1
|
Eity TA, Bhuia MS, Chowdhury R, Ahmmed S, Salehin Sheikh, Akter R, Islam MT. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. J Trop Med 2024; 2024:5594462. [PMID: 39380577 PMCID: PMC11461079 DOI: 10.1155/2024/5594462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Quercetin, a major representative of the flavonol subclass found abundantly in almost all edible vegetables and fruits, showed remarkable therapeutic properties and was beneficial in numerous degenerative diseases by preventing lipid peroxidation. Quercetin is beneficial in different diseases, such as atherosclerosis and chronic inflammation. This study aims to find out the anticancer activities of quercetin and to determine different mechanisms and pathways which are responsible for the anticancer effect. It also revealed the biopharmaceutical, toxicological characteristics, and clinical utilization of quercetin to evaluate its suitability for further investigations as a reliable anticancer drug. All of the relevant data concerning this compound with cancer was collected using different scientific search engines, including PubMed, Springer Link, Wiley Online, Web of Science, SciFinder, ScienceDirect, and Google Scholar. This review demonstrated that quercetin showed strong anticancer properties, including apoptosis, inhibition of cell proliferation, autophagy, cell cycle arrest, inhibition of angiogenesis, and inhibition of invasion and migration against various types of cancer. Findings also revealed that quercetin could significantly moderate and regulate different pathways, including PI3K/AKT-mTORC1 pathway, JAK/STAT signaling system, MAPK signaling pathway, MMP signaling pathway, NF-κB pathway, and p-Camk2/p-DRP1 pathway. However, this study found that quercetin showed poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of quercetin). Moreover, different investigations revealed that quercetin expressed no toxic effect in the investigated subjects. Based on the view of these findings, it is demonstrated that quercetin might be considered a reliable chemotherapeutic drug candidate in the treatment of different cancers. However, more clinical studies are suggested to establish the proper therapeutic efficacy, safety, and human dose.
Collapse
Affiliation(s)
- Tanzila Akter Eity
- Department of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Shakil Ahmmed
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Rima Akter
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Biotechnology and Genetic Engineering DisciplineKhulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Pharmacy DisciplineKhulna University, Khulna 9208, Bangladesh
| |
Collapse
|
2
|
Ascione F, Ferraro R, Dogra P, Cristini V, Guido S, Caserta S. Gradient-induced instability in tumour spheroids unveils the impact of microenvironmental nutrient changes. Sci Rep 2024; 14:20837. [PMID: 39242641 PMCID: PMC11379688 DOI: 10.1038/s41598-024-69570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024] Open
Abstract
Tumours often display invasive behaviours that induce fingering, branching and fragmentation processes. The phenomenon, known as diffusional instability, is driven by differential cell proliferation, migration, and death due to the presence of metabolite and catabolite concentration gradients. An understanding of the intricate dynamics of this spatially heterogeneous process plays a key role in the investigation of tumour growth and invasion. In this study, we developed an in vitro tumour invasion assay to investigate cell invasiveness in tumour spheroids under a chemotactic stimulus. Our method, employing tumour spheroids seeded in a 3D collagen gel within a microfluidic chemotaxis chamber, focuses on the role of diffusive gradients. Using Time-Lapse Microscopy, the dynamic evolution of tumour spheroids was monitored in real-time, providing a comprehensive view of the morphological changes and cell migration patterns under different chemotactic conditions. Specifically, we explored the impact of fetal bovine serum (FBS) gradients on the behaviour of CT26 mouse colon carcinoma cells and compared the effects of varying FBS concentrations to two isotropic control conditions. Furthermore, a finite element in silico model was developed to quantify the diffusive flow of nutrients in the chemotaxis chamber and obtain a detailed understanding of tumour dynamics. Our findings reveal that the presence of a chemotactic gradient significantly influences tumour invasiveness, with higher concentrations of nutrients associated with increased cancer growth and cell migration.
Collapse
Affiliation(s)
- Flora Ascione
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy
| | - Rosalia Ferraro
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via G. Salvatore 436, 80131, Naples, Italy
| | - Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Stefano Guido
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via G. Salvatore 436, 80131, Naples, Italy
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy.
- CEINGE Advanced Biotechnologies Franco Salvatore, Via G. Salvatore 436, 80131, Naples, Italy.
| |
Collapse
|
3
|
Park KH, Costa FX, Rocha LM, Albert R, Rozum JC. Models of Cell Processes are Far from the Edge of Chaos. PRX LIFE 2023; 1:023009. [PMID: 38487681 PMCID: PMC10938903 DOI: 10.1103/prxlife.1.023009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2024]
Abstract
Complex living systems are thought to exist at the "edge of chaos" separating the ordered dynamics of robust function from the disordered dynamics of rapid environmental adaptation. Here, a deeper inspection of 72 experimentally supported discrete dynamical models of cell processes reveals previously unobserved order on long time scales, suggesting greater rigidity in these systems than was previously conjectured. We find that propagation of internal perturbations is transient in most cases, and that even when large perturbation cascades persist, their phenotypic effects are often minimal. Moreover, we find evidence that stochasticity and desynchronization can lead to increased recovery from regulatory perturbation cascades. Our analysis relies on new measures that quantify the tendency of perturbations to spread through a discrete dynamical system. Computing these measures was not feasible using current methodology; thus, we developed a multipurpose CUDA-based simulation tool, which we have made available as the open-source Python library cubewalkers. Based on novel measures and simulations, our results suggest that-contrary to current theory-cell processes are ordered and far from the edge of chaos.
Collapse
Affiliation(s)
- Kyu Hyong Park
- Department of Physics, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA
| | - Felipe Xavier Costa
- Department of Systems Science and Industrial Engineering,
Binghamton University (SUNY), Binghamton, New York 13902, USA
- Department of Physics, University at Albany (SUNY), Albany,
New York 12222, USA
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras,
Portugal
| | - Luis M. Rocha
- Department of Systems Science and Industrial Engineering,
Binghamton University (SUNY), Binghamton, New York 13902, USA
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras,
Portugal
| | - Réka Albert
- Department of Physics, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA
- Department of Biology, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA
| | - Jordan C. Rozum
- Department of Systems Science and Industrial Engineering,
Binghamton University (SUNY), Binghamton, New York 13902, USA
| |
Collapse
|
4
|
Ponce-de-Leon M, Montagud A, Noël V, Meert A, Pradas G, Barillot E, Calzone L, Valencia A. PhysiBoSS 2.0: a sustainable integration of stochastic Boolean and agent-based modelling frameworks. NPJ Syst Biol Appl 2023; 9:54. [PMID: 37903760 PMCID: PMC10616087 DOI: 10.1038/s41540-023-00314-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
In systems biology, mathematical models and simulations play a crucial role in understanding complex biological systems. Different modelling frameworks are employed depending on the nature and scales of the system under study. For instance, signalling and regulatory networks can be simulated using Boolean modelling, whereas multicellular systems can be studied using agent-based modelling. Herein, we present PhysiBoSS 2.0, a hybrid agent-based modelling framework that allows simulating signalling and regulatory networks within individual cell agents. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS 1.0 and was conceived as an add-on that expands the PhysiCell functionalities by enabling the simulation of intracellular cell signalling using MaBoSS while keeping a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 also expands the set of functionalities offered to the users, including custom models and cell specifications, mechanistic submodels of substrate internalisation and detailed control over simulation parameters. Together with PhysiBoSS 2.0, we introduce PCTK, a Python package developed for handling and processing simulation outputs, and generating summary plots and 3D renders. PhysiBoSS 2.0 allows studying the interplay between the microenvironment, the signalling pathways that control cellular processes and population dynamics, suitable for modelling cancer. We show different approaches for integrating Boolean networks into multi-scale simulations using strategies to study the drug effects and synergies in models of cancer cell lines and validate them using experimental data. PhysiBoSS 2.0 is open-source and publicly available on GitHub with several repositories of accompanying interoperable tools.
Collapse
Affiliation(s)
- Miguel Ponce-de-Leon
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Arnau Montagud
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Vincent Noël
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Annika Meert
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Gerard Pradas
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Emmanuel Barillot
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Laurence Calzone
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Alfonso Valencia
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain.
- ICREA, 23 Passeig Lluís Companys, 08010, Barcelona, Spain.
| |
Collapse
|
5
|
Aghakhani S, Silva-Saffar SE, Soliman S, Niarakis A. Hybrid computational modeling highlights reverse warburg effect in breast cancer-associated fibroblasts. Comput Struct Biotechnol J 2023; 21:4196-4206. [PMID: 37705596 PMCID: PMC10495551 DOI: 10.1016/j.csbj.2023.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are amongst the key players of the tumor microenvironment (TME) and are involved in cancer initiation, progression, and resistance to therapy. They exhibit aggressive phenotypes affecting extracellular matrix remodeling, angiogenesis, immune system modulation, tumor growth, and proliferation. CAFs phenotypic changes appear to be associated with metabolic alterations, notably a reverse Warburg effect that may drive fibroblasts transformation. However, its precise molecular mechanisms and regulatory drivers are still under investigation. Deciphering the reverse Warburg effect in breast CAFs may contribute to a better understanding of the interplay between TME and tumor cells, leading to new treatment strategies. In this regard, dynamic modeling approaches able to span multiple biological layers are essential to capture the emergent properties of various biological entities when complex and intertwined pathways are involved. This work presents the first hybrid large-scale computational model for breast CAFs covering major cellular signaling, gene regulation, and metabolic processes. It was generated by combining a cell- and disease-specific asynchronous Boolean model with a generic core metabolic network leveraging both data-driven and manual curation approaches. This model reproduces the experimentally observed reverse Warburg effect in breast CAFs and further identifies Hypoxia-Inducible Factor 1 (HIF-1) as its key molecular driver. Targeting HIF-1 as part of a TME-centered therapeutic strategy may prove beneficial in the treatment of breast cancer by addressing the reverse Warburg effect. Such findings in CAFs, in light of our previously published results in rheumatoid arthritis synovial fibroblasts, point to a common HIF-1-driven metabolic reprogramming of fibroblasts in breast cancer and rheumatoid arthritis.
