1
|
Blázquez-Carmona P, Ruiz-Mateos R, Barrasa-Fano J, Shapeti A, Martín-Alfonso JE, Domínguez J, Van Oosterwyck H, Reina-Romo E, Sanz-Herrera JA. Quantitative atlas of collagen hydrogels reveals mesenchymal cancer cell traction adaptation to the matrix nanoarchitecture. Acta Biomater 2024; 185:281-295. [PMID: 38992411 DOI: 10.1016/j.actbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Raquel Ruiz-Mateos
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Apeksha Shapeti
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - José Enrique Martín-Alfonso
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva. Avda. de las Fuerzas Armadas s/n, 21007 Huelva, Spain
| | - Jaime Domínguez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain.
| |
Collapse
|
2
|
Pardon G, Vander Roest AS, Chirikian O, Birnbaum F, Lewis H, Castillo EA, Wilson R, Denisin AK, Blair CA, Holbrook C, Koleckar K, Chang ACY, Blau HM, Pruitt BL. Tracking single hiPSC-derived cardiomyocyte contractile function using CONTRAX an efficient pipeline for traction force measurement. Nat Commun 2024; 15:5427. [PMID: 38926342 PMCID: PMC11208611 DOI: 10.1038/s41467-024-49755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are powerful in vitro models to study the mechanisms underlying cardiomyopathies and cardiotoxicity. Quantification of the contractile function in single hiPSC-CMs at high-throughput and over time is essential to disentangle how cellular mechanisms affect heart function. Here, we present CONTRAX, an open-access, versatile, and streamlined pipeline for quantitative tracking of the contractile dynamics of single hiPSC-CMs over time. Three software modules enable: parameter-based identification of single hiPSC-CMs; automated video acquisition of >200 cells/hour; and contractility measurements via traction force microscopy. We analyze >4,500 hiPSC-CMs over time in the same cells under orthogonal conditions of culture media and substrate stiffnesses; +/- drug treatment; +/- cardiac mutations. Using undirected clustering, we reveal converging maturation patterns, quantifiable drug response to Mavacamten and significant deficiencies in hiPSC-CMs with disease mutations. CONTRAX empowers researchers with a potent quantitative approach to develop cardiac therapies.
Collapse
Grants
- K99 HL153679 NHLBI NIH HHS
- RM1 GM131981 NIGMS NIH HHS
- 20POST35211011 American Heart Association (American Heart Association, Inc.)
- 17CSA33590101 American Heart Association (American Heart Association, Inc.)
- 18CDA34110411 American Heart Association (American Heart Association, Inc.)
- 1R21HL13099301 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 18POST34080160 American Heart Association (American Heart Association, Inc.)
- 1F31HL158227 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F31 HL158227 NHLBI NIH HHS
- 201411MFE-338745-169197 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- P2SKP2_164954 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 13POST14480004 American Heart Association (American Heart Association, Inc.)
- RM1GM131981 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 82070248 National Natural Science Foundation of China (National Science Foundation of China)
- P400PM_180825 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Shanghai Pujiang Program 19PJ1407000 Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning 0900000024 to A.C.Y.C. Innovative Research Team of High-Level Local Universities in Shanghai (A.C.Y.C.)
- the Baxter Foundation, Li Ka Shing Foundation and The Stanford Cardiovascular Institute
Collapse
Affiliation(s)
- Gaspard Pardon
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
- School of Life Sciences, EPFL École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alison S Vander Roest
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Engineering, Michigan Engineering, University of Michigan Ann Arbor, MI, USA
| | - Orlando Chirikian
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Foster Birnbaum
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry Lewis
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Erica A Castillo
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Robin Wilson
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Aleksandra K Denisin
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Cheavar A Blair
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Colin Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kassie Koleckar
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex C Y Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Shanghai Institute of Precision Medicine and Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
3
|
Ho Thanh MT, Poudel A, Ameen S, Carroll B, Wu M, Soman P, Zhang T, Schwarz JM, Patteson AE. Vimentin promotes collective cell migration through collagen networks via increased matrix remodeling and spheroid fluidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599259. [PMID: 38948855 PMCID: PMC11212918 DOI: 10.1101/2024.06.17.599259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The intermediate filament (IF) protein vimentin is associated with many diseases with phenotypes of enhanced cellular migration and aggressive invasion through the extracellular matrix (ECM) of tissues, but vimentin's role in in-vivo cell migration is still largely unclear. Vimentin is important for proper cellular adhesion and force generation, which are critical to cell migration; yet the vimentin cytoskeleton also hinders the ability of cells to squeeze through small pores in ECM, resisting migration. To identify the role of vimentin in collective cell migration, we generate spheroids of wide-type and vimentin-null mouse embryonic fibroblasts (mEFs) and embed them in a 3D collagen matrix. We find that loss of vimentin significantly impairs the ability of the spheroid to collectively expand through collagen networks and remodel the collagen network. Traction force analysis reveals that vimentin null spheroids exert less contractile force than their wild-type counterparts. In addition, spheroids made of mEFs with only vimentin unit length filaments (ULFs) exhibit similar behavior as vimentin-null spheroids, suggesting filamentous vimentin is required to promote 3D collective cell migration. We find the vimentin-mediated collective cell expansion is dependent on matrix metalloproteinase (MMP) degradation of the collagen matrix. Further, 3D vertex model simulation of spheroid and embedded ECM indicates that wild-type spheroids behave more fluid-like, enabling more active pulling and reconstructing the surrounding collagen network. Altogether, these results signify that VIF plays a critical role in enhancing migratory persistence in 3D matrix environments through MMP transportation and tissue fluidity.
