1
|
Kan P, Zhu YF, Ma J, Singh G. Computational modeling to study the impact of changes in Nav1.8 sodium channel on neuropathic pain. Front Comput Neurosci 2024; 18:1327986. [PMID: 38784679 PMCID: PMC11111952 DOI: 10.3389/fncom.2024.1327986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Nav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain. Methods To study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin-Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from in vivo recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP). Results We show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel's maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8. Conclusion Computational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.
Collapse
Affiliation(s)
- Peter Kan
- Department of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yong Fang Zhu
- Department of Health Sciences, Redeemer University, Hamilton, ON, Canada
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Blömer LA, Giacalone E, Abbas F, Filipis L, Tegolo D, Migliore M, Canepari M. Kinetics and functional consequences of BK channels activation by N-type Ca 2+ channels in the dendrite of mouse neocortical layer-5 pyramidal neurons. Front Cell Neurosci 2024; 18:1353895. [PMID: 38419657 PMCID: PMC10899506 DOI: 10.3389/fncel.2024.1353895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
The back-propagation of an action potential (AP) from the axon/soma to the dendrites plays a central role in dendritic integration. This process involves an intricate orchestration of various ion channels, but a comprehensive understanding of the contribution of each channel type remains elusive. In this study, we leverage ultrafast membrane potential recordings (Vm) and Ca2+ imaging techniques to shed light on the involvement of N-type voltage-gated Ca2+ channels (VGCCs) in layer-5 neocortical pyramidal neurons' apical dendrites. We found a selective interaction between N-type VGCCs and large-conductance Ca2+-activated K+ channels (BK CAKCs). Remarkably, we observe that BK CAKCs are activated within a mere 500 μs after the AP peak, preceding the peak of the Ca2+ current triggered by the AP. Consequently, when N-type VGCCs are inhibited, the early broadening of the AP shape amplifies the activity of other VGCCs, leading to an augmented total Ca2+ influx. A NEURON model, constructed to replicate and support these experimental results, reveals the critical coupling between N-type and BK channels. This study not only redefines the conventional role of N-type VGCCs as primarily involved in presynaptic neurotransmitter release but also establishes their distinct and essential function as activators of BK CAKCs in neuronal dendrites. Furthermore, our results provide original functional validation of a physical interaction between Ca2+ and K+ channels, elucidated through ultrafast kinetic reconstruction. This insight enhances our understanding of the intricate mechanisms governing neuronal signaling and may have far-reaching implications in the field.
Collapse
Affiliation(s)
- Laila Ananda Blömer
- LIPhy, CNRS, Université Grenoble Alpes, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France
| | - Elisabetta Giacalone
- Institute of Biophysics, National Research Council, Palermo, Italy
- Dipartimento Matematica e Informatica, Universitá degli Studi di Palermo, Palermo, Italy
| | - Fatima Abbas
- LIPhy, CNRS, Université Grenoble Alpes, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France
| | - Luiza Filipis
- LIPhy, CNRS, Université Grenoble Alpes, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France
| | - Domenico Tegolo
- Dipartimento Matematica e Informatica, Universitá degli Studi di Palermo, Palermo, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Marco Canepari
- LIPhy, CNRS, Université Grenoble Alpes, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France
- Institut National de la Santé et Recherche Médicale, Paris, France
| |
Collapse
|
3
|
Aruljothi S, Manchanda R. A biophysically comprehensive model of urothelial afferent neurons: implications for sensory signalling in urinary bladder. J Comput Neurosci 2024; 52:21-37. [PMID: 38345739 DOI: 10.1007/s10827-024-00865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