Collapse
Affiliation(s)
- Sahar Aghakhani
- GenHotel – European Research Laboratory for Rheumatoid Arthritis, Univ. Evry, Univ. Paris-Saclay, Evry, France
- Lifeware Group, Inria Saclay Île-de-France, Palaiseau, France
| | - Sacha E Silva-Saffar
- GenHotel – European Research Laboratory for Rheumatoid Arthritis, Univ. Evry, Univ. Paris-Saclay, Evry, France
| | - Sylvain Soliman
- Lifeware Group, Inria Saclay Île-de-France, Palaiseau, France
| | - Anna Niarakis
- GenHotel – European Research Laboratory for Rheumatoid Arthritis, Univ. Evry, Univ. Paris-Saclay, Evry, France
- Lifeware Group, Inria Saclay Île-de-France, Palaiseau, France
| |
Collapse
|
6
|
Joo JI, Park H, Cho K. Normalizing Input-Output Relationships of Cancer Networks for Reversion Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207322. [PMID: 37269056 PMCID: PMC10460890 DOI: 10.1002/advs.202207322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Indexed: 06/04/2023]
Abstract
Accumulated genetic alterations in cancer cells distort cellular stimulus-response (or input-output) relationships, resulting in uncontrolled proliferation. However, the complex molecular interaction network within a cell implicates a possibility of restoring such distorted input-output relationships by rewiring the signal flow through controlling hidden molecular switches. Here, a system framework of analyzing cellular input-output relationships in consideration of various genetic alterations and identifying possible molecular switches that can normalize the distorted relationships based on Boolean network modeling and dynamics analysis is presented. Such reversion is demonstrated by the analysis of a number of cancer molecular networks together with a focused case study on bladder cancer with in vitro experiments and patient survival data analysis. The origin of reversibility from an evolutionary point of view based on the redundancy and robustness intrinsically embedded in complex molecular regulatory networks is further discussed.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Present address:
biorevert IncDaejeon34051Republic of Korea
| | - Hwa‐Jeong Park
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Present address:
Promega Corporationan affiliate of PromegaSouth Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
7
|
Ruscone M, Montagud A, Chavrier P, Destaing O, Bonnet I, Zinovyev A, Barillot E, Noël V, Calzone L. Multiscale model of the different modes of cancer cell invasion. Bioinformatics 2023; 39:btad374. [PMID: 37289551 PMCID: PMC10293590 DOI: 10.1093/bioinformatics/btad374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
MOTIVATION Mathematical models of biological processes altered in cancer are built using the knowledge of complex networks of signaling pathways, detailing the molecular regulations inside different cell types, such as tumor cells, immune and other stromal cells. If these models mainly focus on intracellular information, they often omit a description of the spatial organization among cells and their interactions, and with the tumoral microenvironment. RESULTS We present here a model of tumor cell invasion simulated with PhysiBoSS, a multiscale framework, which combines agent-based modeling and continuous time Markov processes applied on Boolean network models. With this model, we aim to study the different modes of cell migration and to predict means to block it by considering not only spatial information obtained from the agent-based simulation but also intracellular regulation obtained from the Boolean model. Our multiscale model integrates the impact of gene mutations with the perturbation of the environmental conditions and allows the visualization of the results with 2D and 3D representations. The model successfully reproduces single and collective migration processes and is validated on published experiments on cell invasion. In silico experiments are suggested to search for possible targets that can block the more invasive tumoral phenotypes. AVAILABILITY AND IMPLEMENTATION https://github.com/sysbio-curie/Invasion_model_PhysiBoSS.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | | | - Philippe Chavrier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Andrei Zinovyev
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Emmanuel Barillot
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Laurence Calzone
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| |
Collapse
|
8
|
Argyris GA, Lluch Lafuente A, Tribastone M, Tschaikowski M, Vandin A. Reducing Boolean networks with backward equivalence. BMC Bioinformatics 2023; 24:212. [PMID: 37221494 DOI: 10.1186/s12859-023-05326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Boolean Networks (BNs) are a popular dynamical model in biology where the state of each component is represented by a variable taking binary values that express, for instance, activation/deactivation or high/low concentrations. Unfortunately, these models suffer from the state space explosion, i.e., there are exponentially many states in the number of BN variables, which hampers their analysis. RESULTS We present Boolean Backward Equivalence (BBE), a novel reduction technique for BNs which collapses system variables that, if initialized with same value, maintain matching values in all states. A large-scale validation on 86 models from two online model repositories reveals that BBE is effective, since it is able to reduce more than 90% of the models. Furthermore, on such models we also show that BBE brings notable analysis speed-ups, both in terms of state space generation and steady-state analysis. In several cases, BBE allowed the analysis of models that were originally intractable due to the complexity. On two selected case studies, we show how one can tune the reduction power of BBE using model-specific information to preserve all dynamics of interest, and selectively exclude behavior that does not have biological relevance. CONCLUSIONS BBE complements existing reduction methods, preserving properties that other reduction methods fail to reproduce, and vice versa. BBE drops all and only the dynamics, including attractors, originating from states where BBE-equivalent variables have been initialized with different activation values The remaining part of the dynamics is preserved exactly, including the length of the preserved attractors, and their reachability from given initial conditions, without adding any spurious behaviours. Given that BBE is a model-to-model reduction technique, it can be combined with further reduction methods for BNs.
Collapse
Affiliation(s)
- Georgios A Argyris
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Alberto Lluch Lafuente
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | | | - Max Tschaikowski
- Department of Computer Science, University of Aalborg, Aalborg, Denmark
| | - Andrea Vandin
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
- Department of Excellence EMbeDS and Institute of Economics, Sant'Anna School for Advanced Studies, Pisa, Italy.
| |
Collapse
|
9
|
Manicka S, Johnson K, Levin M, Murrugarra D. The nonlinearity of regulation in biological networks. NPJ Syst Biol Appl 2023; 9:10. [PMID: 37015937 PMCID: PMC10073134 DOI: 10.1038/s41540-023-00273-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The extent to which the components of a biological system are (non)linearly regulated determines how amenable they are to therapy and control. To better understand this property termed "regulatory nonlinearity", we analyzed a suite of 137 published Boolean network models, containing a variety of complex nonlinear regulatory interactions, using a probabilistic generalization of Boolean logic that George Boole himself had proposed. Leveraging the continuous-nature of this formulation, we used Taylor decomposition to approximate the models with various levels of regulatory nonlinearity. A comparison of the resulting series of approximations of the biological models with appropriate random ensembles revealed that biological regulation tends to be less nonlinear than expected, meaning that higher-order interactions among the regulatory inputs tend to be less pronounced. A further categorical analysis of the biological models revealed that the regulatory nonlinearity of cancer and disease networks could not only be sometimes higher than expected but also be relatively more variable. We show that this variation is caused by differences in the apportioning of information among the various orders of regulatory nonlinearity. Our results suggest that there may have been a weak but discernible selection pressure for biological systems to evolve linear regulation on average, but for certain systems such as cancer, on the other hand, to simultaneously evolve more nonlinear rules.
Collapse
Affiliation(s)
- Santosh Manicka
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Kathleen Johnson
- Department of Mathematics, University of Kentucky, Lexington, KY, 40506, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - David Murrugarra
- Department of Mathematics, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
10
|
Su C, Pang J. Target Control of Asynchronous Boolean Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:707-719. [PMID: 34882560 DOI: 10.1109/tcbb.2021.3133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We study the target control of asynchronous Boolean networks, to identify interventions that can drive the dynamics of a given Boolean network from any initial state to the desired target attractor. Based on the application time, the control can be realised with three types of perturbations, including instantaneous, temporary and permanent perturbations. We develop efficient methods to compute the target control for a given target attractor with these three types of perturbations. We compare our methods with the stable motif-based control method on a variety of real-life biological networks to evaluate their performance. We show that our methods scale well for large Boolean networks and they are able to identify a rich set of solutions with a small number of perturbations.
Collapse
|
11
|
Temporary and permanent control of partially specified Boolean networks. Biosystems 2023; 223:104795. [PMID: 36377120 DOI: 10.1016/j.biosystems.2022.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
Boolean networks (BNs) are a well-accepted modelling formalism in computational systems biology. Nevertheless, modellers often cannot identify only a single BN that matches the biological reality. The typical reasons for this is insufficient knowledge or a lack of experimental data. Formally, this uncertainty can be expressed using partially specified Boolean networks (PSBNs), which encode the wide range of network candidates into a single structure. In this paper, we target the control of PSBNs. The goal of BN control is to find perturbations which guarantee stabilisation of the system in the desired state. Specifically, we consider variable perturbations (gene knock-out and over-expression) with three types of application time-window: one-step, temporary, and permanent. While the control of fully specified BNs is a thoroughly explored topic, control of PSBNs introduces additional challenges that we address in this paper. In particular, the unspecified components of the model cause a significant amount of additional state space explosion. To address this issue, we propose a fully symbolic methodology that can represent the numerous system variants in a compact form. In fully specified models, the efficiency of a perturbation is characterised by the count of perturbed variables (the perturbation size). However, in the case of a PSBN, a perturbation might work only for a subset of concrete BN models. To that end, we introduce and quantify perturbation robustness. This metric characterises how efficient the given perturbation is with respect to the model uncertainty. Finally, we evaluate the novel control methods using non-trivial real-world PSBN models. We inspect the method's scalability and efficiency with respect to the size of the state space and the number of unspecified components. We also compare the robustness metrics for all three perturbation types. Our experiments support the hypothesis that one-step perturbations are significantly less robust than temporary and permanent ones.
