1
|
Čelešnik H, Gorenjak M, Krušič M, Crnobrnja B, Sobočan M, Takač I, Arko D, Potočnik U. Isoform-Level Transcriptome Analysis of Peripheral Blood Mononuclear Cells from Breast Cancer Patients Identifies a Disease-Associated RASGEF1A Isoform. Cancers (Basel) 2024; 16:3171. [PMID: 39335143 PMCID: PMC11429621 DOI: 10.3390/cancers16183171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Breast cancer (BC) comprises multiple subtypes with distinct molecular features, which differ in their interplay with host immunity, prognosis, and treatment. Non-invasive blood analyses can provide valuable insights into systemic immunity during cancer. The aim of this study was to analyze the expression of transcriptional isoforms in peripheral blood mononuclear cells (PBMCs) from BC patients and healthy women to identify potential BC immune biomarkers. Methods: RNA sequencing and isoform-level bioinformatics were performed on PBMCs from 12 triple-negative and 13 luminal A patients. Isoform expression validation by qRT-PCR and clinicopathological correlations were performed in a larger cohort (156 BC patients and 32 healthy women). Results: Transcriptional analyses showed a significant (p < 0.001) decrease in the ENST00000374459 RASGEF1A isoform in PBMCs of BC compared to healthy subjects, indicating disease-related expression changes. The decrease was associated with higher ctDNA and Ki-67 values. Conclusions: The levels of the RASGEF1A transcriptional isoform ENST00000374459 may have the potential to distinguish between BC and healthy subjects. The downregulation of ENST00000374459 in breast cancer is associated with higher proliferation and ctDNA shedding. Specialized bioinformatics analyses such as isoform analyses hold significant promise in the detection of biomarkers, since standard RNA sequencing analyses may overlook specific transcriptional changes that may be disease-associated and biologically important.
Collapse
Grants
- P3-0427, P3-0067, J3-4523, J3-3069, I0-0029, J3-9272 and P3-0321 Slovenian Research and Innovation Agency
- IRP-2019/01-05, IRP-2019/02-15, IRP-2021/01-02 Internal University Medical Centre Maribor research funding,
- RIUM Republic of Slovenia, the Ministry of Higher Education, Science and Innovation and the European Union from the European Regional Development Fund
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Mario Gorenjak
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Martina Krušič
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Bojana Crnobrnja
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Monika Sobočan
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Iztok Takač
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Darja Arko
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Bodelet J, Potente C, Blanc G, Chumbley J, Imeri H, Hofer S, Harris KM, Muniz-Terrera G, Shanahan M. A Bayesian functional approach to test models of life course epidemiology over continuous time. Int J Epidemiol 2024; 53:dyad190. [PMID: 38205821 PMCID: PMC10859158 DOI: 10.1093/ije/dyad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Life course epidemiology examines associations between repeated measures of risk and health outcomes across different phases of life. Empirical research, however, is often based on discrete-time models that assume that sporadic measurement occasions fully capture underlying long-term continuous processes of risk. METHODS We propose (i) the functional relevant life course model (fRLM), which treats repeated, discrete measures of risk as unobserved continuous processes, and (ii) a testing procedure to assign probabilities that the data correspond to conceptual models of life course epidemiology (critical period, sensitive period and accumulation models). The performance of the fRLM is evaluated with simulations, and the approach is illustrated with empirical applications relating body mass index (BMI) to mRNA-seq signatures of chronic kidney disease, inflammation and breast cancer. RESULTS Simulations reveal that fRLM identifies the correct life course model with three to five repeated assessments of risk and 400 subjects. The empirical examples reveal that chronic kidney disease reflects a critical period process and inflammation and breast cancer likely reflect sensitive period mechanisms. CONCLUSIONS The proposed fRLM treats repeated measures of risk as continuous processes and, under realistic data scenarios, the method provides accurate probabilities that the data correspond to commonly studied models of life course epidemiology. fRLM is implemented with publicly-available software.
