1
|
Pandey S, Wohland T. EGFR does not directly interact with cortical actin: A SRRF'n'TIRF study. Biophys J 2024; 123:3736-3749. [PMID: 39340155 PMCID: PMC11560307 DOI: 10.1016/j.bpj.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) governs pivotal signaling pathways in cell proliferation and survival, with mutations implicated in numerous cancers. The organization of EGFR on the plasma membrane (PM) is influenced by the lipids and the cortical actin (CA) cytoskeleton. Despite the presence of a putative actin-binding domain (ABD) spanning 13 residues, a direct interaction between EGFR and CA has not been definitively established. While disrupting the cytoskeleton can impact EGFR behavior, suggesting a connection, the influence of the static actin cytoskeleton has been found to be indirect. Here, we investigate the potential interaction between EGFR and CA, as well as the extent to which CA regulates EGFR's distribution on the PM using SRRF'n'TIRF, a spatiotemporal super-resolution microscopy technique that provides sub-100 nm resolution and ms-scale dynamics from the same data set. To label CA, we constructed PMT-mEGFP-F-tractin, which combines an inner leaflet targeting domain PMT, fluorescent probe mEGFP, and the actin-binding protein F-tractin. In addition to EGFR-mEGFP, we included two control constructs: 1) an ABD deletion mutant, EGFRΔABD-mEGFP serving as a negative control and 2) EGFR-mApple-F-tractin, where F-tractin is fused to the C-terminus of EGFR-mApple, serving as the positive control. We find that EGFR-mEGFP and EGFRΔABD-mEGFP show similar membrane dynamics, implying that EGFR-mEGFP dynamics and organization are independent of CA. EGFR dynamics show CA dependence when F-tractin is anchored to the cytoplasmic tail. Together, our results demonstrate that EGFR does not directly interact with the CA in its resting and activated state.
Collapse
Affiliation(s)
- Shambhavi Pandey
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Banerjee K, Das B. Elucidating the link between binding statistics and Shannon information in biological networks. J Chem Phys 2024; 161:125102. [PMID: 39319659 DOI: 10.1063/5.0226904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
The response of a biological network to ligand binding is of crucial importance for regulatory control in various cellular biophysical processes that is achieved with information transmission through the different ligand-bound states of such networks. In this work, we address a vital issue regarding the link between the information content of such network states and the experimentally measurable binding statistics. Several fundamental networks of cooperative ligand binding, with the bound states being adjacent in time only and in both space and time, are considered for this purpose using the chemical master equation approach. To express the binding characteristics in the language of information, a quantity denoted as differential information index is employed based on the Shannon information. The index, determined for the whole network, follows a linear relationship with (logarithmic) ligand concentration with a slope equal to the size of the system. On the other hand, the variation of Shannon information associated with the individual network states and the logarithmic sensitivity of its slope are shown to have generic forms related to the average binding number and variance, respectively, the latter yielding the Hill slope, the phenomenological measure of cooperativity. Furthermore, the variation of Shannon information entropy, the average of Shannon information, is also shown to be related to the average binding.
Collapse
Affiliation(s)
- Kinshuk Banerjee
- Department of Chemistry, Acharya Jagadish Chandra Bose College, 1/1B A. J. C. Bose Road, Kolkata 700 020, India
| | - Biswajit Das
- School of Artificial Intelligence (AI), Amrita Vishwa Vidyapeetham (Amrita University), Amritanagar, Ettimadai, Coimbatore, Tamil Nadu 641112, India
| |
Collapse
|
3
|
Schultz DF, Billadeau DD, Jois SD. EGFR trafficking: effect of dimerization, dynamics, and mutation. Front Oncol 2023; 13:1258371. [PMID: 37752992 PMCID: PMC10518470 DOI: 10.3389/fonc.2023.1258371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Spontaneous dimerization of EGF receptors (EGFR) and dysregulation of EGFR signaling has been associated with the development of different cancers. Under normal physiological conditions and to maintain homeostatic cell growth, once EGFR signaling occurs, it needs to be attenuated. Activated EGFRs are rapidly internalized, sorted through early endosomes, and ultimately degraded in lysosomes by a process generally known as receptor down-regulation. Through alterations to EGFR trafficking, tumors develop resistance to current treatment strategies, thus highlighting the necessity for combination treatment strategies that target EGFR trafficking. This review covers EGFR structure, trafficking, and altered surface expression of EGFR receptors in cancer, with a focus on how therapy targeting EGFR trafficking may aid tyrosine kinase inhibitor treatment of cancer.