Collapse
|
12
|
Calzone L, Noël V, Barillot E, Kroemer G, Stoll G. Modeling signaling pathways in biology with MaBoSS: From one single cell to a dynamic population of heterogeneous interacting cells. Comput Struct Biotechnol J 2022; 20:5661-5671. [PMID: 36284705 PMCID: PMC9582792 DOI: 10.1016/j.csbj.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
As a result of the development of experimental technologies and the accumulation of data, biological and molecular processes can be described as complex networks of signaling pathways. These networks are often directed and signed, where nodes represent entities (genes/proteins) and arrows interactions. They are translated into mathematical models by adding a dynamic layer onto them. Such mathematical models help to understand and interpret non-intuitive experimental observations and to anticipate the response to external interventions such as drug effects on phenotypes. Several frameworks for modeling signaling pathways exist. The choice of the appropriate framework is often driven by the experimental context. In this review, we present MaBoSS, a tool based on Boolean modeling using a continuous time approach, which predicts time-dependent probabilities of entities in different biological contexts. MaBoSS was initially built to model the intracellular signaling in non-interacting homogeneous cell populations. MaBoSS was then adapted to model heterogeneous cell populations (EnsembleMaBoSS) by considering families of models rather than a unique model. To account for more complex questions, MaBoSS was extended to simulate dynamical interacting populations (UPMaBoSS), with a precise spatial distribution (PhysiBoSS). To illustrate all these levels of description, we show how each of these tools can be used with a running example of a simple model of cell fate decisions. Finally, we present practical applications to cancer biology and studies of the immune response.
Collapse
Affiliation(s)
- Laurence Calzone
- Institut Curie, PSL Research University, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Vincent Noël
- Institut Curie, PSL Research University, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisé par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Europén Georges Pompidou, AP-HP, Paris, France
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Equipe labellisé par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
13
|
Predictive Modelling in Clinical Bioinformatics: Key Concepts for Startups. BIOTECH 2022; 11:biotech11030035. [PMID: 35997343 PMCID: PMC9397027 DOI: 10.3390/biotech11030035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical bioinformatics is a newly emerging field that applies bioinformatics techniques for facilitating the identification of diseases, discovery of biomarkers, and therapy decision. Mathematical modelling is part of bioinformatics analysis pipelines and a fundamental step to extract clinical insights from genomes, transcriptomes and proteomes of patients. Often, the chosen modelling techniques relies on either statistical, machine learning or deterministic approaches. Research that combines bioinformatics with modelling techniques have been generating innovative biomedical technology, algorithms and models with biotech applications, attracting private investment to develop new business; however, startups that emerge from these technologies have been facing difficulties to implement clinical bioinformatics pipelines, protect their technology and generate profit. In this commentary, we discuss the main concepts that startups should know for enabling a successful application of predictive modelling in clinical bioinformatics. Here we will focus on key modelling concepts, provide some successful examples and briefly discuss the modelling framework choice. We also highlight some aspects to be taken into account for a successful implementation of cost-effective bioinformatics from a business perspective.
Collapse
|
14
|
Bhavani GS, Palanisamy A. SNAIL driven by a feed forward loop motif promotes TGF βinduced epithelial to mesenchymal transition. Biomed Phys Eng Express 2022; 8. [PMID: 35700712 DOI: 10.1088/2057-1976/ac7896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022]
Abstract
Epithelial to Mesenchymal Transition (EMT) plays an important role in tissue regeneration, embryonic development, and cancer metastasis. Several signaling pathways are known to regulate EMT, among which the modulation of TGFβ(Transforming Growth Factor-β) induced EMT is crucial in several cancer types. Several mathematical models were built to explore the role of core regulatory circuit of ZEB/miR-200, SNAIL/miR-34 double negative feedback loops in modulating TGFβinduced EMT. Different emergent behavior including tristability, irreversible switching, existence of hybrid EMT states were inferred though these models. Some studies have explored the role of TGFβreceptor activation, SMADs nucleocytoplasmic shuttling and complex formation. Recent experiments have revealed that MDM2 along with SMAD complex regulates SNAIL expression driven EMT. Encouraged by this, in the present study we developed a mathematical model for p53/MDM2 dependent TGFβinduced EMT regulation. Inclusion of p53 brings in an additional mechanistic perspective in exploring the EM transition. The network formulated comprises a C1FFL moderating SNAIL expression involving MDM2 and SMAD complex, which functions as a noise filter and persistent detector. The C1FFL was also observed to operate as a coincidence detector driving the SNAIL dependent downstream signaling into phenotypic switching decision. Systems modelling and analysis of the devised network, displayed interesting dynamic behavior, systems response to various inputs stimulus, providing a better understanding of p53/MDM2 dependent TGF-βinduced Epithelial to Mesenchymal Transition.
Collapse
|
15
|
Werle SD, Ikonomi N, Schwab JD, Kraus JM, Weidner FM, Rudolph KL, Pfister AS, Schuler R, Kühl M, Kestler HA. Identification of dynamic driver sets controlling phenotypical landscapes. Comput Struct Biotechnol J 2022; 20:1603-1617. [PMID: 35465155 PMCID: PMC9010550 DOI: 10.1016/j.csbj.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022] Open
Abstract
Controlling phenotypical landscapes is of vital interest to modern biology. This task becomes highly demanding because cellular decisions involve complex networks engaging in crosstalk interactions. Previous work on control theory indicates that small sets of compounds can control single phenotypes. However, a dynamic approach is missing to determine the drivers of the whole network dynamics. By analyzing 35 biologically motivated Boolean networks, we developed a method to identify small sets of compounds sufficient to decide on the entire phenotypical landscape. These compounds do not strictly prefer highly related compounds and show a smaller impact on the stability of the attractor landscape. The dynamic driver sets include many intervention targets and cellular reprogramming drivers in human networks. Finally, by using a new comprehensive model of colorectal cancer, we provide a complete workflow on how to implement our approach to shift from in silico to in vitro guided experiments.
Collapse
Affiliation(s)
- Silke D Werle
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| | - K Lenhard Rudolph
- Leibniz Institute of Aging - Fritz Lipman Institute, 07745 Jena, Thuringia, Germany
| | - Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| | - Rainer Schuler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Baden-Wuerttemberg, Germany
| |
Collapse
|
16
|
Montagud A, Béal J, Tobalina L, Traynard P, Subramanian V, Szalai B, Alföldi R, Puskás L, Valencia A, Barillot E, Saez-Rodriguez J, Calzone L. Patient-specific Boolean models of signalling networks guide personalised treatments. eLife 2022; 11:e72626. [PMID: 35164900 PMCID: PMC9018074 DOI: 10.7554/elife.72626] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. A total of 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.
Collapse
Affiliation(s)
- Arnau Montagud
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3BarcelonaSpain
| | - Jonas Béal
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Luis Tobalina
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
| | - Pauline Traynard
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Vigneshwari Subramanian
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
| | - Bence Szalai
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
- Semmelweis University, Faculty of Medicine, Department of PhysiologyBudapestHungary
| | | | | | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3BarcelonaSpain
- ICREA, Pg. Lluís Companys 23BarcelonaSpain
| | - Emmanuel Barillot
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute of Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
| | - Laurence Calzone
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| |
Collapse
|
17
|
La Ferlita A, Alaimo S, Ferro A, Pulvirenti A. Pathway Analysis for Cancer Research and Precision Oncology Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:143-161. [DOI: 10.1007/978-3-030-91836-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Gondal MN, Chaudhary SU. Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Front Oncol 2021; 11:712505. [PMID: 34900668 PMCID: PMC8652070 DOI: 10.3389/fonc.2021.712505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Rapid advancements in high-throughput omics technologies and experimental protocols have led to the generation of vast amounts of scale-specific biomolecular data on cancer that now populates several online databases and resources. Cancer systems biology models built using this data have the potential to provide specific insights into complex multifactorial aberrations underpinning tumor initiation, development, and metastasis. Furthermore, the annotation of these single- and multi-scale models with patient data can additionally assist in designing personalized therapeutic interventions as well as aid in clinical decision-making. Here, we have systematically reviewed the emergence and evolution of (i) repositories with scale-specific and multi-scale biomolecular cancer data, (ii) systems biology models developed using this data, (iii) associated simulation software for the development of personalized cancer therapeutics, and (iv) translational attempts to pipeline multi-scale panomics data for data-driven in silico clinical oncology. The review concludes that the absence of a generic, zero-code, panomics-based multi-scale modeling pipeline and associated software framework, impedes the development and seamless deployment of personalized in silico multi-scale models in clinical settings.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
19
|
Noël V, Ruscone M, Stoll G, Viara E, Zinovyev A, Barillot E, Calzone L. WebMaBoSS: A Web Interface for Simulating Boolean Models Stochastically. Front Mol Biosci 2021; 8:754444. [PMID: 34888352 PMCID: PMC8651056 DOI: 10.3389/fmolb.2021.754444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
WebMaBoSS is an easy-to-use web interface for conversion, storage, simulation and analysis of Boolean models that allows to get insight from these models without any specific knowledge of modeling or coding. It relies on an existing software, MaBoSS, which simulates Boolean models using a stochastic approach: it applies continuous time Markov processes over the Boolean network. It was initially built to fill the gap between Boolean and continuous formalisms, i.e., providing semi-quantitative results using a simple representation with a minimum number of parameters to fit. The goal of WebMaBoSS is to simplify the use and the analysis of Boolean models coping with two main issues: 1) the simulation of Boolean models of intracellular processes with MaBoSS, or any modeling tool, may appear as non-intuitive for non-experts; 2) the simulation of already-published models available in current model databases (e.g., Cell Collective, BioModels) may require some extra steps to ensure compatibility with modeling tools such as MaBoSS. With WebMaBoSS, new models can be created or imported directly from existing databases. They can then be simulated, modified and stored in personal folders. Model simulations are performed easily, results visualized interactively, and figures can be exported in a preferred format. Extensive model analyses such as mutant screening or parameter sensitivity can also be performed. For all these tasks, results are stored and can be subsequently filtered to look for specific outputs. This web interface can be accessed at the address: https://maboss.curie.fr/webmaboss/ and deployed locally using docker. This application is open-source under LGPL license, and available at https://github.com/sysbio-curie/WebMaBoSS.
