1
|
Warrier I, Perry A, Hubbell SM, Eichelman M, van Opijnen T, Meyer MM. RNA cis-regulators are important for Streptococcus pneumoniae in vivo success. PLoS Genet 2024; 20:e1011188. [PMID: 38442125 PMCID: PMC10942264 DOI: 10.1371/journal.pgen.1011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Bacteria have evolved complex transcriptional regulatory networks, as well as many diverse regulatory strategies at the RNA level, to enable more efficient use of metabolic resources and a rapid response to changing conditions. However, most RNA-based regulatory mechanisms are not well conserved across different bacterial species despite controlling genes important for virulence or essential biosynthetic processes. Here, we characterize the activity of, and assess the fitness benefit conferred by, twelve cis-acting regulatory RNAs (including several riboswitches and a T-box), in the opportunistic pathogen Streptococcus pneumoniae TIGR4. By evaluating native locus mutants of each regulator that result in constitutively active or repressed expression, we establish that growth defects in planktonic culture are associated with constitutive repression of gene expression, while constitutive activation of gene expression is rarely deleterious. In contrast, in mouse nasal carriage and pneumonia models, strains with either constitutively active and repressed gene expression are significantly less fit than matched control strains. Furthermore, two RNA-regulated pathways, FMN synthesis/transport and pyrimidine synthesis/transport display exceptional sensitivity to mis-regulation or constitutive gene repression in both planktonic culture and in vivo environments. Thus, despite lack of obvious phenotypes associated with constitutive gene expression in vitro, the fitness benefit conferred on bacteria via fine-tuned metabolic regulation through cis-acting regulatory RNAs is substantial in vivo, and therefore easily sufficient to drive the evolution and maintenance of diverse RNA regulatory mechanisms.
Collapse
Affiliation(s)
- Indu Warrier
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ariana Perry
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Sara M. Hubbell
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Matthew Eichelman
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle M. Meyer
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
2
|
Wei G, Li S, Ye S, Wang Z, Zarringhalam K, He J, Wang W, Shao Z. High-Resolution Small RNAs Landscape Provides Insights into Alkane Adaptation in the Marine Alkane-Degrader Alcanivorax dieselolei B-5. Int J Mol Sci 2022; 23:ijms232415995. [PMID: 36555635 PMCID: PMC9788540 DOI: 10.3390/ijms232415995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Alkanes are widespread in the ocean, and Alcanivorax is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species Alcanivorax dieselolei B-5 under alkane (n-hexadecane) and non-alkane (acetate) conditions. As a result, we identified 549 sRNA candidates at single-nucleotide resolution of 5'-ends, 63.4% of which are with transcription start sites (TSSs), and 36.6% of which are with processing sites (PSSs) at the 5'-ends. These sRNAs originate from almost any location in the genome, regardless of intragenic (65.8%), antisense (20.6%) and intergenic (6.2%) regions, and RNase E may function in the maturation of sRNAs. Most sRNAs locally distribute across the 15 reference genomes of Alcanivorax, and only 7.5% of sRNAs are broadly conserved in this genus. Expression responses to the alkane of several core conserved sRNAs, including 6S RNA, M1 RNA and tmRNA, indicate that they may participate in alkane metabolisms and result in more actively global transcription, RNA processing and stresses mitigation. Two novel CsrA-related sRNAs are identified, which may be involved in the translational activation of alkane metabolism-related genes by sequestering the global repressor CsrA. The relationships of sRNAs with the characterized genes of alkane sensing (ompS), chemotaxis (mcp, cheR, cheW2), transporting (ompT1, ompT2, ompT3) and hydroxylation (alkB1, alkB2, almA) were created based on the genome-wide predicted sRNA-mRNA interactions. Overall, the sRNA landscape lays the ground for uncovering cryptic regulations in critical marine bacterium, among which both the core and species-specific sRNAs are implicated in the alkane adaptive metabolisms.
Collapse
Affiliation(s)
- Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Sujie Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Sida Ye
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Zining Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jianguo He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Correspondence: (W.W.); (Z.S.)
| | - Zongze Shao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: (W.W.); (Z.S.)
| |
Collapse
|
3
|
Abstract
Small RNAs (sRNAs) are important gene regulators in bacteria, but it is unclear how new sRNAs originate and become part of regulatory networks that coordinate bacterial response to environmental stimuli. Using a covariance modeling-based approach, we analyzed the presence of hundreds of sRNAs in more than a thousand genomes across Enterobacterales, a bacterial order with a confluence of factors that allows robust genome-scale sRNA analyses: several well-studied organisms with fairly conserved genome structures, an established phylogeny, and substantial nucleotide diversity within a narrow evolutionary space. We discovered that a majority of sRNAs arose recently, and uncovered protein-coding genes as a potential source from which new sRNAs arise. A detailed investigation of the emergence of OxyS, a peroxide-responding sRNA, revealed that it evolved from a fragment of a peroxidase messenger RNA. Importantly, although it replaced the ancestral peroxidase, OxyS continues to be part of the ancestral peroxide-response regulon, indicating that an sRNA that arises from a protein-coding gene would inherently be part of the parental protein's regulatory network. This new insight provides a fresh framework for understanding sRNA origin and regulatory integration in bacteria.