Collapse
Affiliation(s)
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
4
|
Cancer regulator EGFR-ErbB4 heterodimer is stabilized through glycans at the dimeric interface. J Mol Model 2022; 28:399. [DOI: 10.1007/s00894-022-05395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
|
5
|
Wang F, Gu L, Wang Y, Sun D, Zhao Y, Meng Q, Yin L, Xu L, Lu X, Peng J, Lin Y, Sun P. MicroRNA-122a aggravates intestinal ischemia/reperfusion injury by promoting pyroptosis via targeting EGFR-NLRP3 signaling pathway. Life Sci 2022; 307:120863. [DOI: 10.1016/j.lfs.2022.120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|
6
|
Rao TC, Beggs RR, Ankenbauer KE, Hwang J, Ma VPY, Salaita K, Bellis SL, Mattheyses AL. ST6Gal-I-mediated sialylation of the epidermal growth factor receptor modulates cell mechanics and enhances invasion. J Biol Chem 2022; 298:101726. [PMID: 35157848 PMCID: PMC8956946 DOI: 10.1016/j.jbc.2022.101726] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Heterogeneity within the glycocalyx influences cell adhesion mechanics and signaling. However, the role of specific glycosylation subtypes in influencing cell mechanics via alterations of receptor function remains unexplored. It has been shown that the addition of sialic acid to terminal glycans impacts growth, development, and cancer progression. In addition, the sialyltransferase ST6Gal-I promotes epidermal growth factor receptor (EGFR) activity, and we have shown EGFR is an 'allosteric mechano-organizer' of integrin tension. Here, we investigated the impact of ST6Gal-I on cell mechanics. Using DNA-based tension gauge tether probes of variable thresholds, we found that high ST6Gal-I activity promotes increased integrin forces and spreading in Cos-7 and OVCAR3, OVCAR5, and OV4 cancer cells. Further, employing inhibitors and function-blocking antibodies against β1, β3, and β5 integrins and ST6Gal-I targets EGFR, tumor necrosis factor receptor, and Fas cell surface death receptor, we validated that the observed phenotypes are EGFR-specific. We found that while tension, contractility, and adhesion are extracellular-signal-regulated kinase pathway-dependent, spreading, proliferation, and invasion are phosphoinositide 3-kinase-Akt serine/threonine kinase dependent. Using total internal reflection fluorescence microscopy and flow cytometry, we also show that high ST6Gal-I activity leads to sustained EGFR membrane retention, making it a key regulator of cell mechanics. Our findings suggest a novel sialylation-dependent mechanism orchestrating cellular mechanics and enhancing cell motility via EGFR signaling.
Collapse
Affiliation(s)
- Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reena R Beggs
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jihye Hwang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Susan L Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
7
|
Structural Insight and Development of EGFR Tyrosine Kinase Inhibitors. Molecules 2022; 27:molecules27030819. [PMID: 35164092 PMCID: PMC8838133 DOI: 10.3390/molecules27030819] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer has a high prevalence, with a growing number of new cases and mortality every year. Furthermore, the survival rate of patients with non-small-cell lung carcinoma (NSCLC) is still quite low in the majority of cases. Despite the use of conventional therapy such as tyrosine kinase inhibitor for Epidermal Growth Factor Receptor (EGFR), which is highly expressed in most NSCLC cases, there was still no substantial improvement in patient survival. This is due to the drug’s ineffectiveness and high rate of resistance among individuals with mutant EGFR. Therefore, the development of new inhibitors is urgently needed. Understanding the EGFR structure, including its kinase domain and other parts of the protein, and its activation mechanism can accelerate the discovery of novel compounds targeting this protein. This study described the structure of the extracellular, transmembrane, and intracellular domains of EGFR. This was carried out along with identifying the binding pose of commercially available inhibitors in the ATP-binding and allosteric sites, thereby clarifying the research gaps that can be filled. The binding mechanism of inhibitors that have been used clinically was also explained, thereby aiding the structure-based development of new drugs.
Collapse
|
8
|
Glycosylation promotes the cancer regulator EGFR-ErbB2 heterodimer formation - molecular dynamics study. J Mol Model 2021; 27:361. [PMID: 34817689 DOI: 10.1007/s00894-021-04986-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
ErbB family of receptor tyrosine kinases play significant roles in cellular differentiation and proliferation. Mutation or overexpression of these receptors leads to several cancers in humans. The family has four homologous members including EGFR, ErbB2, ErbB3, and ErbB4. From which all except the ErbB2 bind to growth factors via the extracellular domain to send signals to the cell. However, dimerization of the ErbB receptor occurs in extracellular, transmembrane, and intracellular domains. The ErbB receptors are known to form homodimers and heterodimers in the active form. Heterodimerization increases the variety of identified ligands and signaling pathways that can be activated by these receptors. Furthermore, glycosylation of the ErbB receptors has shown to be critical for their stability, ligand binding, and dimerization. Here, atomistic molecular dynamics simulations on the glycosylated and unglycosylated heterodimer showed that the EGFR-ErbB2 heterodimer is more stable in its dynamical pattern compared to the EGFR-EGFR homodimer. This increased stability is regulated by maintaining the dimeric interface by the attached glycans. It was also shown that the presence of various glycosylation sites within the ErbB2 growth factor binding site leads to occlusion of this site by the glycans that inhibit ligand binding to ErbB2 and participate in further stabilization of the heterodimer construct. Putting together, glycosylation seems to promote the heterodimer formation within the ErbB family members as the dominant molecular mechanism of activation for these receptors.