Collapse
Affiliation(s)
- Minh Tri Ho Thanh
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Arun Poudel
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Shabeeb Ameen
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Bobby Carroll
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - M Wu
- Department of Biological and Environmental Engineering, Cornell University; Ithaca, New York, USA
| | - Pranav Soman
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Tao Zhang
- Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J M Schwarz
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Indian Creek Farm, Ithaca, New York, USA
| | - Alison E Patteson
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| |
Collapse
|
4
|
Ma X, Wang C, Ji C, Cao X, Dong Y. Quantitative characterization of tumor cell traction force on extracellular matrix by hydrogel microsphere stress sensor. Biotechnol Bioeng 2024; 121:1820-1830. [PMID: 38407981 DOI: 10.1002/bit.28683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Cell traction force (CTF) is a kind of active force that is a cell senses external environment and actively applies to the contact matrix which is currently a representative stress in cell-extracellular matrix (ECM) interaction. Studying the distribution and variation of CTF during cell-ECM interaction help to explain the impact of physical factors on cell behaviors from the perspective of mechanobiology. However, most of the strategies of characterizing CTF are still limited by the measurement needs in three-dimensional (3D), quantitative characteristics and in vivo condition. Microsphere stress sensor (MSS) as a new type of technology is capable of realizing the quantitative characterization of CTF in 3D and in vivo. Herein, we employed microfluidic platform to design and fabricate MSS which possesses adjustable fluorescent performances, physical properties, and size ranges for better applicable to different cells (3T3, A549). Focusing on the common tumor cells behaviors (adhesion, spreading, and migration) in the process of metastasis, we chose SH-SY5Y as the representative research object in this work. We calculated CTF with the profile and distribution to demonstrate that the normal and shear stress can determined different cell behaviors. Additionally, CTF can also regulate cell adhesion, spreading, and migration in different cell states. Based on this method, the quantitative characterization of CFT of health and disease cells can be achieved, which further help to study and explore the potential mechanism of cell-ECM interaction.
Collapse
Affiliation(s)
- Xingquan Ma
- School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Cong Wang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Changchun Ji
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Chinese Medicine, Xi'an, China
| | - Xiaoshan Cao
- School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an, P.R. China
| | - Yuqing Dong
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
5
|
Wu J, Steward RL. Disturbed fluid flow reinforces endothelial tractions and intercellular stresses. J Biomech 2024; 169:112156. [PMID: 38761747 DOI: 10.1016/j.jbiomech.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Disturbed fluid flow is well understood to have significant ramifications on endothelial function, but the impact disturbed flow has on endothelial biomechanics is not well understood. In this study, we measured tractions, intercellular stresses, and cell velocity of endothelial cells exposed to disturbed flow using a custom-fabricated flow chamber. Our flow chamber exposed cells to disturbed fluid flow within the following spatial zones: zone 1 (inlet; length 0.676-2.027 cm): 0.0037 ± 0.0001 Pa; zone 2 (middle; length 2.027-3.716 cm): 0.0059 ± 0.0005 Pa; and zone 3 (outlet; length 3.716-5.405 cm): 0.0051 ± 0.0025 Pa. Tractions and intercellular stresses were observed to be highest in the middle of the chamber (zone 2) and lowest at the chamber outlet (zone 3), while cell velocity was highest near the chamber inlet (zone 1), and lowest near the middle of the chamber (zone 2). Our findings suggest endothelial biomechanical response to disturbed fluid flow to be dependent on not only shear stress magnitude, but the spatial shear stress gradient as well. We believe our results will be useful to a host of fields including endothelial cell biology, the cardiovascular field, and cellular biomechanics in general.
Collapse
Affiliation(s)
- Jingwen Wu
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
| | - R L Steward
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
6
|
Denisin AK, Kim H, Riedel-Kruse IH, Pruitt BL. Field Guide to Traction Force Microscopy. Cell Mol Bioeng 2024; 17:87-106. [PMID: 38737454 PMCID: PMC11082129 DOI: 10.1007/s12195-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Traction force microscopy (TFM) is a widely used technique to measure cell contractility on compliant substrates that mimic the stiffness of human tissues. For every step in a TFM workflow, users make choices which impact the quantitative results, yet many times the rationales and consequences for making these decisions are unclear. We have found few papers which show the complete experimental and mathematical steps of TFM, thus obfuscating the full effects of these decisions on the final output. Methods Therefore, we present this "Field Guide" with the goal to explain the mathematical basis of common TFM methods to practitioners in an accessible way. We specifically focus on how errors propagate in TFM workflows given specific experimental design and analytical choices. Results We cover important assumptions and considerations in TFM substrate manufacturing, substrate mechanical properties, imaging techniques, image processing methods, approaches and parameters used in calculating traction stress, and data-reporting strategies. Conclusions By presenting a conceptual review and analysis of TFM-focused research articles published over the last two decades, we provide researchers in the field with a better understanding of their options to make more informed choices when creating TFM workflows depending on the type of cell being studied. With this review, we aim to empower experimentalists to quantify cell contractility with confidence. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00801-6.
Collapse
Affiliation(s)
| | - Honesty Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Present Address: The Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 USA
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Beth L. Pruitt
- Departments of Bioengineering and Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
7
|
Jaddivada S, Gundiah N. Physical biology of cell-substrate interactions under cyclic stretch. Biomech Model Mechanobiol 2024; 23:433-451. [PMID: 38010479 DOI: 10.1007/s10237-023-01783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023]
Abstract
Mechanosensitive focal adhesion (FA) complexes mediate dynamic interactions between cells and substrates and regulate cellular function. Integrins in FA complexes link substrate ligands to stress fibers (SFs) and aid load transfer and traction generation. We developed a one-dimensional, multi-scale, stochastic finite element model of a fibroblast on a substrate that includes calcium signaling, SF remodeling, and FA dynamics. We linked stochastic dynamics, describing the formation and clustering of integrins to substrate ligands via motor-clutches, to a continuum level SF contractility model at various locations along the cell length. We quantified changes in cellular responses with substrate stiffness, ligand density, and cyclic stretch. Results show that tractions and integrin recruitments varied along the cell length; tractions were maximum at lamellar regions and reduced to zero at the cell center. Optimal substrate stiffness, based on maximum tractions exerted by the cell, shifted toward stiffer substrates at high ligand densities. Mean tractions varied biphasically with substrate stiffness and peaked at the optimal substrate stiffness. Cytosolic calcium increased monotonically with substrate stiffness and accumulated near lamellipodial regions. Cyclic stretch increased the cytosolic calcium, integrin concentrations, and tractions at lamellipodial and intermediate regions on compliant substrates. The optimal substrate stiffness under stretch shifted toward compliant substrates for a given ligand density. Stretch also caused cell deadhesions beyond a critical substrate stiffness. FA's destabilized on stiff substrates under cyclic stretch. An increase in substrate stiffness and cyclic stretch resulted in higher fibroblast contractility. These results show that chemomechanical coupling is essential in mechanosensing responses underlying cell-substrate interactions.