Collapse
Affiliation(s)
- Madeline C Krieger
- Department of Biology, Portland State University, Portland, OR, USA
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - H Auguste Dutcher
- Department of Biology, Portland State University, Portland, OR, USA
- Laboratory of Genetics and Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew J Ashford
- Department of Biology, Portland State University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Svensson SL, Sharma CM. Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria. Mol Microbiol 2021; 117:215-233. [PMID: 34818434 DOI: 10.1111/mmi.14850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators controlling bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologues can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologues in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR of the upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.
Collapse
Affiliation(s)
- Sarah L Svensson
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| |
Collapse
|
5
|
Prezza G, Ryan D, Mädler G, Reichardt S, Barquist L, Westermann AJ. Comparative genomics provides structural and functional insights into Bacteroides RNA biology. Mol Microbiol 2021; 117:67-85. [PMID: 34379855 DOI: 10.1111/mmi.14793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of the RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homologue to have an RNA-related function. We apply an in-silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions, and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic co-conservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.
Collapse
Affiliation(s)
- Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Gohar Mädler
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Kiselev S, Markelova N, Masulis I. Divergently Transcribed ncRNAs in Escherichia coli: Refinement of the Transcription Starts Assumes Functional Diversification. Front Mol Biosci 2021; 8:610453. [PMID: 33748186 PMCID: PMC7967276 DOI: 10.3389/fmolb.2021.610453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding regulatory RNAs (ncRNAs) comprise specialized group of essential genetically encoded biological molecules involved in the wide variety of cellular metabolic processes. The progressive increase in the number of newly identified ncRNAs and the defining of their genome location indicate their predominant nesting in intergenic regions and expression under the control of their own regulatory elements. At the same time, the regulation of ncRNA's transcription cannot be considered in isolation from the processes occurring in the immediate genetic environment. A number of experimental data indicate the notable impact of positional regulation of gene expression mediated by dynamic temporal DNA rearrangements accompanying transcription events in the vicinity of neighboring genes. This issue can be perceived as particularly significant for divergently transcribed ncRNAs being actually subjected to double regulatory pressure. Based on available results of RNAseq experiments for Escherichia coli, we screened out divergent ncRNAs and the adjacent genes for the exact positions of transcription start sites (TSSs) and relative efficiency of RNA production. This analysis revealed extension or shortening of some previously annotated ncRNAs resulting in modified secondary structure, confirmed stable expression of four ncRNAs annotated earlier as putative, and approved the possibility of expression of divergently transcribed ncRNAs containing repetitive extragenic palindromic (REP) elements. The biogenesis of secreted ncRNAs from divergently transcribed ffs, chiX, ralA, and ryhB is discussed taking into account positions of TSSs. Refinement of TSSs for the neighboring genes renders some ncRNAs as true antisense overlapping with 5'UTR of divergently transcribed mRNAs.
Collapse
|
7
|
A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat Commun 2020; 11:3557. [PMID: 32678091 PMCID: PMC7366714 DOI: 10.1038/s41467-020-17348-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria of the genus Bacteroides are common members of the human intestinal microbiota and important degraders of polysaccharides in the gut. Among them, the species Bacteroides thetaiotaomicron has emerged as the model organism for functional microbiota research. Here, we use differential RNA sequencing (dRNA-seq) to generate a single-nucleotide resolution transcriptome map of B. thetaiotaomicron grown under defined laboratory conditions. An online browser, called ‘Theta-Base’ (www.helmholtz-hiri.de/en/datasets/bacteroides), is launched to interrogate the obtained gene expression data and annotations of ~4500 transcription start sites, untranslated regions, operon structures, and 269 noncoding RNA elements. Among the latter is GibS, a conserved, 145 nt-long small RNA that is highly expressed in the presence of N-acetyl-D-glucosamine as sole carbon source. We use computational predictions and experimental data to determine the secondary structure of GibS and identify its target genes. Our results indicate that sensing of N-acetyl-D-glucosamine induces GibS expression, which in turn modifies the transcript levels of metabolic enzymes. Bacteroides thetaiotaomicron is a human gut microbe and an emergent model organism. Here, Ryan et al. generate single-nucleotide resolution RNA-seq data for this bacterium and map transcription start sites and noncoding RNAs, one of which modulates expression of metabolic enzymes.
Collapse
|
8
|
Crum M, Ram-Mohan N, Meyer MM. Regulatory context drives conservation of glycine riboswitch aptamers. PLoS Comput Biol 2019; 15:e1007564. [PMID: 31860665 PMCID: PMC6944388 DOI: 10.1371/journal.pcbi.1007564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/06/2020] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
In comparison to protein coding sequences, the impact of mutation and natural selection on the sequence and function of non-coding (ncRNA) genes is not well understood. Many ncRNA genes are narrowly distributed to only a few organisms, and appear to be rapidly evolving. Compared to protein coding sequences, there are many challenges associated with assessment of ncRNAs that are not well addressed by conventional phylogenetic approaches, including: short sequence length, lack of primary sequence conservation, and the importance of secondary structure for biological function. Riboswitches are structured ncRNAs that directly interact with small molecules to regulate gene expression in bacteria. They typically consist of a ligand-binding domain (aptamer) whose folding changes drive changes in gene expression. The glycine riboswitch is among the most well-studied due to the widespread occurrence of a tandem aptamer arrangement (tandem), wherein two homologous aptamers interact with glycine and each other to regulate gene expression. However, a significant proportion of glycine riboswitches are comprised of single aptamers (singleton). Here we use graph clustering to circumvent the limitations of traditional phylogenetic analysis when studying the relationship between the tandem and singleton glycine aptamers. Graph clustering enables a broader range of pairwise comparison measures to be used to assess aptamer similarity. Using this approach, we show that one aptamer of the tandem glycine riboswitch pair is typically much more highly conserved, and that which aptamer is conserved depends on the regulated gene. Furthermore, our analysis also reveals that singleton aptamers are more similar to either the first or second tandem aptamer, again based on the regulated gene. Taken together, our findings suggest that tandem glycine riboswitches degrade into functional singletons, with the regulated gene(s) dictating which glycine-binding aptamer is conserved.