Collapse
Affiliation(s)
- Vincent Noël
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Marco Ruscone
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Gautier Stoll
- Equipe 11 labellisée Par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Universite de Paris, Sorbonne Universite, Paris, France
| | | | - Andrei Zinovyev
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| |
Collapse
|
20
|
Lang J, Nie Q, Li C. Landscape and kinetic path quantify critical transitions in epithelial-mesenchymal transition. Biophys J 2021; 120:4484-4500. [PMID: 34480928 PMCID: PMC8553640 DOI: 10.1016/j.bpj.2021.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a basic developmental process that might promote cancer metastasis, has been studied from various perspectives. Recently, the early warning theory has been used to anticipate critical transitions in EMT from mathematical modeling. However, the underlying mechanisms of EMT involving complex molecular networks remain to be clarified. Especially, how to quantify the global stability and stochastic transition dynamics of EMT and what the underlying mechanism for early warning theory in EMT is remain to be fully clarified. To address these issues, we constructed a comprehensive gene regulatory network model for EMT and quantified the corresponding potential landscape. The landscape for EMT displays multiple stable attractors, which correspond to E, M, and some other intermediate states. Based on the path-integral approach, we identified the most probable transition paths of EMT, which are supported by experimental data. Correspondingly, the results of transition actions demonstrated that intermediate states can accelerate EMT, consistent with recent studies. By integrating the landscape and path with early warning concept, we identified the potential barrier height from the landscape as a global and more accurate measure for early warning signals to predict critical transitions in EMT. The landscape results also provide an intuitive and quantitative explanation for the early warning theory. Overall, the landscape and path results advance our mechanistic understanding of dynamical transitions and roles of intermediate states in EMT, and the potential barrier height provides a new, to our knowledge, measure for critical transitions and quantitative explanations for the early warning theory.
Collapse
Affiliation(s)
- Jintong Lang
- Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai, China; Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, California
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai, China; Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China; School of Mathematical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Rozum JC, Gómez Tejeda Zañudo J, Gan X, Deritei D, Albert R. Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks. SCIENCE ADVANCES 2021; 7:eabf8124. [PMID: 34272246 PMCID: PMC8284893 DOI: 10.1126/sciadv.abf8124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/03/2021] [Indexed: 05/14/2023]
Abstract
We present new applications of parity inversion and time reversal to the emergence of complex behavior from simple dynamical rules in stochastic discrete models. Our parity-based encoding of causal relationships and time-reversal construction efficiently reveal discrete analogs of stable and unstable manifolds. We demonstrate their predictive power by studying decision-making in systems biology and statistical physics models. These applications underpin a novel attractor identification algorithm implemented for Boolean networks under stochastic dynamics. Its speed enables resolving a long-standing open question of how attractor count in critical random Boolean networks scales with network size and whether the scaling matches biological observations. Via 80-fold improvement in probed network size (N = 16,384), we find the unexpectedly low scaling exponent of 0.12 ± 0.05, approximately one-tenth the analytical upper bound. We demonstrate a general principle: A system's relationship to its time reversal and state-space inversion constrains its repertoire of emergent behaviors.
Collapse
Affiliation(s)
- Jordan C Rozum
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jorge Gómez Tejeda Zañudo
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xiao Gan
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dávid Deritei
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Réka Albert
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
22
|
Alaimo S, Rapicavoli RV, Marceca GP, La Ferlita A, Serebrennikova OB, Tsichlis PN, Mishra B, Pulvirenti A, Ferro A. PHENSIM: Phenotype Simulator. PLoS Comput Biol 2021; 17:e1009069. [PMID: 34166365 PMCID: PMC8224893 DOI: 10.1371/journal.pcbi.1009069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the unprecedented growth in our understanding of cell biology, it still remains challenging to connect it to experimental data obtained with cells and tissues’ physiopathological status under precise circumstances. This knowledge gap often results in difficulties in designing validation experiments, which are usually labor-intensive, expensive to perform, and hard to interpret. Here we propose PHENSIM, a computational tool using a systems biology approach to simulate how cell phenotypes are affected by the activation/inhibition of one or multiple biomolecules, and it does so by exploiting signaling pathways. Our tool’s applications include predicting the outcome of drug administration, knockdown experiments, gene transduction, and exposure to exosomal cargo. Importantly, PHENSIM enables the user to make inferences on well-defined cell lines and includes pathway maps from three different model organisms. To assess our approach’s reliability, we built a benchmark from transcriptomics data gathered from NCBI GEO and performed four case studies on known biological experiments. Our results show high prediction accuracy, thus highlighting the capabilities of this methodology. PHENSIM standalone Java application is available at https://github.com/alaimos/phensim, along with all data and source codes for benchmarking. A web-based user interface is accessible at https://phensim.tech/. Despite the unprecedented growth in our understanding of cell biology, it still remains challenging to connect it to experimental data obtained with cells and tissues’ physiopathological status under precise circumstances. This knowledge gap often results in difficulties in designing validation experiments, which are usually labor-intensive, expensive to perform, and hard to interpret. In this context, ’in silico’ simulations can be extensively applied in massive scales, testing thousands of hypotheses under various conditions, which is usually experimentally infeasible. At present, many simulation models have become available. However, complex biological networks might pose challenges to their performance. We propose PHENSIM, a computational tool using a systems biology approach to simulate how cell phenotypes are affected by the activation/inhibition of one or multiple biomolecules, and it does so by exploiting signaling pathways. We implemented our tool as a freely accessible web application, hoping to allow ’in silico’ simulations to play a more central role in the modeling and understanding of biological phenomena.
Collapse
Affiliation(s)
- Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- * E-mail: (SA); (AF)
| | - Rosaria Valentina Rapicavoli
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Department of Physics and Astronomy, University of Catania, Catania, Italy
| | - Gioacchino P. Marceca
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro La Ferlita
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Department of Physics and Astronomy, University of Catania, Catania, Italy
| | - Oksana B. Serebrennikova
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics and the James Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Bud Mishra
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- * E-mail: (SA); (AF)
| |
Collapse
|
23
|
Katebi A, Ramirez D, Lu M. Computational systems-biology approaches for modeling gene networks driving epithelial-mesenchymal transitions. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021; 1:e1021. [PMID: 34164628 PMCID: PMC8219219 DOI: 10.1002/cso2.1021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process through which epithelial cells undergo phenotypic transitions to mesenchymal cells by losing cell-cell adhesion and gaining migratory properties that cells use in embryogenesis, wound healing, and cancer metastasis. An important research topic is to identify the underlying gene regulatory networks (GRNs) governing the decision making of EMT and develop predictive models based on the GRNs. The advent of recent genomic technology, such as single-cell RNA sequencing, has opened new opportunities to improve our understanding about the dynamical controls of EMT. In this article, we review three major types of computational and mathematical approaches and methods for inferring and modeling GRNs driving EMT. We emphasize (1) the bottom-up approaches, where GRNs are constructed through literature search; (2) the top-down approaches, where GRNs are derived from genome-wide sequencing data; (3) the combined top-down and bottom-up approaches, where EMT GRNs are constructed and simulated by integrating bioinformatics and mathematical modeling. We discuss the methodologies and applications of each approach and the available resources for these studies.
Collapse
Affiliation(s)
- Ataur Katebi
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
| | - Daniel Ramirez
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Weidner FM, Schwab JD, Werle SD, Ikonomi N, Lausser L, Kestler HA. Capturing dynamic relevance in Boolean networks using graph theoretical measures. Bioinformatics 2021; 37:3530-3537. [PMID: 33983406 PMCID: PMC8545349 DOI: 10.1093/bioinformatics/btab277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 11/14/2022] Open
Abstract
Motivation Interaction graphs are able to describe regulatory dependencies between compounds without capturing dynamics. In contrast, mathematical models that are based on interaction graphs allow to investigate the dynamics of biological systems. However, since dynamic complexity of these models grows exponentially with their size, exhaustive analyses of the dynamics and consequently screening all possible interventions eventually becomes infeasible. Thus, we designed an approach to identify dynamically relevant compounds based on the static network topology. Results Here, we present a method only based on static properties to identify dynamically influencing nodes. Coupling vertex betweenness and determinative power, we could capture relevant nodes for changing dynamics with an accuracy of 75% in a set of 35 published logical models. Further analyses of the selected compounds’ connectivity unravelled a new class of not highly connected nodes with high impact on the networks’ dynamics, which we call gatekeepers. We validated our method’s working concept on logical models, which can be readily scaled up to complex interaction networks, where dynamic analyses are not even feasible. Availability and implementation Code is freely available at https://github.com/sysbio-bioinf/BNStatic. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, Germany.,International Graduate School of Molecular Medicine, Ulm University, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Germany
| | - Silke D Werle
- Institute of Medical Systems Biology, Ulm University, Germany.,International Graduate School of Molecular Medicine, Ulm University, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Germany.,International Graduate School of Molecular Medicine, Ulm University, Germany
| | - Ludwig Lausser
- Institute of Medical Systems Biology, Ulm University, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Germany
| |
Collapse
|
25
|
Selvaggio G, Chaouiya C, Janody F. In Silico Logical Modelling to Uncover Cooperative Interactions in Cancer. Int J Mol Sci 2021; 22:ijms22094897. [PMID: 34063110 PMCID: PMC8125147 DOI: 10.3390/ijms22094897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
The multistep development of cancer involves the cooperation between multiple molecular lesions, as well as complex interactions between cancer cells and the surrounding tumour microenvironment. The search for these synergistic interactions using experimental models made tremendous contributions to our understanding of oncogenesis. Yet, these approaches remain labour-intensive and challenging. To tackle such a hurdle, an integrative, multidisciplinary effort is required. In this article, we highlight the use of logical computational models, combined with experimental validations, as an effective approach to identify cooperative mechanisms and therapeutic strategies in the context of cancer biology. In silico models overcome limitations of reductionist approaches by capturing tumour complexity and by generating powerful testable hypotheses. We review representative examples of logical models reported in the literature and their validation. We then provide further analyses of our logical model of Epithelium to Mesenchymal Transition (EMT), searching for additional cooperative interactions involving inputs from the tumour microenvironment and gain of function mutations in NOTCH.