The urothelium is the innermost layer of the bladder wall; it plays a pivotal role in bladder sensory transduction by responding to chemical and mechanical stimuli. The urothelium also acts as a physical barrier between urine and the outer layers of the bladder wall. There is intricate sensory communication between the layers of the bladder wall and the neurons that supply the bladder, which eventually translates into the regulation of mechanical activity. In response to natural stimuli, urothelial cells release substances such as ATP, nitric oxide (NO), substance P, acetylcholine (ACh), and adenosine. These act on adjacent urothelial cells, myofibroblasts, and urothelial afferent neurons (UAN), controlling the contractile activity of the bladder. There is rising evidence on the importance of urothelial sensory signalling, yet a comprehensive understanding of the functioning of the urothelium-afferent neurons and the factors that govern it remains elusive to date. Until now, the biophysical studies done on UAN have been unable to provide adequate information on the ion channel composition of the neuron, which is paramount to understanding the electrical functioning of the UAN and, by extension, afferent signalling. To this end, we have attempted to model UAN to decipher the ionic mechanisms underlying the excitability of the UAN. In contrast to previous models, our model was built and validated using morphological and biophysical properties consistent with experimental findings for the UAN. The model included all the channels thus far known to be expressed in UAN, including; voltage-gated sodium and potassium channels, N, L, T, P/Q, R-type calcium channels, large-conductance calcium-dependent potassium (BK) channels, small conductance calcium-dependent (SK) channels, Hyperpolarisation activated cation (HCN) channels, transient receptor potential melastatin (TRPM8), transient receptor potential vanilloid (TRPV1) channel, calcium-activated chloride(CaCC) channels, and internal calcium dynamics. Our UAN model a) was constrained as far as possible by experimental data from the literature for the channels and the spiking activity, b) was validated by reproducing the experimental responses to current-clamp and voltage-clamp protocols c) was used as a base for modelling the non-urothelial afferent neurons (NUAN). Using our models, we also gained insights into the variations in ion channels between UAN and NUAN neurons.
Collapse
Affiliation(s)
- Satchithananthi Aruljothi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India.
| |
Collapse
|
4
|
Mao F, Yang W. How Merkel cells transduce mechanical stimuli: A biophysical model of Merkel cells. PLoS Comput Biol 2023; 19:e1011720. [PMID: 38117763 PMCID: PMC10732429 DOI: 10.1371/journal.pcbi.1011720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
Merkel cells combine with Aβ afferents, producing slowly adapting type 1(SA1) responses to mechanical stimuli. However, how Merkel cells transduce mechanical stimuli into neural signals to Aβ afferents is still unclear. Here we develop a biophysical model of Merkel cells for mechanical transduction by incorporating main ingredients such as Ca2+ and K+ voltage-gated channels, Piezo2 channels, internal Ca2+ stores, neurotransmitters release, and cell deformation. We first validate our model with several experiments. Then we reveal that Ca2+ and K+ channels on the plasma membrane shape the depolarization of membrane potentials, further regulating the Ca2+ transients in the cells. We also show that Ca2+ channels on the plasma membrane mainly inspire the Ca2+ transients, while internal Ca2+ stores mainly maintain the Ca2+ transients. Moreover, we show that though Piezo2 channels are rapidly adapting mechanical-sensitive channels, they are sufficient to inspire sustained Ca2+ transients in Merkel cells, which further induce the release of neurotransmitters for tens of seconds. Thus our work provides a model that captures the membrane potentials and Ca2+ transients features of Merkel cells and partly explains how Merkel cells transduce the mechanical stimuli by Piezo2 channels.