Collapse
Affiliation(s)
- Siddhartha Jaddivada
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
8
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Huang M, Wang H, Mackey C, Chung MC, Guan J, Zheng G, Roy A, Xie M, Vulpe C, Tang X. YAP at the Crossroads of Biomechanics and Drug Resistance in Human Cancer. Int J Mol Sci 2023; 24:12491. [PMID: 37569866 PMCID: PMC10419175 DOI: 10.3390/ijms241512491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Biomechanical forces are of fundamental importance in biology, diseases, and medicine. Mechanobiology is an emerging interdisciplinary field that studies how biological mechanisms are regulated by biomechanical forces and how physical principles can be leveraged to innovate new therapeutic strategies. This article reviews state-of-the-art mechanobiology knowledge about the yes-associated protein (YAP), a key mechanosensitive protein, and its roles in the development of drug resistance in human cancer. Specifically, the article discusses three topics: how YAP is mechanically regulated in living cells; the molecular mechanobiology mechanisms by which YAP, along with other functional pathways, influences drug resistance of cancer cells (particularly lung cancer cells); and finally, how the mechanical regulation of YAP can influence drug resistance and vice versa. By integrating these topics, we present a unified framework that has the potential to bring theoretical insights into the design of novel mechanomedicines and advance next-generation cancer therapies to suppress tumor progression and metastasis.
Collapse
Affiliation(s)
- Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Heyang Wang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Cole Mackey
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32603, USA
| | - Michael C. Chung
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Juan Guan
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Guangrong Zheng
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32603, USA
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32603, USA
| | - Christopher Vulpe
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Lichtenberg JY, Tran S, Hwang PY. Mechanical factors driving cancer progression. Adv Cancer Res 2023; 160:61-81. [PMID: 37704291 DOI: 10.1016/bs.acr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
A fundamental step of tumor metastasis is tumor cell migration away from the primary tumor site. One mode of migration that is essential but still understudied is collective invasion, the process by which clusters of cells move in a coordinated fashion. In recent years, there has been growing interest to understand factors regulating collective invasion, with increasing number of studies investigating the biomechanical regulation of collective invasion. In this review we discuss the dynamic relationship between tumor microenvironment cues and cell response by first covering mechanical factors in the microenvironment and second, discussing the mechanosensing pathways utilized by cells in collective clusters to dynamically respond to mechanical matrix cues. Finally, we discuss model systems that have been developed which have increased our understanding of the mechanical factors contributing to tumor progression.
Collapse
Affiliation(s)
- Jessanne Y Lichtenberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Sydnie Tran
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Priscilla Y Hwang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
11
|
Chen X, Xia Y, Du W, Liu H, Hou R, Song Y, Xu W, Mao Y, Chen J. Contact Guidance Drives Upward Cellular Migration at the Mesoscopic Scale. Cell Mol Bioeng 2023; 16:205-218. [PMID: 37456789 PMCID: PMC10338420 DOI: 10.1007/s12195-023-00766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Cancer metastasis is associated with increased cancer incidence, recurrence, and mortality. The role of cell contact guidance behaviors in cancer metastasis has been recognized but has not been elucidated yet. Methods The contact guidance behavior of cancer cells in response to topographical constraints is identified using microgrooved substrates with varying dimensions at the mesoscopic scale. Then, the cell morphology is determined to quantitatively analyze the effects of substrate dimensions on cells contact guidance. Cell density and migrate velocity signatures within the cellular population are determined using time-lapse phase-contrast microscopy. The effect of soluble factors concentration is determined by culturing cells upside down. Then, the effect of cell-substrate interaction on cell migration is investigated using traction force microscopy. Results With increasing depth and decreasing groove width, cell elongation and alignment are enhanced, while cell spreading is inhibited. Moreover, cells display preferential distribution on the ridges, which is found to be more pronounced with increasing depth and groove width. Determinations of cell density and migration velocity signatures reveal that the preferential distribution on ridges is caused by cell upward migration. Combined with traction force measurement, we find that migration toward ridges is governed by different cell-substrate interactions between grooves and ridges caused by geometrical constraints. Interestingly, the upward migration of cells at the mesoscopic scale is driven by entropic maximization. Conclusions The mesoscopic cell contact guidance mechanism based on the entropic force driven theory provides basic support for the study of cell alignment and migration along healthy tissues with varying size, thereby aiding in the prediction of cancer metastasis. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00766-y.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Youjun Xia
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027 Anhui China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Wenqiang Du
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Han Liu
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Ran Hou
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Yiyu Song
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Wenhu Xu
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Yuxin Mao
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032 Anhui China
| | - Jianfeng Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| |
Collapse
|
12
|
Ketebo AA, Din SU, Lee G, Park S. Mechanobiological Analysis of Nanoparticle Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101682. [PMID: 37242097 DOI: 10.3390/nano13101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Nanoparticles (NPs) are commonly used in healthcare and nanotherapy, but their toxicity at high concentrations is well-known. Recent research has shown that NPs can also cause toxicity at low concentrations, disrupting various cellular functions and leading to altered mechanobiological behavior. While researchers have used different methods to investigate the effects of NPs on cells, including gene expression and cell adhesion assays, the use of mechanobiological tools in this context has been underutilized. This review emphasizes the importance of further exploring the mechanobiological effects of NPs, which could reveal valuable insights into the mechanisms behind NP toxicity. To investigate these effects, different methods, including the use of polydimethylsiloxane (PDMS) pillars to study cell motility, traction force production, and rigidity sensing contractions, have been employed. Understanding how NPs affect cell cytoskeletal functions through mechanobiology could have significant implications, such as developing innovative drug delivery systems and tissue engineering techniques, and could improve the safety of NPs for biomedical applications. In summary, this review highlights the significance of incorporating mechanobiology into the study of NP toxicity and demonstrates the potential of this interdisciplinary field to advance our knowledge and practical use of NPs.