Collapse
Affiliation(s)
- Gianluca Selvaggio
- Fondazione the Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura 1, 38068 Rovereto, Italy;
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Claudine Chaouiya
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
- CNRS, Centrale Marseille, I2M, Aix Marseille University, 13397 Marseille, France
- Correspondence: (C.C.); (F.J.)
| | - Florence Janody
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Correspondence: (C.C.); (F.J.)
| |
Collapse
|
26
|
Sherekar S, Viswanathan GA. Boolean dynamic modeling of cancer signaling networks: Prognosis, progression, and therapeutics. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Shubhank Sherekar
- Department of Chemical Engineering Indian Institute of Technology Bombay, Powai Mumbai India
| | - Ganesh A. Viswanathan
- Department of Chemical Engineering Indian Institute of Technology Bombay, Powai Mumbai India
| |
Collapse
|
27
|
Aghamiri SS, Delaplace F. TaBooN Boolean Network Synthesis Based on Tabu Search. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; PP:2499-2511. [PMID: 33661736 DOI: 10.1109/tcbb.2021.3063817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent developments in Omics-technologies revolutionized the investigation of biology by producing molecular data in multiple dimensions and scale. This breakthrough in biology raises the crucial issue of their interpretation based on modelling. In this undertaking, network provides a suitable framework for modelling the interactions between molecules. Basically a Biological network is composed of nodes referring to the components such as genes or proteins, and the edges/arcs formalizing interactions between them. The evolution of the interactions is then modelled by the definition of a dynamical system. Among the different categories of network, the Boolean network offers a reliable qualitative framework for the modelling. Automatically synthesizing a Boolean network from experimental data therefore remains a necessary but challenging issue. In this study, we present Taboon, an original work-flow for synthesizing Boolean Networks from biological data. The methodology uses the data in the form of boolean profiles for inferring all the potential local formula inference. They combine to form the model space from which the most truthful model with regards to biological knowledge and experiments must be found. In the TaBooN work-flow the selection of the fittest model is achieved by a Tabu-search algorithm. TaBooN is an automated method for Boolean Network inference from.
Collapse
|
28
|
Context Matters: NOTCH Signatures and Pathway in Cancer Progression and Metastasis. Cells 2021; 10:cells10010094. [PMID: 33430387 PMCID: PMC7827494 DOI: 10.3390/cells10010094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway is a critical player in embryogenesis but also plays various roles in tumorigenesis, with both tumor suppressor and oncogenic activities. Mutations, deletions, amplifications, or over-expression of Notch receptors, ligands, and a growing list of downstream Notch-activated genes have by now been described for most human cancer types. Yet, it often remains unclear what may be the functional impact of these changes for tumor biology, initiation, and progression, for cancer therapy, and for personalized medicine. Emerging data indicate that Notch signaling can also contribute to increased aggressive properties such as invasion, tumor heterogeneity, angiogenesis, or tumor cell dormancy within solid cancer tissues; especially in epithelial cancers, which are in the center of this review. Notch further supports the “stemness” of cancer cells and helps define the stem cell niche for their long-term survival, by integrating the interaction between cancer cells and the cells of the tumor microenvironment (TME). The complexity of Notch crosstalk with other signaling pathways and its roles in cell fate and trans-differentiation processes such as epithelial-to-mesenchymal transition (EMT) point to this pathway as a decisive player that may tip the balance between tumor suppression and promotion, differentiation and invasion. Here we not only review the literature, but also explore genomic databases with a specific focus on Notch signatures, and how they relate to different stages in tumor development. Altered Notch signaling hereby plays a key role for tumor cell survival and coping with a broad spectrum of vital issues, contributing to failed therapies, poor patient outcome, and loss of lives.
Collapse
|
29
|
Béal J, Pantolini L, Noël V, Barillot E, Calzone L. Personalized logical models to investigate cancer response to BRAF treatments in melanomas and colorectal cancers. PLoS Comput Biol 2021; 17:e1007900. [PMID: 33507915 PMCID: PMC7872233 DOI: 10.1371/journal.pcbi.1007900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
The study of response to cancer treatments has benefited greatly from the contribution of different omics data but their interpretation is sometimes difficult. Some mathematical models based on prior biological knowledge of signaling pathways facilitate this interpretation but often require fitting of their parameters using perturbation data. We propose a more qualitative mechanistic approach, based on logical formalism and on the sole mapping and interpretation of omics data, and able to recover differences in sensitivity to gene inhibition without model training. This approach is showcased by the study of BRAF inhibition in patients with melanomas and colorectal cancers who experience significant differences in sensitivity despite similar omics profiles. We first gather information from literature and build a logical model summarizing the regulatory network of the mitogen-activated protein kinase (MAPK) pathway surrounding BRAF, with factors involved in the BRAF inhibition resistance mechanisms. The relevance of this model is verified by automatically assessing that it qualitatively reproduces response or resistance behaviors identified in the literature. Data from over 100 melanoma and colorectal cancer cell lines are then used to validate the model's ability to explain differences in sensitivity. This generic model is transformed into personalized cell line-specific logical models by integrating the omics information of the cell lines as constraints of the model. The use of mutations alone allows personalized models to correlate significantly with experimental sensitivities to BRAF inhibition, both from drug and CRISPR targeting, and even better with the joint use of mutations and RNA, supporting multi-omics mechanistic models. A comparison of these untrained models with learning approaches highlights similarities in interpretation and complementarity depending on the size of the datasets. This parsimonious pipeline, which can easily be extended to other biological questions, makes it possible to explore the mechanistic causes of the response to treatment, on an individualized basis.
Collapse
Affiliation(s)
- Jonas Béal
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Lorenzo Pantolini
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Vincent Noël
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| |
Collapse
|
30
|
Modelling of Immune Checkpoint Network Explains Synergistic Effects of Combined Immune Checkpoint Inhibitor Therapy and the Impact of Cytokines in Patient Response. Cancers (Basel) 2020; 12:cancers12123600. [PMID: 33276543 PMCID: PMC7761568 DOI: 10.3390/cancers12123600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The future of cancer immunotherapy relies on a combination of individually targeted therapies. However, a lot of experiments are needed to define the most effective combinations of drugs. A computational and modelling approach could help reduce the number of experiments and suggest optimal treatments to test. This article presents a logical model of T cell activation influenced by immune checkpoints, and explores the effect of these checkpoints, suggests mechanisms that would explain why some treatments might be better suited than others. The model includes not only programmed cell death protein 1 (PD1) and cytotoxic T-lymphocyte-associated protein 4 (CTL4) downstream pathways but also those of other immune checkpoints such as T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT), lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), cluster of differentiation 226 (CD226), inducible T-cell costimulator (ICOS), and tumour necrosis factor receptors (TNFRs). Abstract After the success of the new generation of immune therapies, immune checkpoint receptors have become one important center of attention of molecular oncologists. The initial success and hopes of anti-programmed cell death protein 1 (anti-PD1) and anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA4) therapies have shown some limitations since a majority of patients have continued to show resistance. Other immune checkpoints have raised some interest and are under investigation, such as T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT), inducible T-cell costimulator (ICOS), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), which appear as promising targets for immunotherapy. To explore their role and study possible synergetic effects of these different checkpoints, we have built a model of T cell receptor (TCR) regulation including not only PD1 and CTLA4, but also other well studied checkpoints (TIGIT, TIM3, lymphocyte activation gene 3 (LAG3), cluster of differentiation 226 (CD226), ICOS, and tumour necrosis factor receptors (TNFRs)) and simulated different aspects of T cell biology. Our model shows good correspondence with observations from available experimental studies of anti-PD1 and anti-CTLA4 therapies and suggest efficient combinations of immune checkpoint inhibitors (ICI). Among the possible candidates, TIGIT appears to be the most promising drug target in our model. The model predicts that signal transducer and activator of transcription 1 (STAT1)/STAT4-dependent pathways, activated by cytokines such as interleukin 12 (IL12) and interferon gamma (IFNG), could improve the effect of ICI therapy via upregulation of Tbet, suggesting that the effect of the cytokines related to STAT3/STAT1 activity is dependent on the balance between STAT1 and STAT3 downstream signalling.
Collapse
|
31
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
32
|
Manica M, Polig R, Purandare M, Mathis R, Hagleitner C, Martinez MR. FPGA Accelerated Analysis of Boolean Gene Regulatory Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:2141-2147. [PMID: 31494553 DOI: 10.1109/tcbb.2019.2936836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Boolean models are a powerful abstraction for qualitative modeling of gene regulatory networks. With the recent availability of advanced high-throughput technologies, Boolean models have increasingly grown in size and complexity, posing a challenge for existing software simulation tools that have not scaled at the same speed. Field Programmable Gate Arrays (FPGAs) are powerful reconfigurable integrated circuits that can offer massive performance improvements. Due to their highly parallel nature, FPGAs are well suited to simulate complex molecular networks. We present here a new simulation framework for Boolean models, which first converts the model to Verilog, a standardized hardware description language, and then connects it to an execution core that runs on an FPGA coherently attached to a POWER8 processor. We report an order of magnitude speedup over a multi-threaded software simulation tool running on the same processor on a selection of Boolean models. Analysis on a T-cell large granular lymphocyte leukemia (T-LGL) demonstrates that our framework achieves consistent performance improvements resulting in new biological insights. In addition, we show that our solution allows to perform attractor detection at an unprecedented speed, exhibiting a speedup ranging from one to three orders of magnitude compared to alternative software solutions.
Collapse
|
33
|
Paul S, Su C, Pang J, Mizera A. An Efficient Approach Towards the Source-Target Control of Boolean Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1932-1945. [PMID: 31095489 DOI: 10.1109/tcbb.2019.2915081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the problem of computing a minimal subset of nodes of a given asynchronous Boolean network that need to be perturbed in a single-step to drive its dynamics from an initial state to a target steady state (or attractor), which we call the source-target control of Boolean networks. Due to the phenomenon of state-space explosion, a simple global approach that performs computations on the entire network may not scale well for large networks. We believe that efficient algorithms for such networks must exploit the structure of the networks together with their dynamics. Taking this view, we derive a decomposition-based solution to the minimal source-target control problem which can be significantly faster than the existing approaches on large networks. We then show that the solution can be further optimized if we take into account appropriate information about the source state. We apply our solutions to both real-life biological networks and randomly generated networks, demonstrating the efficiency and efficacy of our approach.