Collapse
|
9
|
Kim DH, Triet HM, Ryu SH. Regulation of EGFR activation and signaling by lipids on the plasma membrane. Prog Lipid Res 2021; 83:101115. [PMID: 34242725 DOI: 10.1016/j.plipres.2021.101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids on the plasma membrane are not only components of the membrane biophysical structures but also regulators of receptor functions. Recently, the critical roles of lipid-protein interactions have been intensively highlighted. Epidermal growth factor receptor (EGFR) is one of the most extensively studied receptors exhibiting various lipid interactions, including interactions with phosphatidylcholine, phosphatidylserine, phosphatidylinositol phosphate, cholesterol, gangliosides, and palmitate. Here, we review recent findings on how direct interaction with these lipids regulates EGFR activation and signaling, providing unprecedented insight into the comprehensive roles of various lipids in the control of EGFR functions. Finally, the current limitations in investigating lipid-protein interactions and novel technologies to potentially overcome these limitations are discussed.
Collapse
Affiliation(s)
- Do-Hyeon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
10
|
Pascarelli S, Merzhakupova D, Uechi GI, Laurino P. Binding of single-mutant epidermal growth factor (EGF) ligands alters the stability of the EGF receptor dimer and promotes growth signaling. J Biol Chem 2021; 297:100872. [PMID: 34126069 PMCID: PMC8259408 DOI: 10.1016/j.jbc.2021.100872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a membrane-anchored tyrosine kinase that is able to selectively respond to multiple extracellular stimuli. Previous studies have indicated that the modularity of this system may be caused by ligand-induced differences in the stability of the receptor dimer. However, this hypothesis has not been explored using single-mutant ligands thus far. Herein, we developed a new approach to identify residues responsible for functional divergence by selecting residues in the epidermal growth factor (EGF) ligand that are conserved among orthologs yet divergent between paralogs. Then, we mutated these residues and assessed the mutants' effects on the receptor using a combination of molecular dynamics (MD) and biochemical techniques. Although the EGF mutants had binding affinities for the EGFR comparable with the WT ligand, the EGF mutants showed differential patterns of receptor phosphorylation and cell growth in multiple cell lines. The MD simulations of the EGF mutants indicated that mutations had long-range effects on the receptor dimer interface. This study shows for the first time that a single mutation in the EGF is sufficient to alter the activation of the EGFR signaling pathway at the cellular level. These results also support that biased ligand-receptor signaling in the tyrosine kinase receptor system can lead to differential downstream outcomes and demonstrate a promising new method to study ligand-receptor interactions.
Collapse
Affiliation(s)
- Stefano Pascarelli
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Dalmira Merzhakupova
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Gen-Ichiro Uechi
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| |
Collapse
|
11
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
12
|
Azimzadeh Irani M, Ejtehadi MR. Glycan-mediated functional assembly of IL-1RI: structural insights into completion of the current description for immune response. J Biomol Struct Dyn 2020; 40:2575-2585. [PMID: 33124956 DOI: 10.1080/07391102.2020.1841027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin 1 Receptor type I (IL-1RI) is a multi-domain transmembrane receptor that triggers the inflammatory response. Understanding its detailed mechanism of action is crucial for treating immune disorders. IL-1RI is activated upon formation of its functional assembly that occurs by binding of the IL-1 cytokine and the accessory protein (Il-1RAcP) to it. X-ray crystallography, small-Angle X-ray Scattering and molecular dynamics simulation studies showed that IL-1RI adopts two types of 'compact' and 'extended' conformational states in its dynamical pattern. Furthermore, glycosylation has shown to play a critical role in its activation process. Here, classical and accelerated atomistic molecular dynamics were carried out to examine the role of full glycosylation of IL-1RI and IL-1RAcP in arrangement of the functional assembly. Simulations showed that the 'compact' and 'extended' IL-1RI form two types of 'cytokine-inaccessible-non-signaling' and 'cytokine-accessible-signaling' assemblies with the IL-1RacP, respectively that are both abiding in the presence of glycans. Suggesting that the cytokine binding to IL-1RI is not required for the formation of IL-1RI-IL-1RAcP complex and the 'compact' complex could act as a down-regulatory mechanism. The 'extended' complex is maintained by formation of several persistent hydrogen bonds between the IL-1RI-IL-1RAcP inter-connected glycans. Taken together, it was shown that full glycosylation regulates formation of the IL-1RI functional assembly and play critical role in cytokine biding and triggering the IL-1RI involved downstream pathways in the cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Azimzadeh Irani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
13
|
Trenker R, Jura N. Receptor tyrosine kinase activation: From the ligand perspective. Curr Opin Cell Biol 2020; 63:174-185. [PMID: 32114309 PMCID: PMC7813211 DOI: 10.1016/j.ceb.2020.01.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Receptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation. The combinatorial power of this receptor system is further increased by the fact that multiple ligands can typically interact with the same receptor. Such ligands often act as biased agonists and initiate distinct signaling responses via activation of the same receptor. Mechanisms behind such biased agonism are largely unknown for RTKs, especially at the level of receptor-ligand complex structure. Using recent progress in understanding the structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple receptor activation to distinct signaling outputs.