Collapse
Affiliation(s)
- Julien Bodelet
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Cecilia Potente
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Guillaume Blanc
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Justin Chumbley
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
- Biostatistics and Research Decision Sciences, MSD, Zurich, Switzerland
| | - Hira Imeri
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Scott Hofer
- Institute On Aging & Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Kathleen Mullan Harris
- Carolina Population Center, University of North Carolina at Chapel Hill, Carolina Population Center, Chapel Hill, NC, USA
| | - Graciela Muniz-Terrera
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Michael Shanahan
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Hu J, Yang X, Ren J, Zhong S, Fan Q, Li W. Identification and verification of characteristic differentially expressed ferroptosis-related genes in osteosarcoma using bioinformatics analysis. Toxicol Mech Methods 2023; 33:781-795. [PMID: 37488941 DOI: 10.1080/15376516.2023.2240879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND This study identified and verified the characteristic differentially expressed ferroptosis-related genes (CDEFRGs) in osteosarcoma (OS). METHODS We extracted ferroptosis-related genes (FRGs), identified differentially expressed FRGs (DEFRGs) in OS, and conducted correlation analysis between DEFRGs. Next, we conducted GO and KEGG analyses to explore the biological functions and pathways of DEFRGs. Furthermore, we used LASSO and SVM-RFE algorithms to screen CDEFRGs, and evaluated its accuracy in diagnosing OS through ROC curves. Then, we demonstrated the molecular function and pathway enrichment of CDEFRGs through GSEA analysis. In addition, we evaluated the differences in immune cell infiltration between OS and NC groups, as well as the correlation between CDEFRGs expressions and immune cell infiltrations. Finally, the expression of CDEFRGs was verified through qRT-PCR, western blotting, and immunohistochemistry experiments. RESULTS We identified 51 DEFRGs and the expression relationship between them. GO and KEGG analysis revealed their key functions and important pathways. Based on four CDEFRGs (PEX3, CPEB1, NOX1, and ALOX5), we built the OS diagnostic model, and verified its accuracy. GSEA analysis further revealed the important functions and pathways of CDEFRGs. In addition, there were differences in immune cell infiltration between OS group and NC group, and CDEFRGs showed significant correlation with certain infiltrating immune cells. Finally, we validated the differential expression levels of four CDEFRGs through external experiments. CONCLUSIONS This study has shed light on the molecular pathological mechanism of OS and has offered novel perspectives for the early diagnosis and immune-targeted therapy of OS patients.
Collapse
Affiliation(s)
- Jianhua Hu
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Xi Yang
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Jing Ren
- Department of Spinal Surgery, Qujing No. 1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, Qujing, P. R. China
| | - Shixiao Zhong
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Qianbo Fan
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Weichao Li
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| |
Collapse
|
4
|
Elgohary S, Eissa RA, El Tayebi HM. Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC Patients. Int J Mol Sci 2023; 24:14254. [PMID: 37762557 PMCID: PMC10531892 DOI: 10.3390/ijms241814254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is not only a mass of malignant cells but also a systemic inflammatory disease. BC pro-tumorigenic inflammation has been shown to promote immune evasion and provoke BC progression. The NOD-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome is activated when pattern recognition receptors (PRRs) sense danger signals such as calreticulin (CALR) from damaged/dying cells, leading to the secretion of interleukin-1β (IL-1β). CALR is a novel BC biological marker, and its high levels are associated with advanced tumors. NLRP3 expression is strongly correlated with an elevated proliferative index Ki67, BC progression, metastasis, and recurrence in patients with hormone receptor-positive (HR+) and triple-negative BC (TNBC). Tumor-associated macrophages (TAMs) secrete high levels of IL-1β promoting endocrine resistance in HR+ BC. Recently, an immunosuppressive soluble form of programmed death ligand 1 (sPD-L1) has been identified as a novel prognostic biomarker in triple-negative breast cancer (TNBC) patients. Interestingly, IL-1β induces sPD-L1 release. BC Patients with elevated IL-1β and sPD-L1 levels show significantly short progression-free survival. For the first time, this study aims to investigate the inhibitory impact of thymoquinone (TQ) on CALR, the NLRP3 pathway and sPD-L1 in HR+ and TNBC. Blood samples were collected from 45 patients with BC. The effect of differing TQ concentrations for different durations on the expression of CALR, NLRP3 complex components and IL-1β as well as the protein levels of sPD-L1 and IL-1β were investigated in the peripheral blood mononuclear cells (PBMCs) and TAMs of TNBC and HR+ BC patients, respectively. The findings showed that TQ significantly downregulated the expression of CALR, NLRP3 components and IL-1β together with the protein levels of secreted IL-1β and sPD-L1. The current findings demonstrated novel immunomodulatory effects of TQ, highlighting its potential role not only as an excellent adjuvant but also as a possible immunotherapeutic agent in HR+ and TNBC patients.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Reda A. Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
5
|
Čelešnik H, Potočnik U. Blood-Based mRNA Tests as Emerging Diagnostic Tools for Personalised Medicine in Breast Cancer. Cancers (Basel) 2023; 15:1087. [PMID: 36831426 PMCID: PMC9954278 DOI: 10.3390/cancers15041087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Molecular diagnostic tests help clinicians understand the underlying biological mechanisms of their patients' breast cancer (BC) and facilitate clinical management. Several tissue-based mRNA tests are used routinely in clinical practice, particularly for assessing the BC recurrence risk, which can guide treatment decisions. However, blood-based mRNA assays have only recently started to emerge. This review explores the commercially available blood mRNA diagnostic assays for BC. These tests enable differentiation of BC from non-BC subjects (Syantra DX, BCtect), detection of small tumours <10 mm (early BC detection) (Syantra DX), detection of different cancers (including BC) from a single blood sample (multi-cancer blood test Aristotle), detection of BC in premenopausal and postmenopausal women and those with high breast density (Syantra DX), and improvement of diagnostic outcomes of DNA testing (variant interpretation) (+RNAinsight). The review also evaluates ongoing transcriptomic research on exciting possibilities for future assays, including blood transcriptome analyses aimed at differentiating lymph node positive and negative BC, distinguishing BC and benign breast disease, detecting ductal carcinoma in situ, and improving early detection further (expression changes can be detected in blood up to eight years before diagnosing BC using conventional approaches, while future metastatic and non-metastatic BC can be distinguished two years before BC diagnosis).