Collapse
Affiliation(s)
- Abdurazak Aman Ketebo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16499, Republic of Korea
| | - Shahab Ud Din
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16499, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Liang C, Huang M, Tanaka M, Lightsey S, Temples M, Lepler SE, Sheng P, Mann WP, Widener AE, Siemann DW, Sharma B, Xie M, Dai Y, Phelps E, Zeng B, Tang X. Functional Interrogation of Ca 2+ Signals in Human Cancer Cells In Vitro and Ex Vivo by Fluorescent Microscopy and Molecular Tools. Methods Mol Biol 2023; 2679:95-125. [PMID: 37300611 DOI: 10.1007/978-1-0716-3271-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genetically encoded calcium indicators (GECIs) and high-resolution confocal microscopy enable dynamic visualization of calcium signals in cells and tissues. Two-dimensional and 3D biocompatible materials mimic the mechanical microenvironments of tumor and healthy tissues in a programmable manner. Cancer xenograft models and ex vivo functional imaging of tumor slices reveal physiologically relevant functions of calcium dynamics in tumors at different progression stages. Integration of these powerful techniques allows us to quantify, diagnose, model, and understand cancer pathobiology. Here, we describe detailed materials and methods used to establish this integrated interrogation platform, from generating transduced cancer cell lines that stably express CaViar (GCaMP5G + QuasAr2) to in vitro and ex vivo calcium imaging of the cells in 2D/3D hydrogels and tumor tissues. These tools open the possibility for detailed explorations of mechano-electro-chemical network dynamics in living systems.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Mai Tanaka
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Suzanne Lightsey
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Madison Temples
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Sharon E Lepler
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - William P Mann
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Adrienne E Widener
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Blanka Sharma
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yao Dai
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward Phelps
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Bo Zeng
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Luo Q, Zhang J, Huang M, Lin G, Tanaka M, Lepler S, Guan J, Siemann D, Tang X. Automatic Multi-functional Integration Program (AMFIP) towards all-optical mechano-electrophysiology interrogation. PLoS One 2022; 17:e0266098. [PMID: 35901062 PMCID: PMC9333221 DOI: 10.1371/journal.pone.0266098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Automatic operations of multi-functional and time-lapse live-cell imaging are necessary for the biomedical science community to study active, multi-faceted, and long-term biological phenomena. To achieve automatic control, most existing solutions often require the purchase of extra software programs and hardware that rely on the manufacturers’ own specifications. However, these software programs are usually non-user-programmable and unaffordable for many laboratories. To address this unmet need, we have developed a novel open-source software program, titled Automatic Multi-functional Integration Program (AMFIP), as a new Java-based and hardware-independent system that provides proven advantages over existing alternatives to the scientific community. Without extra hardware, AMFIP enables the functional synchronization of the μManager software platform, the Nikon NIS-Elements platform, and other 3rd party software to achieve automatic operations of most commercially available microscopy systems, including but not limited to those from Nikon. AMFIP provides a user-friendly and programmable graphical user interface (GUI), opening the door to expanding the customizability for myriad hardware and software systems according to user-specific experimental requirements and environments. To validate the intended purposes of developing AMFIP, we applied it to elucidate the question whether single cells, prior to their full spreading, can sense and respond to a soft solid substrate, and if so, how does the interaction depend on the cell spreading time and the stiffness of the substrate. Using a CRISPR/Cas9-engineered human epithelial Beas2B (B2B) cell line that expresses mNeonGreen2-tagged mechanosensitive Yes-associated protein (YAP), we show that single B2B cells develop distinct substrate-stiffness-dependent YAP expressions within 10 hours at most on the substrate, suggesting that cells are able to sense, distinguish, and respond to mechanical cues prior to the establishment of full cell spreading. In summary, AMFIP provides a reliable, open-source, and cost-free solution that has the validated long-term utility to satisfy the need of automatic imaging operations in the scientific community.
Collapse
Affiliation(s)
- Qin Luo
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Justin Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California, United States of America
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, UF, Gainesville, Florida, United States of America
| | - Gaoming Lin
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Mai Tanaka
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Sharon Lepler
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Juan Guan
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- Department of Physics, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Dietmar Siemann
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, UF, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hobson CM, Aaron JS, Heddleston JM, Chew TL. Visualizing the Invisible: Advanced Optical Microscopy as a Tool to Measure Biomechanical Forces. Front Cell Dev Biol 2021; 9:706126. [PMID: 34552926 PMCID: PMC8450411 DOI: 10.3389/fcell.2021.706126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/28/2023] Open
Abstract
The importance of mechanical force in biology is evident across diverse length scales, ranging from tissue morphogenesis during embryo development to mechanotransduction across single adhesion proteins at the cell surface. Consequently, many force measurement techniques rely on optical microscopy to measure forces being applied by cells on their environment, to visualize specimen deformations due to external forces, or even to directly apply a physical perturbation to the sample via photoablation or optogenetic tools. Recent developments in advanced microscopy offer improved approaches to enhance spatiotemporal resolution, imaging depth, and sample viability. These advances can be coupled with already existing force measurement methods to improve sensitivity, duration and speed, amongst other parameters. However, gaining access to advanced microscopy instrumentation and the expertise necessary to extract meaningful insights from these techniques is an unavoidable hurdle. In this Live Cell Imaging special issue Review, we survey common microscopy-based force measurement techniques and examine how they can be bolstered by emerging microscopy methods. We further explore challenges related to the accompanying data analysis in biomechanical studies and discuss the various resources available to tackle the global issue of technology dissemination, an important avenue for biologists to gain access to pre-commercial instruments that can be leveraged for biomechanical studies.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - John M. Heddleston
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, United States
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| |
Collapse
|
16
|
Lekka M, Gnanachandran K, Kubiak A, Zieliński T, Zemła J. Traction force microscopy - Measuring the forces exerted by cells. Micron 2021; 150:103138. [PMID: 34416532 DOI: 10.1016/j.micron.2021.103138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Cells generate mechanical forces (traction forces, TFs) while interacting with the extracellular matrix or neighbouring cells. Forces are generated by both cells and extracellular matrix (ECM) and transmitted within the cell-ECM or cell-cell contacts involving focal adhesions or adherens junctions. Within more than two decades, substantial progress has been achieved in techniques that measure TFs. One of the techniques is traction force microscopy (TFM). This review discusses the TFM and its advances in measuring TFs exerted by cells (single cells and multicellular systems) at cell-ECM and cell-cell junctional intracellular interfaces. The answers to how cells sense, adapt and respond to mechanical forces unravel their role in controlling and regulating cell behaviour in normal and pathological conditions.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland.