Collapse
|
34
|
Pais RJ. Simulation of multiple microenvironments shows a pivot role of RPTPs on the control of Epithelial-to-Mesenchymal Transition. Biosystems 2020; 198:104268. [PMID: 33068671 DOI: 10.1016/j.biosystems.2020.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is a natural and reversible process involved in embryogenesis, wound healing and thought to participate in the process of metastasis. Multiple signals from the microenvironment have been reported to drive EMT. However, the tight control of this process on physiological scenarios and how it is disrupted during cancer progression is not fully understood. Here, we analysed a regulatory network of EMT accounting for 10 key microenvironment signals focusing on the impact of two cell contact signals on the reversibility of EMT and the stability of resulting phenotypes. The analysis showed that the microenvironment is not enough for stabilizing Hybrid and Amoeboid-like phenotypes, requiring intracellular de-regulations as reported during cancer progression. Our simulations demonstrated that RPTP activation by cell contacts have the potential to inhibit the process of EMT and trigger its reversibility under tissue growth and chronic inflammation scenarios. Simulations also showed that hypoxia inhibits the capacity of RPTPs to control EMT. Our analysis further provided a theoretical explanation for the observed correlation between hypoxia and metastasis under chronic inflammation, and predicted that de-regulations in FAT4 signalling may promote Hybrid stabilization. Taken together, we propose a natural control mechanism of EMT that supports the idea that EMT is tightly regulated by the microenvironment.
Collapse
Affiliation(s)
- Ricardo Jorge Pais
- Centro de investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Caparica, Portugal; BioenhancerSystems, London, UK.
| |
Collapse
|
35
|
Shomar A, Barak O, Brenner N. Local and global features of genetic networks supporting a phenotypic switch. PLoS One 2020; 15:e0238433. [PMID: 32881964 PMCID: PMC7470255 DOI: 10.1371/journal.pone.0238433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 02/03/2023] Open
Abstract
Phenotypic switches are associated with alterations in the cell's gene expression profile and are vital to many aspects of biology. Previous studies have identified local motifs of the genetic regulatory network that could underlie such switches. Recent advancements allowed the study of networks at the global, many-gene, level; however, the relationship between the local and global scales in giving rise to phenotypic switches remains elusive. In this work, we studied the epithelial-mesenchymal transition (EMT) using a gene regulatory network model. This model supports two clusters of stable steady-states identified with the epithelial and mesenchymal phenotypes, and a range of intermediate less stable hybrid states, whose importance in cancer has been recently highlighted. Using an array of network perturbations and quantifying the resulting landscape, we investigated how features of the network at different levels give rise to these landscape properties. We found that local connectivity patterns affect the landscape in a mostly incremental manner; in particular, a specific previously identified double-negative feedback motif is not required when embedded in the full network, because the landscape is maintained at a global level. Nevertheless, despite the distributed nature of the switch, it is possible to find combinations of a few local changes that disrupt it. At the level of network architecture, we identified a crucial role for peripheral genes that act as incoming signals to the network in creating clusters of states. Such incoming signals are a signature of modularity and are expected to appear also in other biological networks. Hybrid states between epithelial and mesenchymal arise in the model due to barriers in the interaction between genes, causing hysteresis at all connections. Our results suggest emergent switches can neither be pinpointed to local motifs, nor do they arise as typical properties of random network ensembles. Rather, they arise through an interplay between the nature of local interactions, and the core-periphery structure induced by the modularity of the cell.
Collapse
Affiliation(s)
- Aseel Shomar
- Department of Chemical Engineering, Technion, Haifa, Israel
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
| | - Omri Barak
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Naama Brenner
- Department of Chemical Engineering, Technion, Haifa, Israel
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- * E-mail:
| |
Collapse
|
36
|
Paulevé L, Kolčák J, Chatain T, Haar S. Reconciling qualitative, abstract, and scalable modeling of biological networks. Nat Commun 2020; 11:4256. [PMID: 32848126 PMCID: PMC7450094 DOI: 10.1038/s41467-020-18112-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
Predicting biological systems' behaviors requires taking into account many molecular and genetic elements for which limited information is available past a global knowledge of their pairwise interactions. Logical modeling, notably with Boolean Networks (BNs), is a well-established approach that enables reasoning on the qualitative dynamics of networks. Several dynamical interpretations of BNs have been proposed. The synchronous and (fully) asynchronous ones are the most prominent, where the value of either all or only one component can change at each step. Here we prove that, besides being costly to analyze, these usual interpretations can preclude the prediction of certain behaviors observed in quantitative systems. We introduce an execution paradigm, the Most Permissive Boolean Networks (MPBNs), which offers the formal guarantee not to miss any behavior achievable by a quantitative model following the same logic. Moreover, MPBNs significantly reduce the complexity of dynamical analysis, enabling to model genome-scale networks.
Collapse
Affiliation(s)
- Loïc Paulevé
- Université Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 351 cours de la Libération, Talence, 33400, France.
- LRI UMR8623, Université Paris-Sud, CNRS, Université Paris-Saclay, Bat 650 Ada Lovelace, Rue Raimond Castaing, Gif-sur-Yvette, 91190, France.
| | - Juri Kolčák
- Inria and LSV, CNRS (UMR 8643) and ENS Paris-Saclay, Université Paris-Saclay, 4 avenue des Sciences, Gif-sur-Yvette, 91190, France
| | - Thomas Chatain
- Inria and LSV, CNRS (UMR 8643) and ENS Paris-Saclay, Université Paris-Saclay, 4 avenue des Sciences, Gif-sur-Yvette, 91190, France
| | - Stefan Haar
- Inria and LSV, CNRS (UMR 8643) and ENS Paris-Saclay, Université Paris-Saclay, 4 avenue des Sciences, Gif-sur-Yvette, 91190, France
| |
Collapse
|
37
|
Koltai M, Noel V, Zinovyev A, Calzone L, Barillot E. Exact solving and sensitivity analysis of stochastic continuous time Boolean models. BMC Bioinformatics 2020; 21:241. [PMID: 32527218 PMCID: PMC7291460 DOI: 10.1186/s12859-020-03548-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2020] [Indexed: 12/02/2022] Open
Abstract
Background Solutions to stochastic Boolean models are usually estimated by Monte Carlo simulations, but as the state space of these models can be enormous, there is an inherent uncertainty about the accuracy of Monte Carlo estimates and whether simulations have reached all attractors. Moreover, these models have timescale parameters (transition rates) that the probability values of stationary solutions depend on in complex ways, raising the necessity of parameter sensitivity analysis. We address these two issues by an exact calculation method for this class of models. Results We show that the stationary probability values of the attractors of stochastic (asynchronous) continuous time Boolean models can be exactly calculated. The calculation does not require Monte Carlo simulations, instead it uses graph theoretical and matrix calculation methods previously applied in the context of chemical kinetics. In this version of the asynchronous updating framework the states of a logical model define a continuous time Markov chain and for a given initial condition the stationary solution is fully defined by the right and left nullspace of the master equation’s kinetic matrix. We use topological sorting of the state transition graph and the dependencies between the nullspaces and the kinetic matrix to derive the stationary solution without simulations. We apply this calculation to several published Boolean models to analyze the under-explored question of the effect of transition rates on the stationary solutions and show they can be sensitive to parameter changes. The analysis distinguishes processes robust or, alternatively, sensitive to parameter values, providing both methodological and biological insights. Conclusion Up to an intermediate size (the biggest model analyzed is 23 nodes) stochastic Boolean models can be efficiently solved by an exact matrix method, without using Monte Carlo simulations. Sensitivity analysis with respect to the model’s timescale parameters often reveals a small subset of all parameters that primarily determine the stationary probability of attractor states.
Collapse
Affiliation(s)
- Mihály Koltai
- Institut Curie, PSL Research University, Paris, F-75005, France. .,INSERM, U900, Paris, F-75005, France. .,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France.
| | - Vincent Noel
- Institut Curie, PSL Research University, Paris, F-75005, France.,INSERM, U900, Paris, F-75005, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Paris, F-75005, France.,INSERM, U900, Paris, F-75005, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, F-75005, France.,INSERM, U900, Paris, F-75005, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, F-75005, France.,INSERM, U900, Paris, F-75005, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France
| |
Collapse
|
38
|
Montagud A, Traynard P, Martignetti L, Bonnet E, Barillot E, Zinovyev A, Calzone L. Conceptual and computational framework for logical modelling of biological networks deregulated in diseases. Brief Bioinform 2020; 20:1238-1249. [PMID: 29237040 DOI: 10.1093/bib/bbx163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
Mathematical models can serve as a tool to formalize biological knowledge from diverse sources, to investigate biological questions in a formal way, to test experimental hypotheses, to predict the effect of perturbations and to identify underlying mechanisms. We present a pipeline of computational tools that performs a series of analyses to explore a logical model's properties. A logical model of initiation of the metastatic process in cancer is used as a transversal example. We start by analysing the structure of the interaction network constructed from the literature or existing databases. Next, we show how to translate this network into a mathematical object, specifically a logical model, and how robustness analyses can be applied to it. We explore the visualization of the stable states, defined as specific attractors of the model, and match them to cellular fates or biological read-outs. With the different tools we present here, we explain how to assign to each solution of the model a probability and how to identify genetic interactions using mutant phenotype probabilities. Finally, we connect the model to relevant experimental data: we present how some data analyses can direct the construction of the network, and how the solutions of a mathematical model can also be compared with experimental data, with a particular focus on high-throughput data in cancer biology. A step-by-step tutorial is provided as a Supplementary Material and all models, tools and scripts are provided on an accompanying website: https://github.com/sysbio-curie/Logical_modelling_pipeline.