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Wall I, Boulat V, Shah A, Blenman KRM, Wu Y, Alberts E, Calado DP, Salgado R, Grigoriadis A. Leveraging the Dynamic Immune Environment Triad in Patients with Breast Cancer: Tumour, Lymph Node, and Peripheral Blood. Cancers (Basel) 2022; 14:4505. [PMID: 36139665 PMCID: PMC9496983 DOI: 10.3390/cancers14184505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
During the anti-tumour response to breast cancer, the primary tumour, the peripheral blood, and the lymph nodes each play unique roles. Immunological features at each site reveal evidence of continuous immune cross-talk between them before, during and after treatment. As such, immune responses to breast cancer are found to be highly dynamic and truly systemic, integrating three distinct immune sites, complex cell-migration highways, as well as the temporal dimension of disease progression and treatment. In this review, we provide a connective summary of the dynamic immune environment triad of breast cancer. It is critical that future studies seek to establish dynamic immune profiles, constituting multiple sites, that capture the systemic immune response to breast cancer and define patient-selection parameters resulting in more significant overall responses and survival rates for breast cancer patients.
Collapse
Affiliation(s)
- Isobelle Wall
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Victoire Boulat
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aekta Shah
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai 400012, India
| | - Kim R. M. Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Yin Wu
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Dinis Pedro Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
7
|
Rapoport BL, Steel HC, Hlatshwayo N, Theron AJ, Meyer PWA, Nayler S, Benn CA, Smit T, Kwofie LLI, Heyman L, Anderson R. Systemic Immune Dysregulation in Early Breast Cancer Is Associated With Decreased Plasma Levels of Both Soluble Co-Inhibitory and Co-Stimulatory Immune Checkpoint Molecules. Front Immunol 2022; 13:823842. [PMID: 35677046 PMCID: PMC9168983 DOI: 10.3389/fimmu.2022.823842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer cells exploit the up-regulation or down-regulation of immune checkpoint proteins to evade anti-tumor immune responses. To explore the possible involvement of this mechanism in promoting systemic immunosuppression, the pre-treatment levels of soluble co-inhibitory and co-stimulatory immune checkpoint molecules, as well as those of cytokines, chemokines, and growth factors were measured in 98 newly diagnosed breast cancer patients and compared with those of 45 healthy controls using multiplex bead array and ELISA technologies. Plasma concentrations of the co-stimulatory immune checkpoints, GITR, GITRL, CD27, CD28, CD40, CD80, CD86 and ICOS, as well as the co-inhibitory molecules, PD-L1, CTLA-4 and TIM-3, were all significantly lower in early breast cancer patients compared to healthy controls, as were those of HVEM and sTLR-2, whereas the plasma concentrations of CX3CL1 (fractalkine), CCL5 (RANTES) and those of the growth factors, M-CSF, FGF-21 and GDF-15 were significantly increased. However, when analyzed according to the patients’ breast cancer characteristics, these being triple negative breast cancer (TNBC) vs. non-TNBC, tumor size, stage, nodal status and age, no significant differences were detected between the plasma levels of the various immune checkpoint molecules, cytokines, chemokines and growth factors. Additionally, none of these biomarkers correlated with pathological complete response. This study has identified low plasma levels of soluble co-stimulatory and co-inhibitory immune checkpoint molecules in newly diagnosed, non-metastatic breast cancer patients compared to healthy controls, which is a novel finding seemingly consistent with a state of systemic immune dysregulation. Plausible mechanisms include an association with elevated levels of M-CSF and CCL5, implicating the involvement of immune suppressor cells of the M2-macrophage/monocyte phenotype as possible drivers of this state of systemic immune quiescence/dysregulation.
