from different experimental labs to categorical observations-into a unified framework for parameter estimation. By using machine learning algorithms, these qualitative constraints are represented as dynamic "qualitative windows" that capture significant trends to which models must adhere. For numerical implementation, we developed a GPU-accelerated version of differential evolution to navigate in the cost function that integrated quantitative and qualitative data. We validate our approach across a series of case studies, demonstrating significant improvements in model accuracy and parameter identifiability. This work opens a new paradigm for collaborative science, enabling a methodological road to combine and compare findings between studies to improve our understanding of biological systems and beyond.
Collapse
|
2
|
Dorešić D, Grein S, Hasenauer J. Efficient parameter estimation for ODE models of cellular processes using semi-quantitative data. Bioinformatics 2024; 40:i558-i566. [PMID: 38940161 PMCID: PMC11211815 DOI: 10.1093/bioinformatics/btae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Quantitative dynamical models facilitate the understanding of biological processes and the prediction of their dynamics. The parameters of these models are commonly estimated from experimental data. Yet, experimental data generated from different techniques do not provide direct information about the state of the system but a nonlinear (monotonic) transformation of it. For such semi-quantitative data, when this transformation is unknown, it is not apparent how the model simulations and the experimental data can be compared. RESULTS We propose a versatile spline-based approach for the integration of a broad spectrum of semi-quantitative data into parameter estimation. We derive analytical formulas for the gradients of the hierarchical objective function and show that this substantially increases the estimation efficiency. Subsequently, we demonstrate that the method allows for the reliable discovery of unknown measurement transformations. Furthermore, we show that this approach can significantly improve the parameter inference based on semi-quantitative data in comparison to available methods. AVAILABILITY AND IMPLEMENTATION Modelers can easily apply our method by using our implementation in the open-source Python Parameter EStimation TOolbox (pyPESTO) available at https://github.com/ICB-DCM/pyPESTO.
Collapse
Affiliation(s)
- Domagoj Dorešić
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stephan Grein
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | - Jan Hasenauer
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
3
|
Madamanchi A, Thomas M, Magana A, Heiland R, Macklin P. Supporting Computational Apprenticeship Through Educational and Software Infrastructure: A Case Study in a Mathematical Oncology Research Lab. PRIMUS 2022; 32:446-467. [PMID: 35197716 PMCID: PMC8863170 DOI: 10.1080/10511970.2021.1881849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is growing awareness of the need for mathematics and computing to quantitatively understand the complex dynamics and feedbacks in the life sciences. Although several institutions and research groups are conducting pioneering multidisciplinary research, communication and education across fields remain a bottleneck. The opportunity is ripe for using education research-supported mechanisms of cross-disciplinary training at the intersection of mathematics, computation, and biology. This case study uses the computational apprenticeship theoretical framework to describe the efforts of a computational biology lab to rapidly prototype, test, and refine a mentorship infrastructure for undergraduate research experiences. We describe the challenges, benefits, and lessons learned, as well as the utility of the computational apprenticeship framework in supporting computational/math students learning and contributing to biology, and biologists in learning computational methods. We also explore implications for undergraduate classroom instruction and cross-disciplinary scientific communication.