Collapse
Affiliation(s)
- Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
14
|
Gocheva G, Ivanova N, Iliev S, Petrova J, Madjarova G, Ivanova A. Characteristics of a Folate Receptor-α Anchored into a Multilipid Bilayer Obtained from Atomistic Molecular Dynamics Simulations. J Chem Theory Comput 2019; 16:749-764. [PMID: 31639310 DOI: 10.1021/acs.jctc.9b00872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thorough computational description of the properties of membrane-anchored protein receptors, which are important for example in the context of active targeting drug delivery, may be achieved by models representing as close as possible the immediate environment of these macromolecules. An all-atom bilayer, including 35 different lipid types asymmetrically distributed among the two monolayers, is suggested as a model neoplastic cell membrane. One molecule of folate receptor-α (FRα) is anchored into its outer leaflet, and the behavior of the system is explored by atomistic molecular dynamics simulations. The total number of atoms in the model is ∼185 000. Three 1-μs-long simulations are carried out, where physiological conditions (310 K and 1 bar) are maintained with three different pressure scaling schemes. To evaluate the structure and the phase state of the membrane, the density profiles of the system, the average area per lipid, and the deuterium order parameter of the lipid tails are calculated. The bilayer is in liquid ordered state, and the specific arrangement varies between the three trajectories. The changes in the structure of FRα are investigated and are found time- and ensemble-dependent. The volume of the ligand binding pocket fluctuates with time, but this variation remains independent of the more global structural alterations. The latter are mostly "waving" motions of the protein, which periodically approaches and retreats from the membrane. The semi-isotropic pressure scaling perturbs the receptor most significantly, while the isotropic algorithm induces rather slow changes. Maintaining constant nonzero surface tension leads to behavior closest to the experimentally observed one.
Collapse
Affiliation(s)
- Gergana Gocheva
- Faculty of Chemistry and Pharmacy, Laboratory of Quantum and Computational Chemistry , Sofia University "St. Kliment Ohridski" , 1 James Bourchier Boulevard , 1164 Sofia , Bulgaria
| | - Nikoleta Ivanova
- Faculty of Chemistry and Pharmacy, Laboratory of Quantum and Computational Chemistry , Sofia University "St. Kliment Ohridski" , 1 James Bourchier Boulevard , 1164 Sofia , Bulgaria
| | - Stoyan Iliev
- Faculty of Chemistry and Pharmacy, Laboratory of Quantum and Computational Chemistry , Sofia University "St. Kliment Ohridski" , 1 James Bourchier Boulevard , 1164 Sofia , Bulgaria
| | - Jasmina Petrova
- Faculty of Chemistry and Pharmacy, Laboratory of Quantum and Computational Chemistry , Sofia University "St. Kliment Ohridski" , 1 James Bourchier Boulevard , 1164 Sofia , Bulgaria
| | - Galia Madjarova
- Faculty of Chemistry and Pharmacy, Laboratory of Quantum and Computational Chemistry , Sofia University "St. Kliment Ohridski" , 1 James Bourchier Boulevard , 1164 Sofia , Bulgaria
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy, Laboratory of Quantum and Computational Chemistry , Sofia University "St. Kliment Ohridski" , 1 James Bourchier Boulevard , 1164 Sofia , Bulgaria
| |
Collapse
|
15
|
Dey A, Barik D. Dichotomous Nature of Bistability Generated by Negative Cooperativity in Receptor-Ligand Binding. ACS Synth Biol 2019; 8:1294-1302. [PMID: 31132851 DOI: 10.1021/acssynbio.8b00517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positive cooperativity in receptor-ligand binding plays an important role in cell signaling as it generates an ultrasensitive response, a requirement for nonlinear phenomena such as bistability and oscillations in feedback regulated reaction networks. On the other hand, negative cooperativity typically produces a hyperbolic response and is thus less explored. However, recently negative cooperativity was shown to generate an ultrasensitive response under the condition of strong ligand affinity. In this work, we have used mathematical modeling to investigate the effect of negative cooperativity in receptor-ligand interaction on the bistability in a positive feedback regulatory motif. We systematically investigated the effect of negative cooperativity, modifying the two equilibrium constants of the receptor-ligand binding, on the robustness and tunability of bistability. We show that in the regime where negative cooperativity exhibits robust bistability, positive cooperativity results in poor bistability and vice versa. Further we find that the robustness and tunability of bistability depend crucially on the stability of singly and doubly engaged receptors. Our modeling highlights the ability of negative cooperativity to produce complex phenomena with potential applications in designing synthetic devices or in explaining experimental observations in cell biology.