Collapse
Affiliation(s)
- Bernardo L Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Nomsa Hlatshwayo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Pieter W A Meyer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Simon Nayler
- Drs Gritzman & Thatcher Inc. Laboratories, Johannesburg, South Africa.,University of the Witwatersrand Donald Gordon Medical Centre, Johannesburg, South Africa
| | | | - Teresa Smit
- Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| | - Luyanda L I Kwofie
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Liezl Heyman
- Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Plasma profile of immune determinants predicts pathological complete response in locally advanced breast cancer patients: a pilot study. Clin Breast Cancer 2022; 22:705-714. [DOI: 10.1016/j.clbc.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
9
|
Čelešnik H, Potočnik U. Peripheral Blood Transcriptome in Breast Cancer Patients as a Source of Less Invasive Immune Biomarkers for Personalized Medicine, and Implications for Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:591. [PMID: 35158858 PMCID: PMC8833511 DOI: 10.3390/cancers14030591] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Transcriptome studies of peripheral blood cells can advance our understanding of the systemic immune response to the presence of cancer and the mechanisms underlying cancer onset and progression. This enables the identification of novel minimally invasive immune biomarkers for early cancer detection and personalized cancer management and may bring forward new immunotherapy options. Recent blood gene expression analyses in breast cancer (BC) identified distinct patient subtypes that differed in the immune reaction to cancer and were distinct from the clinical BC subtypes, which are categorized based on expression of specific receptors on tumor cells. Introducing new BC subtypes based on peripheral blood gene expression profiles may be appropriate, since it may assist in BC prognosis, the identification of patients likely to benefit from immunotherapy, and treatment efficacy monitoring. Triple-negative breast cancer (TNBC) is an aggressive, heterogeneous, and difficult-to-treat disease, and identification of novel biomarkers for this BC is crucial for clinical decision-making. A few studies have reported TNBC-enriched blood transcriptional signatures, mostly related to strong inflammation and augmentation of altered immune signaling, that can differentiate TNBC from other classical BC subtypes and facilitate diagnosis. Future research is geared toward transitioning from expression signatures in unfractionated blood cells to those in immune cell subpopulations.
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Ragusi MAA, Bismeijer T, van der Velden BHM, Loo CE, Canisius S, Wesseling J, Wessels LFA, Elias SG, Gilhuijs KGA. Contralateral parenchymal enhancement on MRI is associated with tumor proteasome pathway gene expression and overall survival of early ER+/HER2-breast cancer patients. Breast 2021; 60:230-237. [PMID: 34763270 PMCID: PMC8591464 DOI: 10.1016/j.breast.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose To assess whether contralateral parenchymal enhancement (CPE) on MRI is associated with gene expression pathways in ER+/HER2-breast cancer, and if so, whether such pathways are related to survival. Methods Preoperative breast MRIs were analyzed of early ER+/HER2-breast cancer patients eligible for breast-conserving surgery included in a prospective observational cohort study (MARGINS). The contralateral parenchyma was segmented and CPE was calculated as the average of the top-10% delayed enhancement. Total tumor RNA sequencing was performed and gene set enrichment analysis was used to reveal gene expression pathways associated with CPE (N = 226) and related to overall survival (OS) and invasive disease-free survival (IDFS) in multivariable survival analysis. The latter was also done for the METABRIC cohort (N = 1355). Results CPE was most strongly correlated with proteasome pathways (normalized enrichment statistic = 2.04, false discovery rate = .11). Patients with high CPE showed lower tumor proteasome gene expression. Proteasome gene expression had a hazard ratio (HR) of 1.40 (95% CI = 0.89, 2.16; P = .143) for OS in the MARGINS cohort and 1.53 (95% CI = 1.08, 2.14; P = .017) for IDFS, in METABRIC proteasome gene expression had an HR of 1.09 (95% CI = 1.01, 1.18; P = .020) for OS and 1.10 (95% CI = 1.02, 1.18; P = .012) for IDFS. Conclusion CPE was negatively correlated with tumor proteasome gene expression in early ER+/HER2-breast cancer patients. Low tumor proteasome gene expression was associated with improved survival in the METABRIC data. Contralateral parenchymal enhancement on MRI was associated with tumor proteasome gene expression in ER+/HER2-breast cancer. A high contralateral parenchymal enhancement was associated with a low proteasome gene expression in the breast cancer. Low proteasome tumor gene expression was associated with improved survival in an independent patient cohort.