Collapse
|
4
|
Schmiester L, Weindl D, Hasenauer J. Efficient gradient-based parameter estimation for dynamic models using qualitative data. BIOINFORMATICS (OXFORD, ENGLAND) 2021. [PMID: 34260697 DOI: 10.1101/2021.02.06.430039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
MOTIVATION Unknown parameters of dynamical models are commonly estimated from experimental data. However, while various efficient optimization and uncertainty analysis methods have been proposed for quantitative data, methods for qualitative data are rare and suffer from bad scaling and convergence. RESULTS Here, we propose an efficient and reliable framework for estimating the parameters of ordinary differential equation models from qualitative data. In this framework, we derive a semi-analytical algorithm for gradient calculation of the optimal scaling method developed for qualitative data. This enables the use of efficient gradient-based optimization algorithms. We demonstrate that the use of gradient information improves performance of optimization and uncertainty quantification on several application examples. On average, we achieve a speedup of more than one order of magnitude compared to gradient-free optimization. In addition, in some examples, the gradient-based approach yields substantially improved objective function values and quality of the fits. Accordingly, the proposed framework substantially improves the parameterization of models from qualitative data. AVAILABILITY AND IMPLEMENTATION The proposed approach is implemented in the open-source Python Parameter EStimation TOolbox (pyPESTO). pyPESTO is available at https://github.com/ICB-DCM/pyPESTO. All application examples and code to reproduce this study are available at https://doi.org/10.5281/zenodo.4507613. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leonard Schmiester
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
| | - Daniel Weindl
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn 53113, Germany
| |
Collapse
|
5
|
Schmiester L, Weindl D, Hasenauer J. Efficient gradient-based parameter estimation for dynamic models using qualitative data. Bioinformatics 2021; 37:4493-4500. [PMID: 34260697 PMCID: PMC8652033 DOI: 10.1093/bioinformatics/btab512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Motivation Unknown parameters of dynamical models are commonly estimated from experimental data. However, while various efficient optimization and uncertainty analysis methods have been proposed for quantitative data, methods for qualitative data are rare and suffer from bad scaling and convergence. Results Here, we propose an efficient and reliable framework for estimating the parameters of ordinary differential equation models from qualitative data. In this framework, we derive a semi-analytical algorithm for gradient calculation of the optimal scaling method developed for qualitative data. This enables the use of efficient gradient-based optimization algorithms. We demonstrate that the use of gradient information improves performance of optimization and uncertainty quantification on several application examples. On average, we achieve a speedup of more than one order of magnitude compared to gradient-free optimization. In addition, in some examples, the gradient-based approach yields substantially improved objective function values and quality of the fits. Accordingly, the proposed framework substantially improves the parameterization of models from qualitative data. Availability and implementation The proposed approach is implemented in the open-source Python Parameter EStimation TOolbox (pyPESTO). pyPESTO is available at https://github.com/ICB-DCM/pyPESTO. All application examples and code to reproduce this study are available at https://doi.org/10.5281/zenodo.4507613. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leonard Schmiester
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany.,Center for Mathematics, Technische Universität München, Garching, 85748, Germany
| | - Daniel Weindl
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany.,Center for Mathematics, Technische Universität München, Garching, 85748, Germany.,Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, 53113, Germany
| |
Collapse
|
6
|
Madamanchi A, Mullins MC, Umulis DM. Diversity and robustness of bone morphogenetic protein pattern formation. Development 2021; 148:dev192344. [PMID: 33795238 PMCID: PMC8034876 DOI: 10.1242/dev.192344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pattern formation by bone morphogenetic proteins (BMPs) demonstrates remarkable plasticity and utility in several contexts, such as early embryonic development, tissue patterning and the maintenance of stem cell niches. BMPs pattern tissues over many temporal and spatial scales: BMP gradients as short as 1-2 cell diameters maintain the stem cell niche of the Drosophila germarium over a 24-h cycle, and BMP gradients of several hundred microns establish dorsal-ventral tissue specification in Drosophila, zebrafish and Xenopus embryos in timescales between 30 min and several hours. The mechanisms that shape BMP signaling gradients are also incredibly diverse. Although ligand diffusion plays a dominant role in forming the gradient, a cast of diffusible and non-diffusible regulators modulate gradient formation and confer robustness, including scale invariance and adaptability to perturbations in gene expression and growth. In this Review, we document the diverse ways that BMP gradients are formed and refined, and we identify the core principles that they share to achieve reliable performance.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Polytechnic Institute, Purdue University, West Lafayette, IN 47907, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David M Umulis
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Burzawa L, Li L, Wang X, Buganza-Tepole A, Umulis DM. Acceleration of PDE-Based Biological Simulation Through the Development of Neural Network Metamodels. CURRENT PATHOBIOLOGY REPORTS 2020; 8:121-131. [PMID: 33968495 PMCID: PMC8104327 DOI: 10.1007/s40139-020-00216-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Partial differential equation (PDE) mathematical models of biological systems and the simulation approaches used to solve them are widely used to test hypotheses and infer regulatory interactions based on optimization of the PDE model against the observed data. In this review, we discuss the ability of powerful machine learning methods to accelerate the parametric screening of biophysical informed- PDE systems. RECENT FINDINGS A major shortcoming in more broad adaptation of PDE-based models is the high computational complexity required to solve and optimize the models and it requires many simulations to traverse the very high-dimensional parameter spaces during model calibration and inference tasks. For instance, when scaling up to tens of millions of simulations for optimization and sensitivity analysis of the PDE models, compute times quickly extend from months to years for sufficient coverage to solve the problems. For many systems, this brute-force approach is simply not feasible. Recently, neural network metamodels have been shown to be an efficient way to accelerate PDE model calibration and here we look at the benefits and limitations in extending the PDE acceleration methods to improve optimization and sensitivity analysis. SUMMARY We use an example simulation to quantitatively and qualitatively show how neural network metamodels can be accurate and fast and demonstrate their potential for optimization of complex spatiotemporal problems in biology. We expect these approaches will be broadly applied to speed up scientific research and discovery in biology and other systems that can be described by complex PDE systems.