Collapse
Affiliation(s)
- Anupam Dey
- School of Chemistry, University of Hyderabad, Central University
P.O., Hyderabad, 500046 Telangana, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Central University
P.O., Hyderabad, 500046 Telangana, India
| |
Collapse
|
16
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
17
|
Diwanji D, Thaker T, Jura N. More than the sum of the parts: Toward full-length receptor tyrosine kinase structures. IUBMB Life 2019; 71:706-720. [PMID: 31046201 PMCID: PMC6531341 DOI: 10.1002/iub.2060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
Intercellular communication governs complex physiological processes ranging from growth and development to the maintenance of cellular and organ homeostasis. In nearly all metazoans, receptor tyrosine kinases (RTKs) are central players in these diverse and fundamental signaling processes. Aberrant RTK signaling is at the root of many developmental diseases and cancers and it remains a key focus of targeted therapies, several of which have achieved considerable success in patients. These therapeutic advances in targeting RTKs have been propelled by numerous genetic, biochemical, and structural studies detailing the functions and molecular mechanisms of regulation and activation of RTKs. The latter in particular have proven to be instrumental for the development of new drugs, selective targeting of mutant forms of RTKs found in disease, and counteracting ensuing drug resistance. However, to this day, such studies have not yet yielded high-resolution structures of intact RTKs that encompass the extracellular and intracellular domains and the connecting membrane-spanning transmembrane domain. Technically challenging to obtain, these structures are instrumental to complete our understanding of the mechanisms by which RTKs are activated by extracellular ligands and of the effect of pathological mutations that do not directly reside in the catalytic sites of tyrosine kinase domains. In this review, we focus on the recent progress toward obtaining such structures and the insights already gained by structural studies of the subdomains of the receptors that belong to the epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor receptor RTK families. © 2019 IUBMB Life, 71(6):706-720, 2019.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tarjani Thaker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
18
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
19
|
Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019; 8:E316. [PMID: 30959819 PMCID: PMC6523254 DOI: 10.3390/cells8040316] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | | |
Collapse
|
20
|
Azimzadeh Irani M. Correlation between experimentally indicated and atomistically simulated roles of EGFR N-glycosylation. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1447108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maryam Azimzadeh Irani
- Bioinformatics Institute, A*-STAR, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
21
|
Bocharov EV. Alternative dimerization of receptor tyrosine kinases with signal transduction through a cellular membrane. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1417-1429. [DOI: 10.1016/j.bbamem.2017.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
|
23
|
Azimzadeh Irani M, Kannan S, Verma C. Role of N-glycosylation in EGFR ectodomain ligand binding. Proteins 2017; 85:1529-1549. [DOI: 10.1002/prot.25314] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Maryam Azimzadeh Irani
- Bioinformatics Institute, A*STAR; 30 Biopolis Street, #07-01 Matrix Singapore 138671 Singapore
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | | | - Chandra Verma
- Bioinformatics Institute, A*STAR; 30 Biopolis Street, #07-01 Matrix Singapore 138671 Singapore
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
- Department of Biological Sciences; National University of Singapore; Singapore 117543 Singapore
| |
Collapse
|
24
|
Taylor ES, Pol-Fachin L, Lins RD, Lower SK. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding. Proteins 2017; 85:561-570. [PMID: 28019699 PMCID: PMC5835389 DOI: 10.1002/prot.25220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eric S. Taylor
- Department of Geology, Kent State University, North Canton, Ohio 44720
| | - Laercio Pol-Fachin
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco 50740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Pernambuco 50740-560, Brazil
| | - Roberto D. Lins
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco 50740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Pernambuco 50740-560, Brazil
| | - Steven K. Lower
- School of Environment and Natural Resources, Ohio State University, 275 Mendenhall Laboratory, Columbus, Ohio 43210
| |
Collapse
|
25
|
Odell LR, Abdel-Hamid MK, Hill TA, Chau N, Young KA, Deane FM, Sakoff JA, Andersson S, Daniel JA, Robinson PJ, McCluskey A. Pyrimidine-Based Inhibitors of Dynamin I GTPase Activity: Competitive Inhibition at the Pleckstrin Homology Domain. J Med Chem 2016; 60:349-361. [DOI: 10.1021/acs.jmedchem.6b01422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luke R. Odell
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mohammed K. Abdel-Hamid
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Timothy A. Hill
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ngoc Chau
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Kelly A. Young
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Fiona M. Deane
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jennette A. Sakoff
- Experimental
Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, 2298, New South Wales Australia
| | - Sofia Andersson
- Department
of Biology and Chemical Engineering, Mälardalens University, Box 325, S-631
05, Eskilstuna, Sweden
| | - James A. Daniel
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Phillip J. Robinson
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Adam McCluskey
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
26
|
Kaplan M, Narasimhan S, de Heus C, Mance D, van Doorn S, Houben K, Popov-Čeleketić D, Damman R, Katrukha EA, Jain P, Geerts WJC, Heck AJR, Folkers GE, Kapitein LC, Lemeer S, van Bergen En Henegouwen PMP, Baldus M. EGFR Dynamics Change during Activation in Native Membranes as Revealed by NMR. Cell 2016; 167:1241-1251.e11. [PMID: 27839865 DOI: 10.1016/j.cell.2016.10.038] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/08/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.