| | | | - Andrzej Kubiak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| | - Tomasz Zieliński
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| |
Collapse
|
17
|
Méhes E, Biri-Kovács B, Isai DG, Gulyás M, Nyitray L, Czirók A. Matrigel patterning reflects multicellular contractility. PLoS Comput Biol 2019; 15:e1007431. [PMID: 31652274 PMCID: PMC6834294 DOI: 10.1371/journal.pcbi.1007431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 11/06/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023] Open
Abstract
Non-muscle myosin II (NMII)-induced multicellular contractility is essential for development, maintenance and remodeling of tissue morphologies. Dysregulation of the cytoskeleton can lead to birth defects or enable cancer progression. We demonstrate that the Matrigel patterning assay, widely used to characterize endothelial cells, is a highly sensitive tool to evaluate cell contractility within a soft extracellular matrix (ECM) environment. We propose a computational model to explore how cell-exerted contractile forces can tear up the cell-Matrigel composite material and gradually remodel it into a network structure. We identify measures that are characteristic for cellular contractility and can be obtained from image analysis of the recorded patterning process. The assay was calibrated by inhibition of NMII activity in A431 epithelial carcinoma cells either directly with blebbistatin or indirectly with Y27632 Rho kinase inhibitor. Using Matrigel patterning as a bioassay, we provide the first functional demonstration that overexpression of S100A4, a calcium-binding protein that is frequently overexpressed in metastatic tumors and inhibits NMIIA activity by inducing filament disassembly, effectively reduces cell contractility. Sensing and exerting forces is a fundamental aspect of tissue organization. We demonstrate that contractile cells form an intricate network structure when placed in a pliable culture environment, a phenomenon often associated with vascular networks and is being actively used to characterize endothelial cells in culture. We propose a computational model that operates with mechanical stresses, plastic deformation and material failure within the cell-extracellular matrix composite to explain the patterning process. In addition to re-interpret a decades-old tool of experimental cell biology, our work suggests a potentially high throughput computational assay to characterize cellular contractility within a soft ECM environment.
Collapse
Affiliation(s)
- Előd Méhes
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
| | - Beáta Biri-Kovács
- Department of Biochemistry, Eotvos Lorand University, Budapest, Hungary
| | - Dona G. Isai
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Márton Gulyás
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eotvos Lorand University, Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Huang J, Lin F, Xiong C. Mechanical characterization of single cells based on microfluidic techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Sridharan Weaver S, Li Y, Foucard L, Majeed H, Bhaduri B, Levine AJ, Kilian KA, Popescu G. Simultaneous cell traction and growth measurements using light. JOURNAL OF BIOPHOTONICS 2019; 12:e201800182. [PMID: 30105846 PMCID: PMC7236521 DOI: 10.1002/jbio.201800182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/27/2018] [Indexed: 05/12/2023]
Abstract
Characterizing the effects of force fields generated by cells on proliferation, migration and differentiation processes is challenging due to limited availability of nondestructive imaging modalities. Here, we integrate a new real-time traction stress imaging modality, Hilbert phase dynamometry (HPD), with spatial light interference microscopy (SLIM) for simultaneous monitoring of cell growth during differentiation processes. HPD uses holographic principles to extract displacement fields from chemically patterned fluorescent grid on deformable substrates. This is converted into forces by solving an elasticity inverse problem. Since HPD uses the epi-fluorescence channel of an inverted microscope, cellular behavior can be concurrently studied in transmission with SLIM. We studied the differentiation of mesenchymal stem cells (MSCs) and found that cells undergoing osteogenesis and adipogenesis exerted larger and more dynamic stresses than their precursors, with MSCs developing the smallest forces and growth rates. Thus, we develop a powerful means to study mechanotransduction during dynamic processes where the matrix provides context to guide cells toward a physiological or pathological outcome.
Collapse
Affiliation(s)
- Shamira Sridharan Weaver
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Louis Foucard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California
| | - Hassaan Majeed
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Basanta Bhaduri
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Alex J Levine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California
- Department of Physics & Astronomy, University of California, Los Angeles, California
- Department of Biomathematics, University of California, Los Angeles, California
| | - Kristopher A Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
20
|
Muhamed I, Sproul EP, Ligler FS, Brown AC. Fibrin Nanoparticles Coupled with Keratinocyte Growth Factor Enhance the Dermal Wound-Healing Rate. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3771-3780. [PMID: 30604611 DOI: 10.1021/acsami.8b21056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Expediting the wound-healing process is critical for patients chronically ill from nonhealing wounds and diseases such as hemophilia or diabetes or who have suffered trauma including easily infected open wounds. FDA-approved external tissue sealants include the topical application of fibrin gels, which can be 500 times denser than natural fibrin clots. With lower clot porosity and higher polymerization rates than physiologically formed fibrin clots, the commercial gels quickly stop blood loss but impede the later clot degradation kinetics and thus retard tissue-healing rates. The fibrin nanoparticles (FBNs) described here are constructed from physiologically relevant fibrin concentrations that support new tissue and dermal wound scaffold formation when coupled with growth factors. The FBNs, synthesized in a microfluidic droplet generator, support cell adhesion and traction generation, and when coupled to keratinocyte growth factor (KGF), support cell migration and in vivo wound healing. The FBN-KGF particles enhance cell migration in vitro greater than FBN alone or free KGF and also improve healing outcomes in a murine full thickness injury model compared to saline, bulk fibrin sealant, free KGF, or bulk fibrin mixed with KGF treatments. Furthermore, FBN can be potentially administered with other tissue-healing factors and inflammatory mediators to improve wound-healing outcomes.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Joint Department of Biomedical Engineering , North Carolina State University and University of North Carolina at Chapel Hill , Raleigh 27695 , North Carolina , United States
- Comparative Medicine Institute , North Carolina State University , Raleigh 27695 , North Carolina , United States
| | - Erin P Sproul
- Joint Department of Biomedical Engineering , North Carolina State University and University of North Carolina at Chapel Hill , Raleigh 27695 , North Carolina , United States
- Comparative Medicine Institute , North Carolina State University , Raleigh 27695 , North Carolina , United States
| | - Frances S Ligler
- Joint Department of Biomedical Engineering , North Carolina State University and University of North Carolina at Chapel Hill , Raleigh 27695 , North Carolina , United States
- Comparative Medicine Institute , North Carolina State University , Raleigh 27695 , North Carolina , United States