Collapse
Affiliation(s)
- Max A A Ragusi
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| | - Tycho Bismeijer
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bas H M van der Velden
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Claudette E Loo
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sander Canisius
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Mekelweg 5, 2628 CD Delft, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Kenneth G A Gilhuijs
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
11
|
Zhang Q, Kuang M, An H, Zhang Y, Zhang K, Feng L, Zhang L, Cheng S. Peripheral blood transcriptome heterogeneity and prognostic potential in lung cancer revealed by RNA-Seq. J Cell Mol Med 2021; 25:8271-8284. [PMID: 34288383 PMCID: PMC8419186 DOI: 10.1111/jcmm.16773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding of the complex interaction between the peripheral immune system and lung cancer (LC) remains incomplete, limiting patient benefit. Here, we aimed to characterize the host peripheral immune response to LC and investigate its potential prognostic value. Bulk RNA-sequencing data of peripheral blood leucocytes (PBLs) from healthy volunteers and LC patients (n = 142) were analysed for characterization of host systemic immunity in LC. We observed broad blood transcriptome perturbations in LC patients that were heterogeneous, as two new subtypes were established independent of histology. Functionally, the heterogeneity between the two subtypes included dysregulation of diverse biological processes, such as the cell cycle, blood coagulation and inflammatory signalling pathways, together with the abundance and activity of blood cells, particularly lymphocytes and neutrophils, ultimately manifesting as differences in antitumour immune status. Based on these findings, a prognostic model composed of ten genes dysregulated in one LC subtype with relatively poor immune status was developed and validated in a Gene Expression Omnibus (GEO) data set (n = 108), helping to generate a prognostic nomogram. Collectively, our study provides novel and comprehensive insight into the heterogeneity of the host peripheral immune response to LC. The expression heterogeneity-based predictive model may help guide prognostic management for LC patients.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Manchao Kuang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyin An
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yajing Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Zhang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Endoscopy ,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Nøst TH, Holden M, Dønnem T, Bøvelstad H, Rylander C, Lund E, Sandanger TM. Transcriptomic signals in blood prior to lung cancer focusing on time to diagnosis and metastasis. Sci Rep 2021; 11:7406. [PMID: 33795786 PMCID: PMC8017014 DOI: 10.1038/s41598-021-86879-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies have indicated that there are functional genomic signals that can be detected in blood years before cancer diagnosis. This study aimed to assess gene expression in prospective blood samples from the Norwegian Women and Cancer cohort focusing on time to lung cancer diagnosis and metastatic cancer using a nested case–control design. We employed several approaches to statistically analyze the data and the methods indicated that the case–control differences were subtle but most distinguishable in metastatic case–control pairs in the period 0–3 years prior to diagnosis. The genes of interest along with estimated blood cell populations could indicate disruption of immunological processes in blood. The genes identified from approaches focusing on alterations with time to diagnosis were distinct from those focusing on the case–control differences. Our results support that explorative analyses of prospective blood samples could indicate circulating signals of disease-related processes.
Collapse
Affiliation(s)
- Therese H Nøst
- Department of Community Medicine, UiT - The Arctic University of Norway, Langnes, P.O. Box 6050, 9037, Tromsø, Norway.