Collapse
Affiliation(s)
- Mohammed Kaplan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Cecilia de Heus
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Sander van Doorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Klaartje Houben
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Dušan Popov-Čeleketić
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Reinier Damman
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Purvi Jain
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Willie J C Geerts
- Biomolecular Imaging, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
27
|
Ivanov S, Huber R, Warwicker J, Bond P. Energetics and Dynamics Across the Bcl-2-Regulated Apoptotic Pathway Reveal Distinct Evolutionary Determinants of Specificity and Affinity. Structure 2016; 24:2024-2033. [DOI: 10.1016/j.str.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/05/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
|
28
|
Chavent M, Duncan AL, Sansom MS. Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr Opin Struct Biol 2016; 40:8-16. [PMID: 27341016 PMCID: PMC5404110 DOI: 10.1016/j.sbi.2016.06.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations provide a computational tool to probe membrane proteins and systems at length scales ranging from nanometers to close to a micrometer, and on microsecond timescales. All atom and coarse-grained simulations may be used to explore in detail the interactions of membrane proteins and specific lipids, yielding predictions of lipid binding sites in good agreement with available structural data. Building on the success of protein-lipid interaction simulations, larger scale simulations reveal crowding and clustering of proteins, resulting in slow and anomalous diffusional dynamics, within realistic models of cell membranes. Current methods allow near atomic resolution simulations of small membrane organelles, and of enveloped viruses to be performed, revealing key aspects of their structure and functionally important dynamics.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
29
|
Bocharov EV, Lesovoy DM, Pavlov KV, Pustovalova YE, Bocharova OV, Arseniev AS. Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1254-61. [PMID: 26903218 DOI: 10.1016/j.bbamem.2016.02.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
The human epidermal growth factor receptor (EGFR) of HER/ErbB receptor tyrosine kinase family mediates a broad spectrum of cellular responses transducing biochemical signals via lateral dimerization in plasma membrane, while inactive receptors can exist in both monomeric and dimeric forms. Recently, the dimeric conformation of the helical single-span transmembrane domains of HER/ErbB employing the relatively polar N-terminal motifs in a fashion permitting proper kinase activation was experimentally determined. Here we describe the EGFR transmembrane domain dimerization via an alternative weakly polar C-terminal motif A(661)xxxG(665) presumably corresponding to the inactive receptor state. During association, the EGFR transmembrane helices undergo a structural adjustment with adaptation of inter-molecular polar and hydrophobic interactions depending upon the surrounding membrane properties that directly affect the transmembrane helix packing. This might imply that signal transduction through membrane and allosteric regulation are inclusively mediated by coupled protein-protein and protein-lipid interactions, elucidating paradoxically loose linkage between ligand binding and kinase activation.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation.
| | - Dmitry M Lesovoy
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Konstantin V Pavlov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Yulia E Pustovalova
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Olga V Bocharova
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Alexander S Arseniev
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| |
Collapse
|
30
|
Chavent M, Seiradake E, Jones EY, Sansom MSP. Structures of the EphA2 Receptor at the Membrane: Role of Lipid Interactions. Structure 2016; 24:337-47. [PMID: 26724997 PMCID: PMC4744086 DOI: 10.1016/j.str.2015.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
Ephs are transmembrane receptors that mediate cell-cell signaling. The N-terminal ectodomain binds ligands and enables receptor clustering, which activates the intracellular kinase. Relatively little is known about the function of the membrane-proximal fibronectin domain 2 (FN2) of the ectodomain. Multiscale molecular dynamics simulations reveal that FN2 interacts with lipid bilayers via a site comprising K441, R443, R465, Q462, S464, S491, W467, F490, and P459-461. FN2 preferentially binds anionic lipids, a preference that is reduced in the mutant K441E + R443E. We confirm these results by measuring the binding of wild-type and mutant FN2 domains to lipid vesicles. In simulations of the complete EphA2 ectodomain plus the transmembrane region, we show that FN2 anchors the otherwise flexible ectodomain at the surface of the bilayer. Altogether, our data suggest that FN2 serves a dual function of interacting with anionic lipids and constraining the structure of the EphA2 ectodomain to adopt membrane-proximal configurations.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
31
|
Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, Arseniev AS. HER2 Transmembrane Domain Dimerization Coupled with Self-Association of Membrane-Embedded Cytoplasmic Juxtamembrane Regions. J Mol Biol 2015; 428:52-61. [PMID: 26585403 DOI: 10.1016/j.jmb.2015.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/23/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
Abstract
Receptor tyrosine kinases of the human epidermal growth factor receptor (HER or ErbB) family transduce biochemical signals across plasma membrane, playing a significant role in vital cellular processes and in various cancers. Inactive HER/ErbB receptors exist in equilibrium between the monomeric and unspecified pre-dimerized states. After ligand binding, the receptors are involved in strong lateral dimerization with proper assembly of their extracellular ligand-binding, single-span transmembrane, and cytoplasmic kinase domains. The dimeric conformation of the HER2 transmembrane domain that is believed to support the cytoplasmic kinase domain configuration corresponding to the receptor active state was previously described in lipid bicelles. Here we used high-resolution NMR spectroscopy in another membrane-mimicking micellar environment and identified an alternative HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane region. Such a dimerization mode appears to be capable of effectively inhibiting the receptor kinase activity. This finding refines the molecular mechanism regarding the signal propagation steps from the extracellular to cytoplasmic domains of HER/ErbB receptors.