Collapse
|
39
|
Selvaggio G, Canato S, Pawar A, Monteiro PT, Guerreiro PS, Brás MM, Janody F, Chaouiya C. Hybrid Epithelial-Mesenchymal Phenotypes Are Controlled by Microenvironmental Factors. Cancer Res 2020; 80:2407-2420. [PMID: 32217696 DOI: 10.1158/0008-5472.can-19-3147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/07/2020] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) has been associated with cancer cell heterogeneity, plasticity, and metastasis. However, the extrinsic signals supervising these phenotypic transitions remain elusive. To assess how selected microenvironmental signals control cancer-associated phenotypes along the EMT continuum, we defined a logical model of the EMT cellular network that yields qualitative degrees of cell adhesions by adherens junctions and focal adhesions, two features affected during EMT. The model attractors recovered epithelial, mesenchymal, and hybrid phenotypes. Simulations showed that hybrid phenotypes may arise through independent molecular paths involving stringent extrinsic signals. Of particular interest, model predictions and their experimental validations indicated that: (i) stiffening of the extracellular matrix was a prerequisite for cells overactivating FAK_SRC to upregulate SNAIL and acquire a mesenchymal phenotype and (ii) FAK_SRC inhibition of cell-cell contacts through the receptor-type tyrosine-protein phosphatases kappa led to acquisition of a full mesenchymal, rather than a hybrid, phenotype. Altogether, these computational and experimental approaches allow assessment of critical microenvironmental signals controlling hybrid EMT phenotypes and indicate that EMT involves multiple molecular programs. SIGNIFICANCE: A multidisciplinary study sheds light on microenvironmental signals controlling cancer cell plasticity along EMT and suggests that hybrid and mesenchymal phenotypes arise through independent molecular paths.
Collapse
Affiliation(s)
- Gianluca Selvaggio
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal.,Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy
| | - Sara Canato
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto, Portugal
| | - Archana Pawar
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal.,Haffkine Institute for Training Research and Testing, Mumbai, Maharashtra, India
| | - Pedro T Monteiro
- Department of Computer Science and Engineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal.,Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento (INESC-ID), Lisbon, Portugal
| | - Patrícia S Guerreiro
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto, Portugal
| | - M Manuela Brás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto, Portugal
| | - Florence Janody
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto, Portugal
| | - Claudine Chaouiya
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal. .,Aix Marseille Univ, CNRS, Central Marseille 12M, Marseille, France
| |
Collapse
|
40
|
Albergante L, Mirkes E, Bac J, Chen H, Martin A, Faure L, Barillot E, Pinello L, Gorban A, Zinovyev A. Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E296. [PMID: 33286070 PMCID: PMC7516753 DOI: 10.3390/e22030296] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Multidimensional datapoint clouds representing large datasets are frequently characterized by non-trivial low-dimensional geometry and topology which can be recovered by unsupervised machine learning approaches, in particular, by principal graphs. Principal graphs approximate the multivariate data by a graph injected into the data space with some constraints imposed on the node mapping. Here we present ElPiGraph, a scalable and robust method for constructing principal graphs. ElPiGraph exploits and further develops the concept of elastic energy, the topological graph grammar approach, and a gradient descent-like optimization of the graph topology. The method is able to withstand high levels of noise and is capable of approximating data point clouds via principal graph ensembles. This strategy can be used to estimate the statistical significance of complex data features and to summarize them into a single consensus principal graph. ElPiGraph deals efficiently with large datasets in various fields such as biology, where it can be used for example with single-cell transcriptomic or epigenomic datasets to infer gene expression dynamics and recover differentiation landscapes.
Collapse
Affiliation(s)
- Luca Albergante
- Institut Curie, PSL Research University, 75005 Paris, France; (J.B.); (A.M.); (L.F.); (E.B.)
- INSERM U900, 75248 Paris, France
- CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75006 Paris, France
- Sensyne Health, Oxford OX4 4GE, UK
| | - Evgeny Mirkes
- Center for Mathematical Modeling, University of Leicester, Leicester LE1 7RH, UK; (E.M.); (A.G.)
- Lobachevsky University, 603000 Nizhny Novgorod, Russia
| | - Jonathan Bac
- Institut Curie, PSL Research University, 75005 Paris, France; (J.B.); (A.M.); (L.F.); (E.B.)
- INSERM U900, 75248 Paris, France
- CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75006 Paris, France
- Centre de Recherches Interdisciplinaires, Université de Paris, F-75000 Paris, France
| | - Huidong Chen
- Molecular Pathology Unit & Cancer Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA; (H.C.); (L.P.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexis Martin
- Institut Curie, PSL Research University, 75005 Paris, France; (J.B.); (A.M.); (L.F.); (E.B.)
- INSERM U900, 75248 Paris, France
- CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75006 Paris, France
- ECE Paris, F-75015 Paris, France
| | - Louis Faure
- Institut Curie, PSL Research University, 75005 Paris, France; (J.B.); (A.M.); (L.F.); (E.B.)
- INSERM U900, 75248 Paris, France
- CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75006 Paris, France
- Center for Brain Research, Medical University of Vienna, 22180 Vienna, Austria
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, 75005 Paris, France; (J.B.); (A.M.); (L.F.); (E.B.)
- INSERM U900, 75248 Paris, France
- CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75006 Paris, France
| | - Luca Pinello
- Molecular Pathology Unit & Cancer Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA; (H.C.); (L.P.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Gorban
- Center for Mathematical Modeling, University of Leicester, Leicester LE1 7RH, UK; (E.M.); (A.G.)
- Lobachevsky University, 603000 Nizhny Novgorod, Russia
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, 75005 Paris, France; (J.B.); (A.M.); (L.F.); (E.B.)
- INSERM U900, 75248 Paris, France
- CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75006 Paris, France
| |
Collapse
|
41
|
Deist TM, Patti A, Wang Z, Krane D, Sorenson T, Craft D. Simulation-assisted machine learning. Bioinformatics 2019; 35:4072-4080. [PMID: 30903692 PMCID: PMC6792064 DOI: 10.1093/bioinformatics/btz199] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/15/2018] [Accepted: 03/21/2019] [Indexed: 01/02/2023] Open
Abstract
MOTIVATION In a predictive modeling setting, if sufficient details of the system behavior are known, one can build and use a simulation for making predictions. When sufficient system details are not known, one typically turns to machine learning, which builds a black-box model of the system using a large dataset of input sample features and outputs. We consider a setting which is between these two extremes: some details of the system mechanics are known but not enough for creating simulations that can be used to make high quality predictions. In this context we propose using approximate simulations to build a kernel for use in kernelized machine learning methods, such as support vector machines. The results of multiple simulations (under various uncertainty scenarios) are used to compute similarity measures between every pair of samples: sample pairs are given a high similarity score if they behave similarly under a wide range of simulation parameters. These similarity values, rather than the original high dimensional feature data, are used to build the kernel. RESULTS We demonstrate and explore the simulation-based kernel (SimKern) concept using four synthetic complex systems-three biologically inspired models and one network flow optimization model. We show that, when the number of training samples is small compared to the number of features, the SimKern approach dominates over no-prior-knowledge methods. This approach should be applicable in all disciplines where predictive models are sought and informative yet approximate simulations are available. AVAILABILITY AND IMPLEMENTATION The Python SimKern software, the demonstration models (in MATLAB, R), and the datasets are available at https://github.com/davidcraft/SimKern. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Timo M Deist
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht ER, The Netherlands
| | - Andrew Patti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaoqi Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Krane
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor Sorenson
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Craft
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Mandon H, Su C, Pang J, Paul S, Haar S, Pauleve L. Algorithms for the Sequential Reprogramming of Boolean Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1610-1619. [PMID: 31056515 DOI: 10.1109/tcbb.2019.2914383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular reprogramming, a technique that opens huge opportunities in modern and regenerative medicine, heavily relies on identifying key genes to perturb. Most of the existing computational methods for controlling which attractor (steady state) the cell will reach focus on finding mutations to apply to the initial state. However, it has been shown, and is proved in this article, that waiting between perturbations so that the update dynamics of the system prepares the ground, allows for new reprogramming strategies. To identify such sequential perturbations, we consider a qualitative model of regulatory networks, and rely on Binary Decision Diagrams to model their dynamics and the putative perturbations. Our method establishes a set identification of sequential perturbations, whether permanent (mutations) or only temporary, to achieve the existential or inevitable reachability of an arbitrary state of the system. We apply an implementation for temporary perturbations on models from the literature, illustrating that we are able to derive sequential perturbations to achieve trans-differentiation.