| | | | - Tom Dønnem
- Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT - The Artic University of Norway, Tromsø, Norway
| | - Hege Bøvelstad
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Charlotta Rylander
- Department of Community Medicine, UiT - The Arctic University of Norway, Langnes, P.O. Box 6050, 9037, Tromsø, Norway
| | - Eiliv Lund
- Department of Community Medicine, UiT - The Arctic University of Norway, Langnes, P.O. Box 6050, 9037, Tromsø, Norway.,Department of Research, Institute of Population-Based Cancer Research, Cancer Registry of Norway, Oslo, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT - The Arctic University of Norway, Langnes, P.O. Box 6050, 9037, Tromsø, Norway
| |
Collapse
|
13
|
Olsen KS, Holden M, Thalabard JC, Rasmussen Busund LT, Lund E, Holden L. Global blood gene expression profiles following a breast cancer diagnosis-Clinical follow-up in the NOWAC post-genome cohort. PLoS One 2021; 16:e0246650. [PMID: 33684121 PMCID: PMC7939296 DOI: 10.1371/journal.pone.0246650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/23/2021] [Indexed: 11/19/2022] Open
Abstract
Objective This explorative study aimed to assess if there are any time-dependent blood gene expression changes during the first one to eight years after breast cancer diagnosis, which can be linked to the clinical outcome of the disease. Material and methods A random distribution of follow-up time from breast cancer diagnosis till blood sampling was obtained by a nested, matched case-control design in the Norwegian Women and Cancer Post-genome Cohort. From 2002–5, women were invited to donate blood samples, regardless of any cancer diagnosis. At end of the study period in 2015, any cancer diagnoses in the 50 000 participants were obtained via linkage to the Norwegian Cancer Registry. For each breast cancer patient (n = 415), an age- and storage time-matched control was drawn. The design gave a uniform, random length of follow-up time, independent of cancer stage. Differences in blood gene expression between breast cancer cases and controls were identified using the Bioconductor R-package limma, using a moving window in time, to handle the varying time elapsed from diagnosis to blood sample. Results The number of differentially expressed genes between cases and controls were close to 2,000 in the first year after diagnosis, but fell sharply the second year. During the next years, a transient second increase was observed, but only in women with metastatic disease who later died, both compared to invasive cases that survived (p<0,001) and to metastatic cases that survived (p = 0.024). Among the differentially expressed genes there was an overrepresentation of heme metabolism and T cell-related processes. Conclusion This explorative analysis identified changing trajectories in the years after diagnosis, depending on clinical stage. Hypothetically, this could represent the escape of the metastatic cancer from the immune system.
Collapse
Affiliation(s)
| | | | | | - Lill-Tove Rasmussen Busund
- UiT The Arctic University of Norway, Tromsø, Norway
- The University Hospital of North Norway, Tromsø, Norway
| | - Eiliv Lund
- UiT The Arctic University of Norway, Tromsø, Norway
- The Cancer Registry of Norway, Oslo, Norway
| | | |
Collapse
|
14
|
Allen BM, Hiam KJ, Burnett CE, Venida A, DeBarge R, Tenvooren I, Marquez DM, Cho NW, Carmi Y, Spitzer MH. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat Med 2020; 26:1125-1134. [PMID: 32451499 PMCID: PMC7384250 DOI: 10.1038/s41591-020-0892-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Understanding of the factors governing immune responses in cancer remains incomplete, limiting patient benefit. In this study, we used mass cytometry to define the systemic immune landscape in response to tumor development across five tissues in eight mouse tumor models. Systemic immunity was dramatically altered across models and time, with consistent findings in the peripheral blood of patients with breast cancer. Changes in peripheral tissues differed from those in the tumor microenvironment. Mice with tumor-experienced immune systems mounted dampened responses to orthogonal challenges, including reduced T cell activation during viral or bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, whereas promoting APC activation rescued T cell activity. Systemic immune changes were reversed with surgical tumor resection, and many were prevented by interleukin-1 or granulocyte colony-stimulating factor blockade, revealing remarkable plasticity in the systemic immune state. These results demonstrate that tumor development dynamically reshapes the composition and function of the immune macroenvironment.
Collapse
Affiliation(s)
- Breanna M Allen
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Kamir J Hiam
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Cassandra E Burnett
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Venida
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Rachel DeBarge
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Iliana Tenvooren
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Nam Woo Cho
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew H Spitzer
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Oliver AJ, Darcy PK, Trapani JA, Kershaw MH, Slaney CY. Cross-talk between tumors at anatomically distinct sites. FEBS J 2020; 288:81-90. [PMID: 32248616 DOI: 10.1111/febs.15316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Cancer tissue is not homogenous, and individual metastases at different anatomical locations can differ from the primary tumor and from one another in both their morphology and cellular composition, even within an individual patient. Tumors are composed of cancer cells and a range of other cell types, which, together with a variety of secreted molecules, collectively comprise the tumor microenvironment (TME). Cells of the TME can communicate with each other and with distant tissues in a form of molecular cross-talk to influence their growth and function. Cross-talk between cancer cells and local immune cells is well described and can lead to the induction of local immunosuppression. Recently, it has become apparent that tumors located remotely from each other, can engage in cross-talk that can influence their responsiveness to various therapies, including immunotherapy. In this article, we review studies that describe how tumors systemically communicate with distant tissues through motile cells, extracellular vesicles, and secreted molecules that can affect their function. In addition, we summarize evidence from mouse studies and the clinic that indicate an ability of some tumors to influence the progression and therapeutic responses of other tumors in different anatomical locations.