Collapse
Affiliation(s)
- Matt Crum
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Nikhil Ram-Mohan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michelle M. Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
9
|
D'Ascenzo L, Vicens Q, Auffinger P. Identification of receptors for UNCG and GNRA Z-turns and their occurrence in rRNA. Nucleic Acids Res 2019; 46:7989-7997. [PMID: 29986118 PMCID: PMC6125677 DOI: 10.1093/nar/gky578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/01/2018] [Indexed: 12/17/2022] Open
Abstract
In contrast to GNRA tetraloop receptors that are common in RNA, receptors for the more thermostable UNCG loops have remained elusive for almost three decades. An analysis of all RNA structures with resolution ≤3.0 Å from the PDB allowed us to identify three previously unnoticed receptors for UNCG and GNRA tetraloops that adopt a common UNCG fold, named ‘Z-turn’ in agreement with our previously published nomenclature. These receptors recognize the solvent accessible second Z-turn nucleotide in different but specific ways. Two receptors participating in a complex network of tertiary interactions are associated with the rRNA UUCG and GAAA Z-turns capping helices H62 and H35a in rRNA large subunits. Structural comparison of fully assembled ribosomes and comparative sequence analysis of >6500 rRNA sequences helped us recognize that these motifs are almost universally conserved in rRNA, where they may contribute to organize the large subunit around the subdomain-IV four-way junction. The third UCCG receptor was identified in a rRNA/protein construct crystallized at acidic pH. These three non-redundant Z-turn receptors are relevant for our understanding of the assembly of rRNA and other long-non-coding RNAs, as well as for the design of novel folding motifs for synthetic biology.
Collapse
Affiliation(s)
- Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Quentin Vicens
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France.,Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado, Denver School of Medicine, Aurora, CO 80045, USA
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France
| |
Collapse
|
10
|
Transcriptional noise and exaptation as sources for bacterial sRNAs. Biochem Soc Trans 2019; 47:527-539. [PMID: 30837318 DOI: 10.1042/bst20180171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
Abstract
Understanding how new genes originate and integrate into cellular networks is key to understanding evolution. Bacteria present unique opportunities for both the natural history and experimental study of gene origins, due to their large effective population sizes, rapid generation times, and ease of genetic manipulation. Bacterial small non-coding RNAs (sRNAs), in particular, many of which operate through a simple antisense regulatory logic, may serve as tractable models for exploring processes of gene origin and adaptation. Understanding how and on what timescales these regulatory molecules arise has important implications for understanding the evolution of bacterial regulatory networks, in particular, for the design of comparative studies of sRNA function. Here, we introduce relevant concepts from evolutionary biology and review recent work that has begun to shed light on the timescales and processes through which non-functional transcriptional noise is co-opted to provide regulatory functions. We explore possible scenarios for sRNA origin, focusing on the co-option, or exaptation, of existing genomic structures which may provide protected spaces for sRNA evolution.
Collapse
|
11
|
Abstract
Despite the central role of bacterial noncoding small RNAs (sRNAs) in posttranscriptional regulation, little is understood about their evolution. Here we compile what has been studied to date and trace a life cycle of sRNAs-from their mechanisms of emergence, through processes of change and frequent neofunctionalization, to their loss from bacterial lineages. Because they possess relatively unrestrictive structural requirements, we find that sRNA origins are varied, and include de novo emergence as well as formation from preexisting genetic elements via duplication events and horizontal gene transfer. The need for only partial complementarity to their mRNA targets facilitates apparent rapid change, which also contributes to significant challenges in tracing sRNAs across broad evolutionary distances. We document that recently emerged sRNAs in particular evolve quickly, mirroring dynamics observed in microRNAs, their functional analogs in eukaryotes. Mutations in mRNA-binding regions, transcriptional regulator or sigma factor binding sites, and protein-binding regions are all likely sources of shifting regulatory roles of sRNAs. Finally, using examples from the few evolutionary studies available, we examine cases of sRNA loss and describe how these may be the result of adaptive in addition to neutral processes. We highlight the need for more-comprehensive analyses of sRNA evolutionary patterns as a means to improve novel sRNA detection, enhance genome annotation, and deepen our understanding of regulatory networks in bacteria.