| | - Ashley C Brown
- Joint Department of Biomedical Engineering , North Carolina State University and University of North Carolina at Chapel Hill , Raleigh 27695 , North Carolina , United States
- Comparative Medicine Institute , North Carolina State University , Raleigh 27695 , North Carolina , United States
| |
Collapse
|
21
|
Huang Y, Schell C, Huber TB, Şimşek AN, Hersch N, Merkel R, Gompper G, Sabass B. Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells. Sci Rep 2019; 9:539. [PMID: 30679578 PMCID: PMC6345967 DOI: 10.1038/s41598-018-36896-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Adherent cells exert traction forces on to their environment which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures during developmental morphogenesis. Traction force microscopy (TFM) enables the measurement of traction forces on an elastic substrate and thereby provides quantitative information on cellular mechanics in a perturbation-free fashion. In TFM, traction is usually calculated via the solution of a linear system, which is complicated by undersampled input data, acquisition noise, and large condition numbers for some methods. Therefore, standard TFM algorithms either employ data filtering or regularization. However, these approaches require a manual selection of filter- or regularization parameters and consequently exhibit a substantial degree of subjectiveness. This shortcoming is particularly serious when cells in different conditions are to be compared because optimal noise suppression needs to be adapted for every situation, which invariably results in systematic errors. Here, we systematically test the performance of new methods from computer vision and Bayesian inference for solving the inverse problem in TFM. We compare two classical schemes, L1- and L2-regularization, with three previously untested schemes, namely Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. Overall, we find that Elastic Net regularization, which combines L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for automatic, optimal L2 regularization. Using artificial data and experimental data, we show that these methods enable robust reconstruction of traction without requiring a difficult selection of regularization parameters specifically for each data set. Thus, Bayesian methods can mitigate the considerable uncertainty inherent in comparing cellular tractions in different conditions.
Collapse
Affiliation(s)
- Yunfei Huang
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems-2 and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425, Juelich, Germany
| | - Christoph Schell
- Institut für Klinische Pathologie, Universitätsklinikum Freiburg, D-79002, Freiburg, Germany.,Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg, D-79106, Germany
| | - Tobias B Huber
- Department of Medicine IV, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ahmet Nihat Şimşek
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems-2 and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425, Juelich, Germany
| | - Nils Hersch
- Biomechanics, Institute of Complex Systems-7, Forschungszentrum Juelich, D-52425, Juelich, Germany
| | - Rudolf Merkel
- Biomechanics, Institute of Complex Systems-7, Forschungszentrum Juelich, D-52425, Juelich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems-2 and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425, Juelich, Germany
| | - Benedikt Sabass
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems-2 and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425, Juelich, Germany.
| |
Collapse
|
22
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
23
|
Kulkarni AH, Ghosh P, Seetharaman A, Kondaiah P, Gundiah N. Traction cytometry: regularization in the Fourier approach and comparisons with finite element method. SOFT MATTER 2018; 14:4687-4695. [PMID: 29740649 DOI: 10.1039/c7sm02214j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traction forces exerted by adherent cells are quantified using displacements of embedded markers on polyacrylamide substrates due to cell contractility. Fourier Transform Traction Cytometry (FTTC) is widely used to calculate tractions but has inherent limitations due to errors in the displacement fields; these are mitigated through a regularization parameter (γ) in the Reg-FTTC method. An alternate finite element (FE) approach computes tractions on a domain using known boundary conditions. Robust verification and recovery studies are lacking but essential in assessing the accuracy and noise sensitivity of the traction solutions from the different methods. We implemented the L2 regularization method and defined a maximum curvature point in the traction with γ plot as the optimal regularization parameter (γ*) in the Reg-FTTC approach. Traction reconstructions using γ* yield accurate values of low and maximum tractions (Tmax) in the presence of up to 5% noise. Reg-FTTC is hence a clear improvement over the FTTC method but is inadequate to reconstruct low stresses such as those at nascent focal adhesions. FE, implemented using a node-by-node comparison, showed an intermediate reconstruction compared to Reg-FTTC. We performed experiments using mouse embryonic fibroblast (MEF) and compared results between these approaches. Tractions from FTTC and FE showed differences of ∼92% and 22% as compared to Reg-FTTC. Selection of an optimum value of γ for each cell reduced variability in the computed tractions as compared to using a single value of γ for all the MEF cells in this study.
Collapse
Affiliation(s)
- Ankur H Kulkarni
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
24
|
Zarkoob H, Chinnathambi S, Halberg SA, Selby JC, Magin TM, Sander EA. Mouse Keratinocytes Without Keratin Intermediate Filaments Demonstrate Substrate Stiffness Dependent Behaviors. Cell Mol Bioeng 2018; 11:163-174. [PMID: 31719883 PMCID: PMC6816603 DOI: 10.1007/s12195-018-0526-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 04/26/2018] [Indexed: 10/17/2022] Open
Abstract
INTRODUCTION Traditionally thought to serve active vs. passive mechanical functions, respectively, a growing body of evidence suggests that actin microfilament and keratin intermediate filament (IF) networks, together with their associated cell-cell and cell-matrix anchoring junctions, may have a large degree of functional interdependence. Therefore, we hypothesized that the loss of keratin IFs in a knockout mouse keratinocyte model would affect the kinematics of colony formation, i.e., the spatiotemporal process by which individual cells join to form colonies and eventually a nascent epithelial sheet. METHODS Time-lapse imaging and deformation tracking microscopy was used to observe colony formation for both wild type (WT) and keratin-deficient knockout (KO) mouse keratinocytes over 24 h. Cells were cultured under high calcium conditions on collagen-coated substrates with nominal stiffnesses of ~ 1.2 kPa (soft) and 24 kPa (stiff). Immunofluorescent staining of actin and selected adhesion proteins was also performed. RESULTS The absence of keratin IFs markedly affected cell morphology, spread area, and cytoskeleton and adhesion protein organization on both soft and stiff substrates. Strikingly, an absence of keratin IFs also significantly reduced the ability of mouse keratinocytes to mechanically deform the soft substrate. Furthermore, KO cells formed colonies more efficiently on stiff vs. soft substrates, a behavior opposite to that observed for WT keratinocytes. CONCLUSIONS Collectively, these data are strongly supportive of the idea that an interdependence between actin microfilaments and keratin IFs does exist, while further suggesting that keratin IFs may represent an important and under-recognized component of keratinocyte mechanosensation and the force generation apparatus.
