1
|
Burbano de Lara S, Kemmer S, Biermayer I, Feiler S, Vlasov A, D'Alessandro LA, Helm B, Mölders C, Dieter Y, Ghallab A, Hengstler JG, Körner C, Matz-Soja M, Götz C, Damm G, Hoffmann K, Seehofer D, Berg T, Schilling M, Timmer J, Klingmüller U. Basal MET phosphorylation is an indicator of hepatocyte dysregulation in liver disease. Mol Syst Biol 2024; 20:187-216. [PMID: 38216754 PMCID: PMC10912216 DOI: 10.1038/s44320-023-00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024] Open
Abstract
Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.
Collapse
Affiliation(s)
- Sebastian Burbano de Lara
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
| | - Svenja Kemmer
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
- FDM - Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany
| | - Ina Biermayer
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
| | - Svenja Feiler
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of General, Visceral and Transplant Surgery, Heidelberg University, Heidelberg, Germany
| | - Artyom Vlasov
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenza A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Helm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Mölders
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
| | - Yannik Dieter
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Ghallab
- Systems Toxicology, Leibniz Research Center for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Jan G Hengstler
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Systems Toxicology, Leibniz Research Center for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Christiane Körner
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Madlen Matz-Soja
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Christina Götz
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital Leipzig, Leipzig University, 04103, Leipzig, Germany
| | - Georg Damm
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital Leipzig, Leipzig University, 04103, Leipzig, Germany
| | - Katrin Hoffmann
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Department of General, Visceral and Transplant Surgery, Heidelberg University, Heidelberg, Germany
| | - Daniel Seehofer
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital Leipzig, Leipzig University, 04103, Leipzig, Germany
| | - Thomas Berg
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jens Timmer
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany.
- Institute of Physics, University of Freiburg, Freiburg, Germany.
- FDM - Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany.
| |
Collapse
|
2
|
Deciphering signal transduction networks in the liver by mechanistic mathematical modelling. Biochem J 2022; 479:1361-1374. [PMID: 35748700 PMCID: PMC9246346 DOI: 10.1042/bcj20210548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
In health and disease, liver cells are continuously exposed to cytokines and growth factors. While individual signal transduction pathways induced by these factors were studied in great detail, the cellular responses induced by repeated or combined stimulations are complex and less understood. Growth factor receptors on the cell surface of hepatocytes were shown to be regulated by receptor interactions, receptor trafficking and feedback regulation. Here, we exemplify how mechanistic mathematical modelling based on quantitative data can be employed to disentangle these interactions at the molecular level. Crucial is the analysis at a mechanistic level based on quantitative longitudinal data within a mathematical framework. In such multi-layered information, step-wise mathematical modelling using submodules is of advantage, which is fostered by sharing of standardized experimental data and mathematical models. Integration of signal transduction with metabolic regulation in the liver and mechanistic links to translational approaches promise to provide predictive tools for biology and personalized medicine.
Collapse
|
3
|
Li S, Xiao J, Sun T, Yu F, Zhang K, Feng Y, Xu C, Wang B, Cheng L. Synthetic microbial consortia with programmable ecological interactions. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuyao Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Jing Xiao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Tianzheng Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Fangjian Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Kaihang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Yuantao Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Chenchao Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Baojun Wang
- Hangzhou Innovation Center & College of Chemical and Biological Engineering Zhejiang University Hangzhou 311200 China
- Research Centre for Biological Computation, Zhejiang Laboratory Hangzhou 311100 China
| | - Lei Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| |
Collapse
|
4
|