Collapse
|
12
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
13
|
Lott SC, Schäfer RA, Mann M, Backofen R, Hess WR, Voß B, Georg J. GLASSgo - Automated and Reliable Detection of sRNA Homologs From a Single Input Sequence. Front Genet 2018; 9:124. [PMID: 29719549 PMCID: PMC5913331 DOI: 10.3389/fgene.2018.00124] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/26/2018] [Indexed: 11/24/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important post-transcriptional regulators of gene expression. The functional and evolutionary characterization of sRNAs requires the identification of homologs, which is frequently challenging due to their heterogeneity, short length and partly, little sequence conservation. We developed the GLobal Automatic Small RNA Search go (GLASSgo) algorithm to identify sRNA homologs in complex genomic databases starting from a single sequence. GLASSgo combines an iterative BLAST strategy with pairwise identity filtering and a graph-based clustering method that utilizes RNA secondary structure information. We tested the specificity, sensitivity and runtime of GLASSgo, BLAST and the combination RNAlien/cmsearch in a typical use case scenario on 40 bacterial sRNA families. The sensitivity of the tested methods was similar, while the specificity of GLASSgo and RNAlien/cmsearch was significantly higher than that of BLAST. GLASSgo was on average ∼87 times faster than RNAlien/cmsearch, and only ∼7.5 times slower than BLAST, which shows that GLASSgo optimizes the trade-off between speed and accuracy in the task of finding sRNA homologs. GLASSgo is fully automated, whereas BLAST often recovers only parts of homologs and RNAlien/cmsearch requires extensive additional bioinformatic work to get a comprehensive set of homologs. GLASSgo is available as an easy-to-use web server to find homologous sRNAs in large databases.
Collapse
Affiliation(s)
- Steffen C Lott
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Richard A Schäfer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Martin Mann
- Bioinformatics Group, Faculty of Computer Science, University of Freiburg, Freiburg, Germany.,Forest Growth and Dendroecology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Faculty of Computer Science, University of Freiburg, Freiburg, Germany.,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Björn Voß
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Meyer MM. rRNA Mimicry in RNA Regulation of Gene Expression. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0006-2017. [PMID: 29546840 PMCID: PMC11633770 DOI: 10.1128/microbiolspec.rwr-0006-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The rRNA is the largest and most abundant RNA in bacterial and archaeal cells. It is also one of the best-characterized RNAs in terms of its structural motifs and sequence variation. Production of ribosome components including >50 ribosomal proteins (r-proteins) consumes significant cellular resources. Thus, RNA cis-regulatory structures that interact with r-proteins to repress further r-protein synthesis play an important role in maintaining appropriate stoichiometry between r-proteins and rRNA. Classically, such mRNA structures were thought to directly mimic the rRNA. However, more than 30 years of research has demonstrated that a variety of different recognition and regulatory paradigms are present. This review will demonstrate how structural mimicry between the rRNA and mRNA cis-regulatory structures may take many different forms. The collection of mRNA structures that interact with r-proteins to regulate r-protein operons are best characterized in Escherichia coli, but are increasingly found within species from nearly all phyla of bacteria and several archaea. Furthermore, they represent a unique opportunity to assess the plasticity of RNA structure in the context of RNA-protein interactions. The binding determinants imposed by r-proteins to allow regulation can be fulfilled in many ways. Some r-protein-interacting mRNAs are immediately obvious as rRNA mimics from primary sequence similarity, others are identifiable only after secondary or tertiary structure determination, and some show no obvious similarity. In addition, across different bacterial species a host of different mechanisms of action have been characterized, showing that there is no simple one-size-fits-all solution.
Collapse
|
15
|
Barquist L, Westermann AJ, Vogel J. Molecular phenotyping of infection-associated small non-coding RNAs. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0081. [PMID: 27672158 DOI: 10.1098/rstb.2016.0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Infection is a complicated balance, with both pathogen and host struggling to tilt the result in their favour. Bacterial infection biology has relied on forward genetics for many of its advances, defining phenotype in terms of replication in model systems. However, many known virulence factors fail to produce robust phenotypes, particularly in the systems most amenable to genetic manipulation, such as cell-culture models. This has particularly been limiting for the study of the bacterial regulatory small RNAs (sRNAs) in infection. We argue that new sequencing-based technologies can work around this problem by providing a 'molecular phenotype', defined in terms of the specific transcriptional dysregulation in the infection system induced by gene deletion. We illustrate this using the example of our recent study of the PinT sRNA using dual RNA-seq, that is, simultaneous RNA sequencing of host and pathogen during infection. We additionally discuss how other high-throughput technologies, in particular genetic interaction mapping using transposon insertion sequencing, may be used to further dissect molecular phenotypes. We propose a strategy for how high-throughput technologies can be integrated in the study of non-coding regulators as well as bacterial virulence factors, enhancing our ability to rapidly generate hypotheses with regards to their function.This article is part of the themed issue 'The new bacteriology'.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Alexander J Westermann
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
16
|
Wu C, Jordan MD, Newcomb RD, Gemmell NJ, Bank S, Meusemann K, Dearden PK, Duncan EJ, Grosser S, Rutherford K, Gardner PP, Crowhurst RN, Steinwender B, Tooman LK, Stevens MI, Buckley TR. Analysis of the genome of the New Zealand giant collembolan (Holacanthella duospinosa) sheds light on hexapod evolution. BMC Genomics 2017; 18:795. [PMID: 29041914 PMCID: PMC5644144 DOI: 10.1186/s12864-017-4197-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/08/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The New Zealand collembolan genus Holacanthella contains the largest species of springtails (Collembola) in the world. Using Illumina technology we have sequenced and assembled a draft genome and transcriptome from Holacanthella duospinosa (Salmon). We have used this annotated assembly to investigate the genetic basis of a range of traits critical to the evolution of the Hexapoda, the phylogenetic position of H. duospinosa and potential horizontal gene transfer events. RESULTS Our genome assembly was ~375 Mbp in size with a scaffold N50 of ~230 Kbp and sequencing coverage of ~180×. DNA elements, LTRs and simple repeats and LINEs formed the largest components and SINEs were very rare. Phylogenomics (370,877 amino acids) placed H. duospinosa within the Neanuridae. We recovered orthologs of the conserved sex determination genes thought to play a role in sex determination. Analysis of CpG content suggested the absence of DNA methylation, and consistent with this we were unable to detect orthologs of the DNA methyltransferase enzymes. The small subunit rRNA gene contained a possible retrotransposon. The Hox gene complex was broken over two scaffolds. For chemosensory ability, at least 15 and 18 ionotropic glutamate and gustatory receptors were identified, respectively. However, we were unable to identify any odorant receptors or their obligate co-receptor Orco. Twenty-three chitinase-like genes were identified from the assembly. Members of this multigene family may play roles in the digestion of fungal cell walls, a common food source for these saproxylic organisms. We also detected 59 and 96 genes that blasted to bacteria and fungi, respectively, but were located on scaffolds that otherwise contained arthropod genes. CONCLUSIONS The genome of H. duospinosa contains some unusual features including a Hox complex broken over two scaffolds, in a different manner to other arthropod species, a lack of odorant receptor genes and an apparent lack of environmentally responsive DNA methylation, unlike many other arthropods. Our detection of candidate horizontal gene transfer candidates confirms that this phenomenon is occurring across Collembola. These findings allow us to narrow down the regions of the arthropod phylogeny where key innovations have occurred that have facilitated the evolutionary success of Hexapoda.