Collapse
Affiliation(s)
- Hoda Zarkoob
- Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA USA
| | - Sathivel Chinnathambi
- Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA USA
| | - Spencer A. Halberg
- Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA USA
| | - John C. Selby
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA USA
| | - Thomas M. Magin
- Division of Cell and Developmental Biology and SIKT, Institute of Biology, University of Leipzig, 04103 Leipzig, Germany
| | - E. A. Sander
- Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA USA
| |
Collapse
|
25
|
Pasqualini FS, Agarwal A, O'Connor BB, Liu Q, Sheehy SP, Parker KK. Traction force microscopy of engineered cardiac tissues. PLoS One 2018; 13:e0194706. [PMID: 29590169 PMCID: PMC5874032 DOI: 10.1371/journal.pone.0194706] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/08/2018] [Indexed: 01/08/2023] Open
Abstract
Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.
Collapse
Affiliation(s)
- Francesco Silvio Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Ashutosh Agarwal
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States of America
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute, Miami, FL, United States of America
| | - Blakely Bussie O'Connor
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Qihan Liu
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Brockman JM, Blanchard AT, Pui-Yan Ma V, Derricotte WD, Zhang Y, Fay ME, Lam WA, Evangelista FA, Mattheyses AL, Salaita K. Mapping the 3D orientation of piconewton integrin traction forces. Nat Methods 2018; 15:115-118. [PMID: 29256495 PMCID: PMC6116908 DOI: 10.1038/nmeth.4536] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022]
Abstract
Mechanical forces are integral to many biological processes; however, current techniques cannot map the magnitude and direction of piconewton molecular forces. Here, we describe molecular force microscopy, leveraging molecular tension probes and fluorescence polarization microscopy to measure the magnitude and 3D orientation of cellular forces. We mapped the orientation of integrin-based traction forces in mouse fibroblasts and human platelets, revealing alignment between the organization of force-bearing structures and their force orientations.
Collapse
Affiliation(s)
- Joshua M. Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- These authors contributed equally to this work
| | - Aaron T. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- These authors contributed equally to this work
| | | | - Wallace D. Derricotte
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Present address: Department of Chemistry, Morehouse College, Atlanta, Georgia, USA
| | - Yun Zhang
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Meredith E. Fay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Alexa L. Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Present address: Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Chiou K, Collins EMS. Why we need mechanics to understand animal regeneration. Dev Biol 2017; 433:155-165. [PMID: 29179947 DOI: 10.1016/j.ydbio.2017.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/31/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
Abstract
Mechanical forces are an important contributor to cell fate specification and cell migration during embryonic development in animals. Similarities between embryogenesis and regeneration, particularly with regards to pattern formation and large-scale tissue movements, suggest similarly important roles for physical forces during regeneration. While the influence of the mechanical environment on stem cell differentiation in vitro is being actively exploited in the fields of tissue engineering and regenerative medicine, comparatively little is known about the role of stresses and strains acting during animal regeneration. In this review, we summarize published work on the role of physical principles and mechanical forces in animal regeneration. Novel experimental techniques aimed at addressing the role of mechanics in embryogenesis have greatly enhanced our understanding at scales from the subcellular to the macroscopic - we believe the time is ripe for the field of regeneration to similarly leverage the tools of the mechanobiological research community.
Collapse
Affiliation(s)
- Kevin Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eva-Maria S Collins
- Physics Department, UC San Diego, La Jolla, CA 92093, USA; Section of Cell&Developmental Biology, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Dumbali SP, Mei L, Qian S, Maruthamuthu V. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony. J Biomech Eng 2017; 139:2646921. [PMID: 28753694 DOI: 10.1115/1.4037404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 11/08/2022]
Abstract
Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529
| | - Lanju Mei
- Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529
| | - Shizhi Qian
- Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529
| | - Venkat Maruthamuthu
- Mechanical and Aerospace Engineering, Old Dominion University, 4635 Hampton Boulevard, 238e Kaufman, Norfolk, VA 23529 e-mail:
| |
Collapse
|
29
|
Zhang Y, Liao K, Li C, Lai ACK, Foo JJ, Chan V. Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction. Bioengineering (Basel) 2017; 4:E72. [PMID: 28952551 PMCID: PMC5615318 DOI: 10.3390/bioengineering4030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell-matrix and cell-cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials. However, less attention has been paid to the design of 3D biomaterial systems with geometric variances, such as the possession of precise micro-features and/or bio-sensing elements for probing the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D model experimental platforms pave the way for studying the mechanotransduction of multicellular aggregates under controlled geometric and mechanical parameters. Concurrently with the progress in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted by cells onto the opposing deformable surface. In the current work, we first review the recent advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the role of collective cell-cell interactions in the mechanotransduction of engineered tissue equivalents determined by such integrative biomaterial systems under simulated physiological conditions.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| | - Chuan Li
- Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan.
| | - Alvin C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Ji-Jinn Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia.
| | - Vincent Chan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| |
Collapse
|
30
|
Muhamed I, Chowdhury F, Maruthamuthu V. Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering (Basel) 2017; 4:E12. [PMID: 28952491 PMCID: PMC5590431 DOI: 10.3390/bioengineering4010012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023] Open
Abstract
The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na⁺, Ca2+, K⁺ channels). The membrane's biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM), vascular endothelial (VE)-cadherin, epithelial (E)-cadherin, integrin) embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | - Farhan Chowdhury
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.
| | - Venkat Maruthamuthu
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
31
|
Lee J, Abdeen AA, Tang X, Saif TA, Kilian KA. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow. Acta Biomater 2016; 42:46-55. [PMID: 27375285 PMCID: PMC5003770 DOI: 10.1016/j.actbio.2016.06.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. STATEMENT OF SIGNIFICANCE Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and uncover a role for adhesion, and the degree of traction force exerted on the substrate in guiding these lineage outcomes.