Collapse
Affiliation(s)
- Pavel E Bragin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russian Federation
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Olga V Bocharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky Per., 9, Dolgoprudnyi 141700, Russian Federation
| |
Collapse
|
32
|
Ruan Z, Kannan N. Mechanistic Insights into R776H Mediated Activation of Epidermal Growth Factor Receptor Kinase. Biochemistry 2015; 54:4216-25. [PMID: 26101090 DOI: 10.1021/acs.biochem.5b00444] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidermal growth factor receptor (EGFR) kinase is activated by a variety of mutations in human cancers. R776H is one such recurrent mutation (R752H in another numbering system) in the αC-β4 loop of the tyrosine kinase domain that activates EGFR in the absence of the activating EGF ligand. However, the mechanistic details of how R776H contributes to kinase activation are not well understood. Here using cell-based cotransfection assays, we show that the R776H mutation activates EGFR in a dimerization-dependent manner by preferentially adopting the acceptor position in the asymmetric dimer. The acceptor function, but not the donor function, is enhanced for the R776H mutant, supporting the "superacceptor" hypothesis proposed for oncogenic mutations in EGFR. We also find that phosphorylation of monomeric EGFR is increased by R776H mutation, providing insights into EGFR lateral phosphorylation and oligomerization. On the basis of molecular modeling and molecular dynamics simulation, we propose a model in which loss of key autoinhibitory αC-helix capping interaction and alteration of coconserved cis regulatory interactions between the kinase domain and the flanking regulatory segments contribute to mutational activation. Since the R776 equivalent position is mutated in ErbB2 and ErbB4, our studies have implications for understanding kinase mutational activation in other ErbB family members as well.
Collapse
|
33
|
Su C, Fan M, Lu L, Li P. Role of epidermal growth factor in pathogenesis of uterine leiomyomas. ASIAN PAC J TROP MED 2015; 8:378-81. [PMID: 26003597 DOI: 10.1016/s1995-7645(14)60347-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the role of epidermal growth factor (EGF) in the pathogenesis of uterine leiomyomas. METHODS Human myometrial smooth muscle cells (HM-SMCs) and smooth muscle cells of human uterine leiomyomas (HL-SMCs) were separated from patients' specimens and cultured. After processed by EGF or PD98059 (inhibitor of MKK/MEK) +EGF, the proliferation rate of both SMCs was detected by BrdU method and the phosphorylation level of p44/42 mitogen-activated protein kinase (MAPK) was determined by Western-blot. After different processing time by EGF, the phosphorylation levels of p44/42 MAPK and AKT and p27 expression level in both SMCs were detected by Western-blot. RESULTS EGF could significantly promote HL-SMCs proliferation and PD98059 could inhibit this effect (P<0.05); besides, PD98059 could inhibit the increase of the phosphorylation level of p44/42 MAPK in both SMCs induced by EGF. When the processing time by EGF was over 15min, the phosphorylation levels of p44/42 MAPK and AKT in both SMCs decreased sharply and were close to zero; p27 expression in HM-SMCs raised significantly while the upregulation in HL-SMCs was little. CONCLUSIONS EGF could not cause activation of EGFR because of the dephosphorylation of p44/42 MAPK and AKT in HL-SMCs, which caused p27 expression insufficiently and cell cycle dysregulation.
Collapse
Affiliation(s)
- Chun Su
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Zhengzhou University, Kangfu Qian Street No. 3, 450052, Zhengzhou, China
| | - Mei Fan
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Jianshe Dong Street No.1, 450052, Zhengzhou, China
| | - Lin Lu
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street No. 7, 450052, Zhengzhou, China
| | - Pei Li
- Department of Pathophysiology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
34
|
N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. Proc Natl Acad Sci U S A 2015; 112:4334-9. [PMID: 25805821 DOI: 10.1073/pnas.1503262112] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) regulates several critical cellular processes and is an important target for cancer therapy. In lieu of a crystallographic structure of the complete receptor, atomistic molecular dynamics (MD) simulations have recently shown that they can excel in studies of the full-length receptor. Here we present atomistic MD simulations of the monomeric N-glycosylated human EGFR in biomimetic lipid bilayers that are, in parallel, also used for the reconstitution of full-length receptors. This combination enabled us to experimentally validate our simulations, using ligand binding assays and antibodies to monitor the conformational properties of the receptor reconstituted into membranes. We find that N-glycosylation is a critical determinant of EGFR conformation, and specifically the orientation of the EGFR ectodomain relative to the membrane. In the absence of a structure for full-length, posttranslationally modified membrane receptors, our approach offers new means to structurally define and experimentally validate functional properties of cell surface receptors in biomimetic membrane environments.