Collapse
Affiliation(s)
- Chen Wu
- Landcare Research, Private Bag, Auckland, 92170, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Richard D Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sarah Bank
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
- Evolutionary Biology & Ecology, Institute for Biology, University of Freiburg, Freiburg, Germany
| | - Peter K Dearden
- Genetics Otago, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sefanie Grosser
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilian University of Munich, Planegg-, Martinsried, Germany
| | - Kim Rutherford
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ross N Crowhurst
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Bernd Steinwender
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Leah K Tooman
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Mark I Stevens
- South Australian Museum, North Terrace, GPO Box 234, Adelaide, SA, 5001, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Thomas R Buckley
- Landcare Research, Private Bag, Auckland, 92170, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C, Vogel J. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 2017; 45:6147-6167. [PMID: 28334889 PMCID: PMC5449619 DOI: 10.1093/nar/gkx168] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of −35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.
Collapse
Affiliation(s)
- Nadja Heidrich
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Saskia Bauriedl
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Lei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christoph Schoen
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), D-97080 Würzburg, Germany
| |
Collapse
|
18
|
Umu SU, Gardner PP. A comprehensive benchmark of RNA-RNA interaction prediction tools for all domains of life. Bioinformatics 2017; 33:988-996. [PMID: 27993777 PMCID: PMC5408919 DOI: 10.1093/bioinformatics/btw728] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 11/13/2016] [Indexed: 12/15/2022] Open
Abstract
Motivation The aim of this study is to assess the performance of RNA-RNA interaction prediction tools for all domains of life. Results Minimum free energy (MFE) and alignment methods constitute most of the current RNA interaction prediction algorithms. The MFE tools that include accessibility (i.e. RNAup, IntaRNA and RNAplex) to the final predicted binding energy have better true positive rates (TPRs) with a high positive predictive values (PPVs) in all datasets than other methods. They can also differentiate almost half of the native interactions from background. The algorithms that include effects of internal binding energies to their model and alignment methods seem to have high TPR but relatively low associated PPV compared to accessibility based methods. Availability and Implementation We shared our wrapper scripts and datasets at Github (github.com/UCanCompBio/RNA_Interactions_Benchmark). All parameters are documented for personal use. Contact sinan.umu@pg.canterbury.ac.nz. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sinan Ugur Umu
- School of Biological Sciences.,Biomolecular Interaction Centre
| | - Paul P Gardner
- School of Biological Sciences.,Biomolecular Interaction Centre.,Bio-Protection Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
19
|
Kacharia FR, Millar JA, Raghavan R. Emergence of New sRNAs in Enteric Bacteria is Associated with Low Expression and Rapid Evolution. J Mol Evol 2017; 84:204-213. [PMID: 28405712 DOI: 10.1007/s00239-017-9793-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Non-coding small RNAs (sRNAs) are critical to post-transcriptional gene regulation in bacteria. However, unlike for protein-coding genes, the evolutionary forces that shape sRNAs are not understood. We investigated sRNAs in enteric bacteria and discovered that recently emerged sRNAs evolve at significantly faster rates than older sRNAs. Concomitantly, younger sRNAs are expressed at significantly lower levels than older sRNAs. This process could potentially facilitate the integration of newly emerged sRNAs into bacterial regulatory networks. Furthermore, it has previously been difficult to trace the evolutionary histories of sRNAs because rapid evolution obscures their original sources. We overcame this challenge by identifying a recently evolved sRNA in Escherichia coli, which allowed us to determine that novel sRNAs could emerge from vestigial bacteriophage genes, the first known source for sRNA origination.