Collapse
Affiliation(s)
- Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amr A Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Tang
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taher A Saif
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
32
|
Kourouklis AP, Kaylan KB, Underhill GH. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells. Biomaterials 2016; 99:82-94. [DOI: 10.1016/j.biomaterials.2016.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
|
33
|
Molino D, Quignard S, Gruget C, Pincet F, Chen Y, Piel M, Fattaccioli J. On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets. Sci Rep 2016; 6:29113. [PMID: 27373558 PMCID: PMC4931467 DOI: 10.1038/srep29113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023] Open
Abstract
The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we developed a hybrid microchip made of parallel PDMS channels in which oil droplets are sparsely distributed and serve as deformable obstacles. We thus show that cells strongly deform droplets while passing them. Then, we show that the microdevice can be used to study the influence of drugs on migration at the population level. Finally, we describe a quantitative analysis method of the droplet deformation that allows measuring in real-time the mechanical stress exerted by a single cell. The method presented herein thus constitutes a powerful analytical tool for cell migration studies under confinement.
Collapse
Affiliation(s)
- D. Molino
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - S. Quignard
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - C. Gruget
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - F. Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - Y. Chen
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - M. Piel
- Institut Curie, CNRS UMR 144, 26 rue d’Ulm, 75005, Paris, France
| | - J. Fattaccioli
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| |
Collapse
|
34
|
Mao AS, Shin JW, Mooney DJ. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials 2016; 98:184-91. [PMID: 27203745 DOI: 10.1016/j.biomaterials.2016.05.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 11/19/2022]
Abstract
The mechanical properties of the microenvironment and direct contact-mediated cell-cell interactions are two variables known to be important in the determination of stem cell differentiation fate, but little is known about the interplay of these cues. Here, we use a micropatterning approach on polyacrylamide gels of tunable stiffnesses to study how homotypic cell-cell contacts and mechanical stiffness affect different stages of osteogenesis of mesenchymal stem cells (MSCs). Nuclear localization of transcription factors associated with osteogenesis depended on substrate stiffness and was independent of the degree of cell-cell contact. However, expression of alkaline phosphatase, an early protein marker for osteogenesis, increased only in cells with both direct contact with neighboring cells and adhesion to stiffer substrates. Finally, mature osteogenesis, as assessed by calcium deposition, was low in micropatterned cells, even on stiff substrates and in multicellular clusters. These results indicate that substrate stiffness and the presence of neighboring cells regulate osteogenesis in MSCs.
Collapse
Affiliation(s)
- Angelo S Mao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jae-Won Shin
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Ribeiro AJS, Denisin AK, Wilson RE, Pruitt BL. For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods 2016; 94:51-64. [PMID: 26265073 PMCID: PMC4746112 DOI: 10.1016/j.ymeth.2015.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 01/16/2023] Open
Abstract
While performing several functions, adherent cells deform their surrounding substrate via stable adhesions that connect the intracellular cytoskeleton to the extracellular matrix. The traction forces that deform the substrate are studied in mechanotrasduction because they are affected by the mechanics of the extracellular milieu. We review the development and application of two methods widely used to measure traction forces generated by cells on 2D substrates: (i) traction force microscopy with polyacrylamide hydrogels and (ii) calculation of traction forces with arrays of deformable microposts. Measuring forces with these methods relies on measuring substrate displacements and converting them into forces. We describe approaches to determine force from displacements and elaborate on the necessary experimental conditions for this type of analysis. We emphasize device fabrication, mechanical calibration of substrates and covalent attachment of extracellular matrix proteins to substrates as key features in the design of experiments to measure cell traction forces with polyacrylamide hydrogels or microposts. We also report the challenges and achievements in integrating these methods with platforms for the mechanical stimulation of adherent cells. The approaches described here will enable new studies to understand cell mechanical outputs as a function of mechanical inputs and advance the understanding of mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, United States
| | - Aleksandra K Denisin
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Bioengineering, Stanford University, Stanford, CA 94305, United States
| | - Robin E Wilson
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
36
|
Lee J, Abdeen AA, Tang X, Saif TA, Kilian KA. Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials 2015; 69:174-83. [PMID: 26285084 PMCID: PMC4556610 DOI: 10.1016/j.biomaterials.2015.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Abstract
Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis.
Collapse
Affiliation(s)
- Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Amr A Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Xin Tang
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taher A Saif
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA.
| |
Collapse
|
37
|
Abstract
Restoration of epidermal organization and function in response to a variety of pathophysiological insults is critically dependent on coordinated keratinocyte migration, proliferation, and stratification during the process of wound healing. These processes are mediated by the reconfiguration of both cell-cell (desmosomes, adherens junctions) and cell-matrix (focal adhesions, hemidesmosomes) junctions and the cytoskeletal filament networks that they serve to interconnect. In this study, we investigated the role of substrate elasticity (stiffness) on keratinocyte colony formation in vitro during the process of nascent epithelial sheet formation as triggered by the calcium switch model of keratinocyte culture. Keratinocytes cultured on pepsin digested type I collagen coated soft (nominal E = 1.2 kPa) polyacrylamide gels embedded with fluorescent microspheres exhibited (i) smaller spread contact areas, (ii) increased migration velocities, and (iii) increased rates of colony formation with more cells per colony than did keratinocytes cultured on stiff (nominal E = 24 kPa) polyacrylamide gels. As assessed by tracking of embedded microsphere displacements, keratinocytes cultured on soft substrates generated large local substrate deformations that appeared to recruit adjacent keratinocytes into joining an evolving colony. Together with the observed differences in keratinocyte kinematics and substrate deformations, we developed two ad hoc analyses, termed distance rank (DR) and radius of cooperativity (RC), that help to objectively ascribe what we perceive as increasingly cooperative behavior of keratinocytes cultured on soft versus stiff gels during the process of colony formation. We hypothesize that the differences in keratinocyte colony formation observed in our experiments could be due to cell-cell mechanical signaling generated via local substrate deformations that appear to be correlated with the increased expression of β4 integrin within keratinocytes positioned along the periphery of an evolving cell colony.
Collapse
|