Zhang Y, Wang H, Oliveira RHM, Zhao C, Popel AS. Systems biology of angiogenesis signaling: Computational models and omics. WIREs Mech Dis 2021; 14:e1550. [PMID: 34970866 PMCID: PMC9243197 DOI: 10.1002/wsbm.1550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Angiogenesis is a highly regulated multiscale process that involves a plethora of cells, their cellular signal transduction, activation, proliferation, differentiation, as well as their intercellular communication. The coordinated execution and integration of such complex signaling programs is critical for physiological angiogenesis to take place in normal growth, development, exercise, and wound healing, while its dysregulation is critically linked to many major human diseases such as cancer, cardiovascular diseases, and ocular disorders; it is also crucial in regenerative medicine. Although huge efforts have been devoted to drug development for these diseases by investigation of angiogenesis‐targeted therapies, only a few therapeutics and targets have proved effective in humans due to the innate multiscale complexity and nonlinearity in the process of angiogenic signaling. As a promising approach that can help better address this challenge, systems biology modeling allows the integration of knowledge across studies and scales and provides a powerful means to mechanistically elucidate and connect the individual molecular and cellular signaling components that function in concert to regulate angiogenesis. In this review, we summarize and discuss how systems biology modeling studies, at the pathway‐, cell‐, tissue‐, and whole body‐levels, have advanced our understanding of signaling in angiogenesis and thereby delivered new translational insights for human diseases. This article is categorized under:Cardiovascular Diseases > Computational Models Cancer > Computational Models
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebeca Hannah M Oliveira
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Rybiński M, Möller S, Sunnåker M, Lormeau C, Stelling J. TopoFilter: a MATLAB package for mechanistic model identification in systems biology. BMC Bioinformatics 2020; 21:34. [PMID: 31996136 PMCID: PMC6990465 DOI: 10.1186/s12859-020-3343-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
Background To develop mechanistic dynamic models in systems biology, one often needs to identify all (or minimal) representations of the biological processes that are consistent with experimental data, out of a potentially large set of hypothetical mechanisms. However, a simple enumeration of all alternatives becomes quickly intractable when the number of model parameters grows. Selecting appropriate dynamic models out of a large ensemble of models, taking the uncertainty in our biological knowledge and in the experimental data into account, is therefore a key current problem in systems biology. Results The TopoFilter package addresses this problem in a heuristic and automated fashion by implementing the previously described topological filtering method for Bayesian model selection. It includes a core heuristic for searching the space of submodels of a parametrized model, coupled with a sampling-based exploration of the parameter space. Recent developments of the method allow to balance exhaustiveness and speed of the model space search, to efficiently re-sample parameters, to parallelize the search, and to use custom scoring functions. We use a theoretical example to motivate these features and then demonstrate TopoFilter’s applicability for a yeast signaling network with more than 250’000 possible model structures. Conclusions TopoFilter is a flexible software framework that makes Bayesian model selection and reduction efficient and scalable to network models of a complexity that represents contemporary problems in, for example, cell signaling. TopoFilter is open-source, available under the GPL-3.0 license at https://gitlab.com/csb.ethz/TopoFilter. It includes installation instructions, a quickstart guide, a description of all package options, and multiple examples.
Collapse
Affiliation(s)
- Mikołaj Rybiński
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland.,ID Scientific IT Services, ETH Zurich, Zurich, 8092, Switzerland
| | - Simon Möller
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland
| | - Mikael Sunnåker
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland
| | - Claude Lormeau
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland.,Life Science Zurich Ph.D. program "Systems Biology", Zurich, 8092, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland.
| |
Collapse
|
6
|
Jafarnejad M, Sové RJ, Danilova L, Mirando AC, Zhang Y, Yarchoan M, Tran PT, Pandey NB, Fertig EJ, Popel AS. Mechanistically detailed systems biology modeling of the HGF/Met pathway in hepatocellular carcinoma. NPJ Syst Biol Appl 2019; 5:29. [PMID: 31452933 PMCID: PMC6697704 DOI: 10.1038/s41540-019-0107-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte growth factor (HGF) signaling through its receptor Met has been implicated in hepatocellular carcinoma tumorigenesis and progression. Met interaction with integrins is shown to modulate the downstream signaling to Akt and ERK (extracellular-regulated kinase). In this study, we developed a mechanistically detailed systems biology model of HGF/Met signaling pathway that incorporated specific interactions with integrins to investigate the efficacy of integrin-binding peptide, AXT050, as monotherapy and in combination with other therapeutics targeting this pathway. Here we report that the modeled dynamics of the response to AXT050 revealed that receptor trafficking is sufficient to explain the effect of Met-integrin interactions on HGF signaling. Furthermore, the model predicted patient-specific synergy and antagonism of efficacy and potency for combination of AXT050 with sorafenib, cabozantinib, and rilotumumab. Overall, the model provides a valuable framework for studying the efficacy of drugs targeting receptor tyrosine kinase interaction with integrins, and identification of synergistic drug combinations for the patients.