Collapse
Affiliation(s)
- Fenil R Kacharia
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, 97201, USA
| | - Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, 97201, USA
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
20
|
Abstract
Small regulatory RNAs comprise critically important modulators of gene expression in bacteria, yet very little is known about their prevalence and functions in Rickettsia species. R. conorii, the causative agent of Mediterranean spotted fever, is a tick-borne pathogen that primarily infects microvascular endothelium in humans. We have determined the transcriptional landscape of R. conorii during infection of Human Microvascular Endothelial Cells (HMECs) by strand-specific RNA sequencing to identify 4 riboswitches, 13 trans-acting (intergenic), and 22 cis-acting (antisense) small RNAs (termed ‘Rc_sR’s). Independent expression of four novel trans-acting sRNAs (Rc_sR31, Rc_sR33, Rc_sR35, and Rc_sR42) and known bacterial sRNAs (6S, RNaseP_bact_a, ffs, and α-tmRNA) was next confirmed by Northern hybridization. Comparative analysis during infection of HMECs vis-à-vis tick AAE2 cells revealed significantly higher expression of Rc_sR35 and Rc_sR42 in HMECs, whereas Rc_sR31 and Rc_sR33 were expressed at similar levels in both cell types. We further predicted a total of 502 genes involved in all important biological processes as potential targets of Rc_sRs and validated the interaction of Rc_sR42 with cydA (cytochrome d ubiquinol oxidase subunit I). Our findings constitute the first evidence of the existence of post-transcriptional riboregulatory mechanisms in R. conorii and interactions between a novel Rc_sR and its target mRNA.
Collapse
|
21
|
Lin GW, Lu P, Zeng T, Tang HL, Chen YH, Liu SJ, Gao MM, Zhao QH, Yi YH, Long YS. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions. Neuropharmacology 2016; 113:480-489. [PMID: 27816501 DOI: 10.1016/j.neuropharm.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023]
Abstract
Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD.
Collapse
Affiliation(s)
- Guo-Wang Lin
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Ping Lu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Tao Zeng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Hui-Ling Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yong-Hong Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Shu-Jing Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Mei-Mei Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Qi-Hua Zhao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China.
| |
Collapse
|
22
|
Donovan PD, Schröder MS, Higgins DG, Butler G. Identification of Non-Coding RNAs in the Candida parapsilosis Species Group. PLoS One 2016; 11:e0163235. [PMID: 27658249 PMCID: PMC5033589 DOI: 10.1371/journal.pone.0163235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023] Open
Abstract
The Candida CTG clade is a monophyletic group of fungal species that translates CTG as serine, and includes the pathogens Candida albicans and Candida parapsilosis. Research has typically focused on identifying protein-coding genes in these species. Here, we use bioinformatic and experimental approaches to annotate known classes of non-coding RNAs in three CTG-clade species, Candida parapsilosis, Candida orthopsilosis and Lodderomyces elongisporus. We also update the annotation of ncRNAs in the C. albicans genome. The majority of ncRNAs identified were snoRNAs. Approximately 50% of snoRNAs (including most of the C/D box class) are encoded in introns. Most are within mono- and polycistronic transcripts with no protein coding potential. Five polycistronic clusters of snoRNAs are highly conserved in fungi. In polycistronic regions, splicing occurs via the classical pathway, as well as by nested and recursive splicing. We identified spliceosomal small nuclear RNAs, the telomerase RNA component, signal recognition particle, RNase P RNA component and the related RNase MRP RNA component in all three genomes. Stem loop IV of the U2 spliceosomal RNA and the associated binding proteins were lost from the ancestor of C. parapsilosis and C. orthopsilosis, following the divergence from L. elongisporus. The RNA component of the MRP is longer in C. parapsilosis, C. orthopsilosis and L. elongisporus than in S. cerevisiae, but is substantially shorter than in C. albicans.
Collapse
Affiliation(s)
- Paul D. Donovan
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Markus S. Schröder
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Desmond G. Higgins
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
23
|
Umu SU, Poole AM, Dobson RC, Gardner PP. Avoidance of stochastic RNA interactions can be harnessed to control protein expression levels in bacteria and archaea. eLife 2016; 5. [PMID: 27642845 PMCID: PMC5028192 DOI: 10.7554/elife.13479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/14/2016] [Indexed: 11/23/2022] Open
Abstract
A critical assumption of gene expression analysis is that mRNA abundances broadly correlate with protein abundance, but these two are often imperfectly correlated. Some of the discrepancy can be accounted for by two important mRNA features: codon usage and mRNA secondary structure. We present a new global factor, called mRNA:ncRNA avoidance, and provide evidence that avoidance increases translational efficiency. We also demonstrate a strong selection for the avoidance of stochastic mRNA:ncRNA interactions across prokaryotes, and that these have a greater impact on protein abundance than mRNA structure or codon usage. By generating synonymously variant green fluorescent protein (GFP) mRNAs with different potential for mRNA:ncRNA interactions, we demonstrate that GFP levels correlate well with interaction avoidance. Therefore, taking stochastic mRNA:ncRNA interactions into account enables precise modulation of protein abundance. DOI:http://dx.doi.org/10.7554/eLife.13479.001 Many genes carry information for making proteins. To make a protein, a working copy of the information stored in DNA is first copied into a molecule of messenger RNA. These RNA messages are then interpreted by the ribosome, the molecular machine that makes proteins. Many messages are produced from each gene, and each message can be read multiple times. Thus, it should follow that the number of messages produced dictates the number of proteins made. However, this is not the case and the number of proteins produced cannot be completely predicted from knowing the number of messenger RNAs. Cells control how much of a given protein they produce through interactions between the messenger RNAs and other regulatory RNAs. The regulatory RNAs bind directly to a message and impede protein production. Because there are millions of RNAs in a cell, these interactions have evolved to be highly specific. Nevertheless, it seems inevitable that messenger RNAs would encounter other RNAs too, which could short-circuit gene regulation and lead to less protein being produced. Umu et al. have now asked if such short-circuit events are selected against during evolution. Computational tools were used to predict the strength of binding between the RNAs found