Collapse
Affiliation(s)
- Lukasz Burzawa
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
| | - Linlin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xu Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Adrian Buganza-Tepole
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Ag. and Biological Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
8
|
Schmiester L, Weindl D, Hasenauer J. Parameterization of mechanistic models from qualitative data using an efficient optimal scaling approach. J Math Biol 2020; 81:603-623. [PMID: 32696085 PMCID: PMC7427713 DOI: 10.1007/s00285-020-01522-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Quantitative dynamical models facilitate the understanding of biological processes and the prediction of their dynamics. These models usually comprise unknown parameters, which have to be inferred from experimental data. For quantitative experimental data, there are several methods and software tools available. However, for qualitative data the available approaches are limited and computationally demanding. Here, we consider the optimal scaling method which has been developed in statistics for categorical data and has been applied to dynamical systems. This approach turns qualitative variables into quantitative ones, accounting for constraints on their relation. We derive a reduced formulation for the optimization problem defining the optimal scaling. The reduced formulation possesses the same optimal points as the established formulation but requires less degrees of freedom. Parameter estimation for dynamical models of cellular pathways revealed that the reduced formulation improves the robustness and convergence of optimizers. This resulted in substantially reduced computation times. We implemented the proposed approach in the open-source Python Parameter EStimation TOolbox (pyPESTO) to facilitate reuse and extension. The proposed approach enables efficient parameterization of quantitative dynamical models using qualitative data.
Collapse
Affiliation(s)
- Leonard Schmiester
- Institute of Computational Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Daniel Weindl
- Institute of Computational Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748 Garching, Germany
- Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
9
|
Mitra ED, Hlavacek WS. Bayesian inference using qualitative observations of underlying continuous variables. Bioinformatics 2020; 36:3177-3184. [PMID: 32049328 PMCID: PMC7214020 DOI: 10.1093/bioinformatics/btaa084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023] Open
Abstract
MOTIVATION Recent work has demonstrated the feasibility of using non-numerical, qualitative data to parameterize mathematical models. However, uncertainty quantification (UQ) of such parameterized models has remained challenging because of a lack of a statistical interpretation of the objective functions used in optimization. RESULTS We formulated likelihood functions suitable for performing Bayesian UQ using qualitative observations of underlying continuous variables or a combination of qualitative and quantitative data. To demonstrate the resulting UQ capabilities, we analyzed a published model for immunoglobulin E (IgE) receptor signaling using synthetic qualitative and quantitative datasets. Remarkably, estimates of parameter values derived from the qualitative data were nearly as consistent with the assumed ground-truth parameter values as estimates derived from the lower throughput quantitative data. These results provide further motivation for leveraging qualitative data in biological modeling. AVAILABILITY AND IMPLEMENTATION The likelihood functions presented here are implemented in a new release of PyBioNetFit, an open-source application for analyzing Systems Biology Markup Language- and BioNetGen Language-formatted models, available online at www.github.com/lanl/PyBNF. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Eshan D Mitra
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
10
|
Mitra ED, Hlavacek WS. Parameter Estimation and Uncertainty Quantification for Systems Biology Models. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 18:9-18. [PMID: 32719822 PMCID: PMC7384601 DOI: 10.1016/j.coisb.2019.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mathematical models can provide quantitative insights into immunoreceptor signaling, and other biological processes, but require parameterization and uncertainty quantification before reliable predictions become possible. We review currently available methods and software tools to address these problems. We consider gradient-based and gradient-free methods for point estimation of parameter values, and methods of profile likelihood, bootstrapping, and Bayesian inference for uncertainty quantification. We consider recent and potential future applications of these methods to systems-level modeling of immune-related phenomena.