Collapse
Affiliation(s)
- Amanda J Oliver
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
Ming W, Xie H, Hu Z, Chen Y, Zhu Y, Bai Y, Liu H, Sun X, Liu Y, Gu W. Two Distinct Subtypes Revealed in Blood Transcriptome of Breast Cancer Patients With an Unsupervised Analysis. Front Oncol 2019; 9:985. [PMID: 31632916 PMCID: PMC6779774 DOI: 10.3389/fonc.2019.00985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Breast cancer (BC) is a highly heterogeneous cancer. The interaction between immune system and BC is complex, widespread yet unclear. In this study, we aimed to reveal the heterogeneity of host systemic immune response to BC and understand the possible mechanisms that may drive the heterogeneity using transcriptomic data from peripheral blood mononuclear cells (PBMCs). Methods: Transcriptome-wide gene expressions of PBMCs in 33 BC patients were generated by RNA sequencing. An unsupervised clustering algorithm was employed to discover PBMC transcriptome subtypes among BC patients. Association analysis between PBMC subtypes and age, clinical stage, abundance of immune cells, and other clinical factors was performed to understand the underlying biological processes that may drive this heterogeneity. Immune gene signature identification and in silico survival analysis were performed to investigate the potential clinical implications of these PBMC subtypes. The findings were validated using the whole blood transcriptomes of an independent cohort. Results: We observed that established BC subtypes were not associated with PBMC gene expression profiles. Instead, we discovered and validated two new BC subtypes using PBMC transcriptome, which have distinct immune cell proportions, especially for lymphocytes (P = 5.22 × 10-12) and neutrophils (P = 1.13 × 10-14). Enrichment analysis of differentially expressed genes revealed that these two subtypes had distinct patterns of immune responses, including osteoclast differentiation and interleukin-10 signaling pathway. We developed two immune gene signatures that can differentiate these two BC PBMC subtypes. Further analysis suggested they had the ability to predict the clinical outcome of BC patients. Conclusions: PBMC transcriptome profiles can classify BC patients into two distinct subtypes. These two subtypes are mainly shaped by different immune cell abundance, which may have implications on clinical outcomes.
Collapse
Affiliation(s)
- Wenlong Ming
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hui Xie
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zixi Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yuanyuan Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yanhui Zhu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun Liu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Utz VEM, Perdigón G, de Moreno de LeBlanc A. Milk fermented by Lactobacillus casei CRL431 modifies cytokine profiles associated to different stages of breast cancer development in mice. Benef Microbes 2019; 10:689-697. [PMID: 31122044 DOI: 10.3920/bm2019.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Breast cancer is one of the leading causes of death worldwide. It is recognised that immune system influences its promotion, progression, and metastasis, as well as their responsiveness to therapies. Previously, it was reported that milk fermented by Lactobacillus casei CRL431 decreased tumour growth and metastasis in a mouse breast cancer model, through the modulation of the host immune response. The aim of the present work was to analyse the systemic immune response induced by the administration of probiotic fermented milk (PFM) at different stages of cancer development, evaluating cytokines produced by splenocytes stimulated in vitro with 4T1 tumour cells, or its conditioned medium (CM). Groups of healthy mice and mice bearing 4T1 tumour or suffering metastasis after tumour surgery were studied. Results showed that at the early stages, PFM maintained pro-inflammatory response associated to the delay or the inhibition of tumour growth. PFM administration to mice bearing tumour maintained an important inflammatory response; however, in contrast to the milk group, this response was regulated to avoid exacerbation of inflammation. In the metastasis model, the benefits of PFM were associated to avoid the immunosuppression associated to high interleukin-10 levels. In conclusion, as cancer cells induce modifications of the immune response to favour their own growth at each stage of cancer development, PFM administration stimulated different profile of cytokines to respond to these modifications and fight against cancer cells.