Collapse
|
43
|
Enciso J, Pelayo R, Villarreal C. From Discrete to Continuous Modeling of Lymphocyte Development and Plasticity in Chronic Diseases. Front Immunol 2019; 10:1927. [PMID: 31481957 PMCID: PMC6710364 DOI: 10.3389/fimmu.2019.01927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular events leading to differentiation, development, and plasticity of lymphoid cells have been subject of intense research due to their key roles in multiple pathologies, such as lymphoproliferative disorders, tumor growth maintenance and chronic diseases. The emergent roles of lymphoid cells and the use of high-throughput technologies have led to an extensive accumulation of experimental data allowing the reconstruction of gene regulatory networks (GRN) by integrating biochemical signals provided by the microenvironment with transcriptional modules of lineage-specific genes. Computational modeling of GRN has been useful for the identification of molecular switches involved in lymphoid specification, prediction of microenvironment-dependent cell plasticity, and analyses of signaling events occurring downstream the activation of antigen recognition receptors. Among most common modeling strategies to analyze the dynamical behavior of GRN, discrete dynamic models are widely used for their capacity to capture molecular interactions when a limited knowledge of kinetic parameters is present. However, they are less powerful when modeling complex systems sensitive to biochemical gradients. To compensate it, discrete models may be transformed into regulatory networks that includes state variables and parameters varying within a continuous range. This approach is based on a system of differential equations dynamics with regulatory interactions described by fuzzy logic propositions. Here, we discuss the applicability of this method on modeling of development and plasticity processes of adaptive lymphocytes, and its potential implications in the study of pathological landscapes associated to chronic diseases.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos Villarreal
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Física Cuántica y Fotónica, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
44
|
Baudin A, Paul S, Su C, Pang J. Controlling large Boolean networks with single-step perturbations. Bioinformatics 2019; 35:i558-i567. [PMID: 31510648 PMCID: PMC6612811 DOI: 10.1093/bioinformatics/btz371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motivation The control of Boolean networks has traditionally focussed on strategies where the perturbations are applied to the nodes of the network for an extended period of time. In this work, we study if and how a Boolean network can be controlled by perturbing a minimal set of nodes for a single-step and letting the system evolve afterwards according to its original dynamics. More precisely, given a Boolean network (BN), we compute a minimal subset Cmin of the nodes such that BN can be driven from any initial state in an attractor to another ‘desired’ attractor by perturbing some or all of the nodes of Cmin for a single-step. Such kind of control is attractive for biological systems because they are less time consuming than the traditional strategies for control while also being financially more viable. However, due to the phenomenon of state-space explosion, computing such a minimal subset is computationally inefficient and an approach that deals with the entire network in one-go, does not scale well for large networks. Results We develop a ‘divide-and-conquer’ approach by decomposing the network into smaller partitions, computing the minimal control on the projection of the attractors to these partitions and then composing the results to obtain Cmin for the whole network. We implement our method and test it on various real-life biological networks to demonstrate its applicability and efficiency. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexis Baudin
- Department of Computer Science, École Normale Supérieure Paris-Saclay, Cachan, France
| | - Soumya Paul
- Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cui Su
- Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg, Luxembourg
| | - Jun Pang
- Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
45
|
Cohen DPA, Lebsir D, Benderitter M, Souidi M. A systems biology approach to propose a new mechanism of regulation of repetitive prophylaxis of stable iodide on sodium/iodide symporter (NIS). Biochimie 2019; 162:208-215. [PMID: 31071356 DOI: 10.1016/j.biochi.2019.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 01/27/2023]
Abstract
Our group showed that repetitive dose of potassium iodide (KI) for eight days offers an efficient protection for exposure to repeated radioactive emissions without adverse effects on adult rats. However, differential expression of genes implicated in Wolff-Chaikoff effect was observed. To understand the Wolff-Chaikoff regulation and its molecular constituents during repetitive administration of KI, a biochemical reaction network was constructed as a "geographical" map of the thyrocyte depicting iodide and thyroid hormone synthesis. Path analysis of the network has been performed to investigate the presence of a regulatory circuit of the node iodide to the node "nis transcription". NIS is responsible for the uptake of KI and plays an important role in the Wolff-Chaikoff effect. The map is a source for the most updated information about iodide and thyroid hormone metabolism. Based on this map, we propose a hypothesis that shows a putative mechanism behind NIS regulation and KI uptake.
Collapse
Affiliation(s)
- David P A Cohen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, 92262, Fontenay-aux-Roses, France
| | - Dalila Lebsir
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, 92262, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-SANTE/SERAMED, 92262, Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-SANTE/SERAMED, 92262, Fontenay-aux-Roses, France.
| |
Collapse
|
46
|
Zañudo JGT, Guinn MT, Farquhar K, Szenk M, Steinway SN, Balázsi G, Albert R. Towards control of cellular decision-making networks in the epithelial-to-mesenchymal transition. Phys Biol 2019; 16:031002. [PMID: 30654341 PMCID: PMC6405305 DOI: 10.1088/1478-3975/aaffa1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present the epithelial-to-mesenchymal transition (EMT) from two perspectives: experimental/technological and theoretical. We review the state of the current understanding of the regulatory networks that underlie EMT in three physiological contexts: embryonic development, wound healing, and metastasis. We describe the existing experimental systems and manipulations used to better understand the molecular participants and factors that influence EMT and metastasis. We review the mathematical models of the regulatory networks involved in EMT, with a particular emphasis on the network motifs (such as coupled feedback loops) that can generate intermediate hybrid states between the epithelial and mesenchymal states. Ultimately, the understanding gained about these networks should be translated into methods to control phenotypic outcomes, especially in the context of cancer therapeutic strategies. We present emerging theories of how to drive the dynamics of a network toward a desired dynamical attractor (e.g. an epithelial cell state) and emerging synthetic biology technologies to monitor and control the state of cells.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA 02215, USA
- Cancer Program, Eli and Edythe L. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - M. Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Medical Scientist Training Program, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kevin Farquhar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariola Szenk
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
47
|
Béal J, Montagud A, Traynard P, Barillot E, Calzone L. Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients. Front Physiol 2019; 9:1965. [PMID: 30733688 PMCID: PMC6353844 DOI: 10.3389/fphys.2018.01965] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/31/2018] [Indexed: 12/26/2022] Open
Abstract
Logical models of cancer pathways are typically built by mining the literature for relevant experimental observations. They are usually generic as they apply for large cohorts of individuals. As a consequence, they generally do not capture the heterogeneity of patient tumors and their therapeutic responses. We present here a novel framework, referred to as PROFILE, to tailor logical models to a particular biological sample such as a patient tumor. This methodology permits to compare the model simulations to individual clinical data, i.e., survival time. Our approach focuses on integrating mutation data, copy number alterations (CNA), and expression data (transcriptomics or proteomics) to logical models. These data need first to be either binarized or set between 0 and 1, and can then be incorporated in the logical model by modifying the activity of the node, the initial conditions or the state transition rates. The use of MaBoSS, a tool based on Monte-Carlo kinetic algorithm to perform stochastic simulations on logical models results in model state probabilities, and allows for a semi-quantitative study of the model phenotypes and perturbations. As a proof of concept, we use a published generic model of cancer signaling pathways and molecular data from METABRIC breast cancer patients. For this example, we test several combinations of data incorporation and discuss that, with these data, the most comprehensive patient-specific cancer models are obtained by modifying the nodes' activity of the model with mutations, in combination or not with CNA data, and altering the transition rates with RNA expression. We conclude that these model simulations show good correlation with clinical data such as patients' Nottingham prognostic index (NPI) subgrouping and survival time. We observe that two highly relevant cancer phenotypes derived from personalized models, Proliferation and Apoptosis, are biologically consistent prognostic factors: patients with both high proliferation and low apoptosis have the worst survival rate, and conversely. Our approach aims to combine the mechanistic insights of logical modeling with multi-omics data integration to provide patient-relevant models. This work leads to the use of logical modeling for precision medicine and will eventually facilitate the choice of patient-specific drug treatments by physicians.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barillot
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, Paris, France
| |
Collapse
|
48
|
Deciphering the Dynamics of Epithelial-Mesenchymal Transition and Cancer Stem Cells in Tumor Progression. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0150-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Calhelha RC, Martínez MA, Prieto MA, Ferreira ICFR. Mathematical models of cytotoxic effects in endpoint tumor cell line assays: critical assessment of the application of a single parametric value as a standard criterion to quantify the dose-response effects and new unexplored proposal formats. Analyst 2018; 142:4124-4141. [PMID: 28991301 DOI: 10.1039/c7an00782e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of convenient tools for describing and quantifying the effects of standard and novel therapeutic agents is essential for the research community, to perform more precise evaluations. Although mathematical models and quantification criteria have been exchanged in the last decade between different fields of study, there are relevant methodologies that lack proper mathematical descriptions and standard criteria to quantify their responses. Therefore, part of the relevant information that can be drawn from the experimental results obtained and the quantification of its statistical reliability are lost. Despite its relevance, there is not a standard form for the in vitro endpoint tumor cell lines' assays (TCLA) that enables the evaluation of the cytotoxic dose-response effects of anti-tumor drugs. The analysis of all the specific problems associated with the diverse nature of the available TCLA used is unfeasible. However, since most TCLA share the main objectives and similar operative requirements, we have chosen the sulforhodamine B (SRB) colorimetric assay for cytotoxicity screening of tumor cell lines as an experimental case study. In this work, the common biological and practical non-linear dose-response mathematical models are tested against experimental data and, following several statistical analyses, the model based on the Weibull distribution was confirmed as the convenient approximation to test the cytotoxic effectiveness of anti-tumor compounds. Then, the advantages and disadvantages of all the different parametric criteria derived from the model, which enable the quantification of the dose-response drug-effects, are extensively discussed. Therefore, model and standard criteria for easily performing the comparisons between different compounds are established. The advantages include a simple application, provision of parametric estimations that characterize the response as standard criteria, economization of experimental effort and enabling rigorous comparisons among the effects of different compounds and experimental approaches. In all experimental data fitted, the calculated parameters were always statistically significant, the equations proved to be consistent and the correlation coefficient of determination was, in most of the cases, higher than 0.98.
Collapse
Affiliation(s)
- Ricardo C Calhelha
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | | | | | | |
Collapse
|
50
|
Bekkar A, Estreicher A, Niknejad A, Casals-Casas C, Bridge A, Xenarios I, Dorier J, Crespo I. Expert curation for building network-based dynamical models: a case study on atherosclerotic plaque formation. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4960931. [PMID: 29688381 PMCID: PMC5887269 DOI: 10.1093/database/bay031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
Abstract
Knowledgebases play an increasingly important role in scientific research, where the expert curation of biological knowledge in forms that are amenable to computational analysis (using ontologies for example)–provides a significant added value and enables new types of computational analyses for high throughput datasets. In this work, we demonstrate how expert curation can also play a more direct role in research, by supporting the use of network-based dynamical models to study a specific biological process. This curation effort is focused on the regulatory interactions between biological entities, such as genes or proteins and compounds, which may interact with each other in a complex manner, including regulatory complexes and conditional dependencies between co-regulators. This critical information has to be captured and encoded in a computable manner, which is currently far beyond the current capabilities of automatically constructed network. As a case study, we report here the prior knowledge network constructed by the sysVASC consortium to model the biological events leading to the formation of atherosclerotic plaques, during the onset of cardiovascular disease and discuss some specific examples to illustrate the main pitfalls and added value provided by the expert curation during this endeavor. Database URL: http://biomodels.caltech.edu
Collapse
Affiliation(s)
- Amel Bekkar
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Anne Estreicher
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Anne Niknejad
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, 1015 Lausanne, Switzerland.,Swiss-Prot group, SIB Swiss Institute of Bioinformatics, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Cristina Casals-Casas
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Alan Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Ioannis Xenarios
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, 1015 Lausanne, Switzerland.,Swiss-Prot group, SIB Swiss Institute of Bioinformatics, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Julien Dorier
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Isaac Crespo
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, 1015 Lausanne, Switzerland
| |
Collapse
|