in the dominant forms of microbial life on Earth: the bacteria and the archaea. This approach revealed that the majority of messenger RNAs bind more weakly to the most common RNA molecules found in cells than would be expected by chance. Weakened binding should prevent the RNA molecules from becoming tangled with each other and ensure that protein levels are not perturbed by unintended interactions between highly expressed messages and other RNAs. To test this hypothesis further, Umu et al. generated versions of the gene for a green fluorescent protein that differed only in how well their messenger RNAs could avoid interacting with the most abundant RNAs in E. coli cells. Those messengers that were designed to avoid interacting with other RNAs yielded far more protein than those that were not. The findings show that taking this kind of avoidance into account can improve predictions about how much protein will be produced and should therefore make it easier to control protein production in experimental systems. Finally, the messenger RNAs of some bacteria do not show such clear avoidance. However, these bacteria have a more complex internal cell structure. This finding hints at an alternative means for avoiding short-circuiting events that could be used by more complicated cells, such of those of animals and plants, which also contain much larger numbers of RNAs. DOI:http://dx.doi.org/10.7554/eLife.13479.002
Collapse
Affiliation(s)
- Sinan Uğur Umu
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Anthony M Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Renwick Cj Dobson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
| | - Paul P Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,BioProtection Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
24
|
Slinger BL, Meyer MM. RNA regulators responding to ribosomal protein S15 are frequent in sequence space. Nucleic Acids Res 2016; 44:9331-9341. [PMID: 27580716 PMCID: PMC5100602 DOI: 10.1093/nar/gkw754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
There are several natural examples of distinct RNA structures that interact with the same ligand to regulate the expression of homologous genes in different organisms. One essential question regarding this phenomenon is whether such RNA regulators are the result of convergent or divergent evolution. Are the RNAs derived from some common ancestor and diverged to the point where we cannot identify the similarity, or have multiple solutions to the same biological problem arisen independently? A key variable in assessing these alternatives is how frequently such regulators arise within sequence space. Ribosomal protein S15 is autogenously regulated via an RNA regulator in many bacterial species; four apparently distinct regulators have been functionally validated in different bacterial phyla. Here, we explore how frequently such regulators arise within a partially randomized sequence population. We find many RNAs that interact specifically with ribosomal protein S15 from Geobacillus kaustophilus with biologically relevant dissociation constants. Furthermore, of the six sequences we characterize, four show regulatory activity in an Escherichia coli reporter assay. Subsequent footprinting and mutagenesis analysis indicates that protein binding proximal to regulatory features such as the Shine–Dalgarno sequence is sufficient to enable regulation, suggesting that regulation in response to S15 is relatively easily acquired.
Collapse
Affiliation(s)
- Betty L Slinger
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Michelle M Meyer
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
25
|
Barquist L, Burge SW, Gardner PP. Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families. CURRENT PROTOCOLS IN BIOINFORMATICS 2016; 54:12.13.1-12.13.25. [PMID: 27322404 PMCID: PMC5010141 DOI: 10.1002/cpbi.4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging high-throughput technologies have led to a deluge of putative non-coding RNA (ncRNA) sequences identified in a wide variety of organisms. Systematic characterization of these transcripts will be a tremendous challenge. Homology detection is critical to making maximal use of functional information gathered about ncRNAs: identifying homologous sequence allows us to transfer information gathered in one organism to another quickly and with a high degree of confidence. ncRNA presents a challenge for homology detection, as the primary sequence is often poorly conserved and de novo secondary structure prediction and search remain difficult. This unit introduces methods developed by the Rfam database for identifying "families" of homologous ncRNAs starting from single "seed" sequences, using manually curated sequence alignments to build powerful statistical models of sequence and structure conservation known as covariance models (CMs), implemented in the Infernal software package. We provide a step-by-step iterative protocol for identifying ncRNA homologs and then constructing an alignment and corresponding CM. We also work through an example for the bacterial small RNA MicA, discovering a previously unreported family of divergent MicA homologs in genus Xenorhabdus in the process. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA United Kingdom; Fax: +44 (0)1223 494919
| | - Sarah W. Burge
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA United Kingdom; Fax: +44 (0)1223 494919
| | - Paul P. Gardner
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
26
|
Meyer MM. The role of mRNA structure in bacterial translational regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27301829 DOI: 10.1002/wrna.1370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/08/2023]
Abstract
The characteristics of bacterial messenger RNAs (mRNAs) that influence translation efficiency provide many convenient handles for regulation of gene expression, especially when coupled with the processes of transcription termination and mRNA degradation. An mRNA's structure, especially near the site of initiation, has profound consequences for how readily it is translated. This property allows bacterial gene expression to be altered by changes to mRNA structure induced by temperature, or interactions with a wide variety of cellular components including small molecules, other RNAs (such as sRNAs and tRNAs), and RNA-binding proteins. This review discusses the links between mRNA structure and translation efficiency, and how mRNA structure is manipulated by conditions and signals within the cell to regulate gene expression. The range of RNA regulators discussed follows a continuum from very complex tertiary structures such as riboswitch aptamers and ribosomal protein-binding sites to thermosensors and mRNA:sRNA interactions that involve only base-pairing interactions. Furthermore, the high degrees of diversity observed for both mRNA structures and the mechanisms by which inhibition of translation occur have significant consequences for understanding the evolution of bacterial translational regulation. WIREs RNA 2017, 8:e1370. doi: 10.1002/wrna.1370 For further resources related to this article, please visit the WIREs website.