Collapse
Affiliation(s)
- V E Méndez Utz
- Centro de Referencia para Lactobacilos (CERELA-CONICET), CP T4000ILC, San Miguel de Tucumán, Argentina
| | - G Perdigón
- Centro de Referencia para Lactobacilos (CERELA-CONICET), CP T4000ILC, San Miguel de Tucumán, Argentina.,Cátedra de Inmunología. Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - A de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), CP T4000ILC, San Miguel de Tucumán, Argentina
| |
Collapse
|
18
|
Lund E, Rasmussen Busund LT, Thalabard JC. Rethinking the carcinogenesis of breast cancer: The theory of breast cancer as a child deficiency disease or a pseudo semi-allograft. Med Hypotheses 2018; 120:76-80. [PMID: 30220347 DOI: 10.1016/j.mehy.2018.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/12/2018] [Accepted: 08/22/2018] [Indexed: 11/19/2022]
Abstract
The theory of breast cancer as a child deficiency disease is an inversion of the current paradigm, which considers full-term pregnancies to be a protective factor and uses nulliparous women as the reference group. Instead, the theory of breast cancer as a child deficiency disease says that women with the highest parity (about 20, which is the limit of human fertility) are those with the lowest risk and should be used as the reference group in risk estimations. This theory is explained biologically by converting parity from the simple value of number of children into an understanding of the long-lasting biological and immunological effects of pregnancy. These effects can be reflected, as measured by functional genomics, in gene expression of the immune cells in the blood. Each pregnancy represents a unique fetus or semi-allograft, which provokes the creation and deposit of memory cell clones in the mother. Gene expression levels have been found to change linearly with number of full-term pregnancies in healthy women, but not in breast cancer patients. High hormone levels are necessary for a successful pregnancy, as they modulate the immune response from adaptive to innate in order to protect the fetus (considered as a semi-allograft) from rejection. At the end of the pregnancy, hormone levels drop, and the immune system recognizes the semi-allograft, but not in time for rejection to occur before birth. High hormones levels are also classified as carcinogens illustrating that carcinogenesis in the breast could be viewed as a war or balance between later exposures to hormonal carcinogens and the protection of the immune system. We propose that breast tumors are pseudo semi-allografts made up of transformed breast tissue cells. Assuming that the sensitivity to the exposure to increased levels of endogenous or exogenous hormones in women with breast cancer mimic those that occur in pregnancy, these breast tumor cells are protected against the body's immune reaction, just as the fetus is during pregnancy. However, with more pregnancies, the potential to eradicate the pseudo semi-allograft might increase due to enhanced immune surveillance. The theory of breast cancer as a child deficiency disease proposes that the protective effect of pregnancy on breast cancer incidence via the immune system is independent of other risk factors.
Collapse
Affiliation(s)
- Eiliv Lund
- UiT, The Arctic University of Norway, Tromsø, Norway; The Cancer Registry of Norway, Oslo, Norway.
| | - Lill-Tove Rasmussen Busund
- UiT, The Arctic University of Norway, Tromsø, Norway; The University Hospital of North Norway, Tromsø, Norway
| | | |
Collapse
|
19
|
Lund E, Nakamura A, Snapkov I, Thalabard JC, Olsen KS, Holden L, Holden M. Each pregnancy linearly changes immune gene expression in the blood of healthy women compared with breast cancer patients. Clin Epidemiol 2018; 10:931-940. [PMID: 30123005 PMCID: PMC6084086 DOI: 10.2147/clep.s163208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background There is a large body of evidence demonstrating long-lasting protective effect of each full-term pregnancy (FTP) on the development of breast cancer (BC) later in life, a phenomenon that could be related to both hormonal and immunological changes during pregnancies. In this work, we studied the pregnancy-associated differences in peripheral blood gene expression profiles between healthy women and women diagnosed with BC in a prospective design. Methods Using an integrated system epidemiology approach, we modeled BC incidence as a function of parity in the Norwegian Women and Cancer (NOWAC) cohort (165,000 women) and then tested the resulting mathematical model using gene expression profiles in blood in a nested case-control study (460 invasive case-control pairs) of women from the NOWAC postgenome cohort. Lastly, we undertook a gene set enrichment analysis for immunological gene sets. Results A linear trend fitted the dataset precisely showing an 8% decrease in risk of BC for each FTP, independent of stratification on other risk factors and lasting for decades after a woman's last FTP. Women with six children demonstrated 48% reduction in the incidence of BC compared to nulliparous. When we looked at gene expression, we found that 756 genes showed linear trends in cancer-free controls (false discovery rate [FDR] 5%), but this was not the case for any of the genes in BC cases. Gene set enrichment analysis of immunologic gene sets (C7 collection in Molecular Signatures Database) revealed 215 significantly enriched human gene sets (FDR 5%). Conclusion We found marked differences in gene expression and enrichment profiles of immunologic gene sets between BC cases and healthy controls, suggesting an important protective effect of the immune system on BC risk.
Collapse
Affiliation(s)
- Eiliv Lund
- Department of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway, .,The Cancer Registry of Norway, Oslo, Norway,
| | - Aurelie Nakamura
- Department of Social Epidemiology, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne University, INSERM, Paris, France.,French School of Public Health (EHESP), Doctoral Network, Rennes, France
| | - Igor Snapkov
- Department of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway,
| | | | - Karina Standahl Olsen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway,
| | | | | |
Collapse
|