Collapse
|
35
|
Hedger G, Sansom MSP, Koldsø H. The juxtamembrane regions of human receptor tyrosine kinases exhibit conserved interaction sites with anionic lipids. Sci Rep 2015; 5:9198. [PMID: 25779975 PMCID: PMC4361843 DOI: 10.1038/srep09198] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/18/2015] [Indexed: 11/21/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) play a critical role in diverse cellular processes and their activity is regulated by lipids in the surrounding membrane, including PIP2 (phosphatidylinositol-4,5-bisphosphate) in the inner leaflet, and GM3 (monosialodihexosylganglioside) in the outer leaflet. However, the precise details of the interactions at the molecular level remain to be fully characterised. Using a multiscale molecular dynamics simulation approach, we comprehensively characterise anionic lipid interactions with all 58 known human RTKs. Our results demonstrate that the juxtamembrane (JM) regions of RTKs are critical for inducing clustering of anionic lipids, including PIP2, both in simple asymmetric bilayers, and in more complex mixed membranes. Clustering is predominantly driven by interactions between a conserved cluster of basic residues within the first five positions of the JM region, and negatively charged lipid headgroups. This highlights a conserved interaction pattern shared across the human RTK family. In particular predominantly the N-terminal residues of the JM region are involved in the interactions with PIP2, whilst residues within the distal JM region exhibit comparatively less lipid specificity. Our results suggest that JM–lipid interactions play a key role in RTK structure and function, and more generally in the nanoscale organisation of receptor-containing cell membranes.
Collapse
Affiliation(s)
- George Hedger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
36
|
Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015; 84:739-64. [PMID: 25621509 DOI: 10.1146/annurev-biochem-060614-034402] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. The structure of intact forms of this receptor has yet to be determined, but intense investigations of fragments of the receptor have provided a detailed view of its activation mechanism, which we review here. Ligand binding converts the receptor to a dimeric form, in which contacts are restricted to the receptor itself, allowing heterodimerization of the four EGFR family members without direct ligand involvement. Activation of the receptor depends on the formation of an asymmetric dimer of kinase domains, in which one kinase domain allosterically activates the other. Coupling between the extracellular and intracellular domains may involve a switch between alternative crossings of the transmembrane helices, which form dimeric structures. We also discuss how receptor regulation is compromised by oncogenic mutations and the structural basis for negative cooperativity in ligand binding.
Collapse
|
37
|
Valdés JJ. Antihistamine response: a dynamically refined function at the host-tick interface. Parasit Vectors 2014; 7:491. [PMID: 25358914 PMCID: PMC4226919 DOI: 10.1186/s13071-014-0491-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/16/2014] [Indexed: 11/21/2022] Open
Abstract
Background Ticks counteract host inflammatory responses by secreting proteins from their saliva that compete for histamine binding. Among these tick salivary proteins are lipocalins, antiparallel beta-barrel proteins that sequester small molecules. A tick salivary lipocalin has been structurally resolved and experimentally shown to efficiently compete for histamine with its native receptor (e.g., H1 histamine receptor). To date, molecular dynamics simulations focus on protein-protein and protein-ligand interactions, but there are currently no studies for simultaneous ligand exploration between two competing proteins. Methods Aided by state-of-the-art, high-throughput computational methods, the current study simulated and analyzed the dynamics of competitive histamine binding at the tick-host interface using the available crystal structures of both the tick salivary lipocalin histamine-binding protein from Rhipicephalus appendiculatus and the human histamine receptor 1. Results The attraction towards the tick salivary lipocalin seems to depend on the protonated (adding a hydrogen ion) state of histamine since the current study shows that as histamine becomes more protonated it increases its exploration for the tick salivary lipocalin. This implies that during tick feeding, histamine may need to be protonated for the tick salivary lipocalin to efficiently sequester it in order to counteract inflammation. Additionally, the beta-hairpin loops (at both ends of the tick salivary lipocalin barrel) were reported to have a functional role in sequestering histamine and the results in the current study concur and provide evidence for this hypothesis. These beta-hairpin loops of the tick salivary lipocalin possess more acidic residues than a structurally similar but functionally unrelated lipocalin from the butterfly, Pieris brassicae; comparative results indicate these acidic residues may be responsible for the ability of the tick lipocalin to out-compete the native (H1) receptor for histamine. Conclusions Three explanatory types of data can be obtained from the current study: (i) the dynamics of multiple binding sites, (ii) competition between two proteins for a ligand, and (iii) the intrinsic molecular components involved in the competition. These data can provide further insight at the atomic level of the host-tick interface that cannot be experimentally determined. Additionally, the methods used in this study can be applied in rationally designing drugs. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0491-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
38
|
Bessman NJ, Freed DM, Lemmon MA. Putting together structures of epidermal growth factor receptors. Curr Opin Struct Biol 2014; 29:95-101. [PMID: 25460273 DOI: 10.1016/j.sbi.2014.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/15/2023]
Abstract
Numerous crystal structures have been reported for the isolated extracellular region and tyrosine kinase domain of the epidermal growth factor receptor (EGFR) and its relatives, in different states of activation and bound to a variety of inhibitors used in cancer therapy. The next challenge is to put these structures together accurately in functional models of the intact receptor in its membrane environment. The intact EGFR has been studied using electron microscopy, chemical biology methods, biochemically, and computationally. The distinct approaches yield different impressions about the structural modes of communication between extracellular and intracellular regions. They highlight possible differences between ligands, and also underline the need to understand how the receptor interacts with the membrane itself.
Collapse
Affiliation(s)
- Nicholas J Bessman
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, United States; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, United States
| | - Daniel M Freed
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, United States
| | - Mark A Lemmon
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, United States; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, United States.
| |
Collapse
|