Collapse
Affiliation(s)
- Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Richard J. Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ludmila Danilova
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Adam C. Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular and Radiation Sciences, Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Centre and Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Niranjan B. Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Elana J. Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
7
|
Shin SY, Kim MW, Cho KH, Nguyen LK. Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells. Sci Rep 2019; 9:10637. [PMID: 31337782 PMCID: PMC6650396 DOI: 10.1038/s41598-019-46592-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
A properly functioning immune system is vital for an organism’s wellbeing. Immune tolerance is a critical feature of the immune system that allows immune cells to mount effective responses against exogenous pathogens such as viruses and bacteria, while preventing attack to self-tissues. Activation-induced cell death (AICD) in T lymphocytes, in which repeated stimulations of the T-cell receptor (TCR) lead to activation and then apoptosis of T cells, is a major mechanism for T cell homeostasis and helps maintain peripheral immune tolerance. Defects in AICD can lead to development of autoimmune diseases. Despite its importance, the regulatory mechanisms that underlie AICD remain poorly understood, particularly at an integrative network level. Here, we develop a dynamic multi-pathway model of the integrated TCR signalling network and perform model-based analysis to characterize the network-level properties of AICD. Model simulation and analysis show that amplified activation of the transcriptional factor NFAT in response to repeated TCR stimulations, a phenomenon central to AICD, is tightly modulated by a coupled positive-negative feedback mechanism. NFAT amplification is predominantly enabled by a positive feedback self-regulated by NFAT, while opposed by a NFAT-induced negative feedback via Carabin. Furthermore, model analysis predicts an optimal therapeutic window for drugs that help minimize proliferation while maximize AICD of T cells. Overall, our study provides a comprehensive mathematical model of TCR signalling and model-based analysis offers new network-level insights into the regulation of activation-induced cell death in T cells.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Min-Wook Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia. .,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
8
|
Christ B, Dahmen U, Herrmann KH, König M, Reichenbach JR, Ricken T, Schleicher J, Ole Schwen L, Vlaic S, Waschinsky N. Computational Modeling in Liver Surgery. Front Physiol 2017; 8:906. [PMID: 29249974 PMCID: PMC5715340 DOI: 10.3389/fphys.2017.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Molecular Hepatology Lab, Clinics of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias König
- Department of Biology, Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tim Ricken
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| | - Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.,Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Navina Waschinsky
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
9
|
Magi S, Iwamoto K, Okada-Hatakeyama M. Current status of mathematical modeling of cancer – From the viewpoint of cancer hallmarks. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Adlung L, Kar S, Wagner MC, She B, Chakraborty S, Bao J, Lattermann S, Boerries M, Busch H, Wuchter P, Ho AD, Timmer J, Schilling M, Höfer T, Klingmüller U. Protein abundance of AKT and ERK pathway components governs cell type-specific regulation of proliferation. Mol Syst Biol 2017; 13:904. [PMID: 28123004 PMCID: PMC5293153 DOI: 10.15252/msb.20167258] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro‐proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type‐specific proliferation. First, cell type‐specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate‐limiting for faster cycling cells while slower cell cycles are controlled at the G1‐S progression. The integrated mathematical model of Epo‐driven proliferation explains cell type‐specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti‐proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance.
Collapse
Affiliation(s)
- Lorenz Adlung
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandip Kar
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany.,Department of Chemistry, Indian Institute of Technology, Mumbai, India
| | - Marie-Christine Wagner
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bin She
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sajib Chakraborty
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jie Bao
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany
| | - Susen Lattermann
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, University of Heidelberg, Mannheim, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Jens Timmer
- Center for Biological Signaling Studies (BIOSS), Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Marcel Schilling
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany .,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany .,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
11
|
Abstract
Molecular profiling of proteins and phosphoproteins using a reverse phase protein array (RPPA) platform, with a panel of target-specific antibodies, enables the parallel, quantitative proteomic analysis of many biological samples in a microarray format. Hence, RPPA analysis can generate a high volume of multidimensional data that must be effectively interrogated and interpreted. A range of computational techniques for data mining can be applied to detect and explore data structure and to form functional predictions from large datasets. Here, two approaches for the computational analysis of RPPA data are detailed: the identification of similar patterns of protein expression by hierarchical cluster analysis and the modeling of protein interactions and signaling relationships by network analysis. The protocols use freely available, cross-platform software, are easy to implement, and do not require any programming expertise. Serving as data-driven starting points for further in-depth analysis, validation, and biological experimentation, these and related bioinformatic approaches can accelerate the functional interpretation of RPPA data.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
12
|
Klinke DJ, Birtwistle MR. In silico model-based inference: an emerging approach for inverse problems in engineering better medicines. Curr Opin Chem Eng 2015; 10:14-24. [PMID: 26309811 PMCID: PMC4545575 DOI: 10.1016/j.coche.2015.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying the network of biochemical interactions that underpin disease pathophysiology is a key hurdle in drug discovery. While many components involved in these biological processes are identified, how components organize differently in health and disease remains unclear. In chemical engineering, mechanistic modeling provides a quantitative framework to capture our understanding of a reactive system and test this knowledge against data. Here, we describe an emerging approach to test this knowledge against data that leverages concepts from probability, Bayesian statistics, and chemical kinetics by focusing on two related inverse problems. The first problem is to identify the causal structure of the reaction network, given uncertainty as to how the reactive components interact. The second problem is to identify the values of the model parameters, when a network is known a priori.
Collapse
Affiliation(s)
- David J. Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University, Morgantown, WV
| | - Marc R. Birtwistle
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|