Collapse
Affiliation(s)
- Eshan D. Mitra
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
11
|
Mitra ED, Suderman R, Colvin J, Ionkov A, Hu A, Sauro HM, Posner RG, Hlavacek WS. PyBioNetFit and the Biological Property Specification Language. iScience 2019; 19:1012-1036. [PMID: 31522114 PMCID: PMC6744527 DOI: 10.1016/j.isci.2019.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
In systems biology modeling, important steps include model parameterization, uncertainty quantification, and evaluation of agreement with experimental observations. To help modelers perform these steps, we developed the software PyBioNetFit, which in addition supports checking models against known system properties and solving design problems. PyBioNetFit introduces Biological Property Specification Language (BPSL) for the formal declaration of system properties. BPSL allows qualitative data to be used alone or in combination with quantitative data. PyBioNetFit performs parameterization with parallelized metaheuristic optimization algorithms that work directly with existing model definition standards: BioNetGen Language (BNGL) and Systems Biology Markup Language (SBML). We demonstrate PyBioNetFit's capabilities by solving various example problems, including the challenging problem of parameterizing a 153-parameter model of cell cycle control in yeast based on both quantitative and qualitative data. We demonstrate the model checking and design applications of PyBioNetFit and BPSL by analyzing a model of targeted drug interventions in autophagy signaling.
Collapse
Affiliation(s)
- Eshan D Mitra
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ryan Suderman
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Joshua Colvin
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Alexander Ionkov
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Andrew Hu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Richard G Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
12
|
Nematbakhsh A, Sun W, Brodskiy PA, Amiri A, Narciso C, Xu Z, Zartman JJ, Alber M. Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia. PLoS Comput Biol 2017; 13:e1005533. [PMID: 28531187 PMCID: PMC5460904 DOI: 10.1371/journal.pcbi.1005533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/06/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive.
Collapse
Affiliation(s)
- Ali Nematbakhsh
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Wenzhao Sun
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pavel A. Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Aboutaleb Amiri
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| |
Collapse
|
13
|
Oguz C, Watson LT, Baumann WT, Tyson JJ. Predicting network modules of cell cycle regulators using relative protein abundance statistics. BMC SYSTEMS BIOLOGY 2017; 11:30. [PMID: 28241833 PMCID: PMC5329933 DOI: 10.1186/s12918-017-0409-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/17/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. RESULTS Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. CONCLUSIONS By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.
Collapse
Affiliation(s)
- Cihan Oguz
- Department of Biological Sciences, Virginia Tech, Blacksburg VA, 24061, USA.
| | - Layne T Watson
- Department of Computer Science, Virginia Tech, Blacksburg VA, 24061, USA.,Department of Mathematics, Virginia Tech, Blacksburg VA, 24061, USA.,Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg VA, 24061, USA
| | - William T Baumann
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg VA, 24061, USA
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg VA, 24061, USA
| |
Collapse
|
14
|
Iber D, Karimaddini Z, Ünal E. Image-based modelling of organogenesis. Brief Bioinform 2015; 17:616-27. [DOI: 10.1093/bib/bbv093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 01/05/2023] Open
|
15
|
Umulis DM, Othmer HG. The role of mathematical models in understanding pattern formation in developmental biology. Bull Math Biol 2015; 77:817-45. [PMID: 25280665 PMCID: PMC4819020 DOI: 10.1007/s11538-014-0019-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.
Collapse
Affiliation(s)
- David M. Umulis
- Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hans G. Othmer
- School of Mathematics and Digital Technology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|