Collapse
|
27
|
Matelska D, Kurkowska M, Purta E, Bujnicki JM, Dunin-Horkawicz S. Loss of Conserved Noncoding RNAs in Genomes of Bacterial Endosymbionts. Genome Biol Evol 2016; 8:426-38. [PMID: 26782934 PMCID: PMC4779614 DOI: 10.1093/gbe/evw007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genomes of intracellular symbiotic or pathogenic bacteria, such as of Buchnera, Mycoplasma, and Rickettsia, are typically smaller compared with their free-living counterparts. Here we showed that noncoding RNA (ncRNA) families, which are conserved in free-living bacteria, frequently could not be detected by computational methods in the small genomes. Statistical tests demonstrated that their absence is not an artifact of low GC content or small deletions in these small genomes, and thus it was indicative of an independent loss of ncRNAs in different endosymbiotic lineages. By analyzing the synteny (conservation of gene order) between the reduced and nonreduced genomes, we revealed instances of protein-coding genes that were preserved in the reduced genomes but lost cis-regulatory elements. We found that the loss of cis-regulatory ncRNA sequences, which regulate the expression of cognate protein-coding genes, is characterized by the reduction of secondary structure formation propensity, GC content, and length of the corresponding genomic regions.
Collapse
Affiliation(s)
- Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Malgorzata Kurkowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Elzbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
28
|
Slinger BL, Newman H, Lee Y, Pei S, Meyer MM. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures. PLoS Genet 2015; 11:e1005720. [PMID: 26675164 PMCID: PMC4684408 DOI: 10.1371/journal.pgen.1005720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition.
Collapse
Affiliation(s)
- Betty L. Slinger
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Hunter Newman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Younghan Lee
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Shermin Pei
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michelle M. Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Babina AM, Soo MW, Fu Y, Meyer MM. An S6:S18 complex inhibits translation of E. coli rpsF. RNA (NEW YORK, N.Y.) 2015; 21:2039-46. [PMID: 26447183 PMCID: PMC4647458 DOI: 10.1261/rna.049544.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/06/2015] [Indexed: 05/09/2023]
Abstract
More than half of the ribosomal protein operons in Escherichia coli are regulated by structures within the mRNA transcripts that interact with specific ribosomal proteins to inhibit further protein expression. This regulation is accomplished using a variety of mechanisms and the RNA structures responsible for regulation are often not conserved across bacterial phyla. A widely conserved mRNA structure preceding the ribosomal protein operon containing rpsF and rpsR (encoding S6 and S18) was recently identified through comparative genomics. Examples of this RNA from both E. coli and Bacillus subtilis were shown to interact in vitro with an S6:S18 complex. In this work, we demonstrate that in E. coli, this RNA structure regulates gene expression in response to the S6:S18 complex. β-galactosidase activity from a lacZ reporter translationally fused to the 5' UTR and first nine codons of E. coli rpsF is reduced fourfold by overexpression of a genomic fragment encoding both S6 and S18 but not by overexpression of either protein individually. Mutations to the mRNA structure, as well as to the RNA-binding site of S18 and the S6-S18 interaction surfaces of S6 and S18, are sufficient to derepress β-galactosidase activity, indicating that the S6:S18 complex is the biologically active effector. Measurement of transcript levels shows that although reporter levels do not change upon protein overexpression, levels of the native transcript are reduced fourfold, suggesting that the mRNA regulator prevents translation and this effect is amplified on the native transcript by other mechanisms.
Collapse
Affiliation(s)
- Arianne M Babina
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Mark W Soo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Yang Fu
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
30
|
Barquist L, Vogel J. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annu Rev Genet 2015; 49:367-94. [PMID: 26473381 DOI: 10.1146/annurev-genet-112414-054804] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| |
Collapse
|
31
|
Updegrove TB, Shabalina SA, Storz G. How do base-pairing small RNAs evolve? FEMS Microbiol Rev 2015; 39:379-91. [PMID: 25934120 DOI: 10.1093/femsre/fuv014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 01/12/2023] Open
Abstract
The increasing numbers of characterized base-pairing small RNAs (sRNAs) and the identification of these regulators in a broad range of bacteria are allowing comparisons between species and explorations of sRNA evolution. In this review, we describe some examples of trans-encoded base-pairing sRNAs that are species-specific and others that are more broadly distributed. We also describe examples of sRNA orthologs where different features are conserved. These examples provide the background for a discussion of mechanisms of sRNA evolution and selective pressures on the sRNAs and their mRNA target(s).
Collapse
Affiliation(s)
- Taylor B Updegrove
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Gardner PP, Eldai H. Annotating RNA motifs in sequences and alignments. Nucleic Acids Res 2015; 43:691-8. [PMID: 25520192 PMCID: PMC4333381 DOI: 10.1093/nar/gku1327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 11/30/2014] [Accepted: 12/05/2014] [Indexed: 11/21/2022] Open
Abstract
RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure-function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs--RMfam--and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam.
Collapse
Affiliation(s)
- Paul P Gardner
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Hisham Eldai
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|