Collapse
Affiliation(s)
- Fangtao Mao
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wenzhen Yang
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Nagaraja S, Tewari SG, Reifman J. Predictive analytics identifies key factors driving hyperalgesic priming of muscle sensory neurons. Front Neurosci 2023; 17:1254154. [PMID: 37942142 PMCID: PMC10629345 DOI: 10.3389/fnins.2023.1254154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Hyperalgesic priming, a form of neuroplasticity induced by inflammatory mediators, in peripheral nociceptors enhances the magnitude and duration of action potential (AP) firing to future inflammatory events and can potentially lead to pain chronification. The mechanisms underlying the development of hyperalgesic priming are not well understood, limiting the identification of novel therapeutic strategies to combat chronic pain. In this study, we used a computational model to identify key proteins whose modifications caused priming of muscle nociceptors and made them hyperexcitable to a subsequent inflammatory event. First, we extended a previously validated model of mouse muscle nociceptor sensitization to incorporate Epac-mediated interaction between two G protein-coupled receptor signaling pathways commonly activated by inflammatory mediators. Next, we calibrated and validated the model simulations of the nociceptor's AP response to both innocuous and noxious levels of mechanical force after two subsequent inflammatory events using literature data. Then, by performing global sensitivity analyses that simulated thousands of nociceptor-priming scenarios, we identified five ion channels and two molecular processes (from the 18 modeled transmembrane proteins and 29 intracellular signaling components) as potential regulators of the increase in AP firing in response to mechanical forces. Finally, when we simulated specific neuroplastic modifications in Kv1.1 and Nav1.7 alone as well as with simultaneous modifications in Nav1.7, Nav1.8, TRPA1, and Kv7.2, we observed a considerable increase in the fold change in the number of triggered APs in primed nociceptors. These results suggest that altering the expression of Kv1.1 and Nav1.7 might regulate the neuronal hyperexcitability in primed mechanosensitive muscle nociceptors.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Shivendra G. Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
6
|
Yang M, Wang J, Li S, Wang K, Yue W, Liu C. Adaptive closed-loop paradigm of electrophysiology for neuron models. Neural Netw 2023; 165:406-419. [PMID: 37329784 DOI: 10.1016/j.neunet.2023.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 12/15/2022] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
The traditional electrophysiological experiments based on an open-loop paradigm are relatively complicated and limited when facing an individual neuron with uncertain nonlinear factors. Emerging neural technologies enable tremendous growth in experimental data leading to the curse of high-dimensional data, which obstructs the mechanism exploration of spiking activities in the neurons. In this work, we propose an adaptive closed-loop electrophysiology simulation experimental paradigm based on a Radial Basis Function neural network and a highly nonlinear unscented Kalman filter. On account of the complex nonlinear dynamic characteristics of the real neurons, the proposed simulation experimental paradigm could fit the unknown neuron models with different channel parameters and different structures (i.e. single or multiple compartments), and further compute the injected stimulus in time according to the arbitrary desired spiking activities of the neurons. However, the hidden electrophysiological states of the neurons are difficult to be measured directly. Thus, an extra Unscented Kalman filter modular is incorporated in the closed-loop electrophysiology experimental paradigm. The numerical results and theoretical analyses demonstrate that the proposed adaptive closed-loop electrophysiology simulation experimental paradigm achieves desired spiking activities arbitrarily and the hidden dynamics of the neurons are visualized by the unscented Kalman filter modular. The proposed adaptive closed-loop simulation experimental paradigm can avoid the inefficiency of data at increasingly greater scales and enhance the scalability of electrophysiological experiments, thus speeding up the discovery cycle on neuroscience.
Collapse
Affiliation(s)
- Ming Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Shanshan Li
- School of Electrical and Automation Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Kuanchuan Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Wei Yue
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
7
|
Nagaraja S, Tewari SG, Reifman J. Identification of key factors driving inflammation-induced sensitization of muscle sensory neurons. Front Neurosci 2023; 17:1147437. [PMID: 37250415 PMCID: PMC10213456 DOI: 10.3389/fnins.2023.1147437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Sensory neurons embedded in muscle tissue that initiate pain sensations, i.e., nociceptors, are temporarily sensitized by inflammatory mediators during musculoskeletal trauma. These neurons transduce peripheral noxious stimuli into an electrical signal [i.e., an action potential (AP)] and, when sensitized, demonstrate lower activation thresholds and a heightened AP response. We still do not understand the relative contributions of the various transmembrane proteins and intracellular signaling processes that drive the inflammation-induced hyperexcitability of nociceptors. In this study, we used computational analysis to identify key proteins that could regulate the inflammation-induced increase in the magnitude of AP firing in mechanosensitive muscle nociceptors. First, we extended a previously validated model of a mechanosensitive mouse muscle nociceptor to incorporate two inflammation-activated G protein-coupled receptor (GPCR) signaling pathways and validated the model simulations of inflammation-induced nociceptor sensitization using literature data. Then, by performing global sensitivity analyses that simulated thousands of inflammation-induced nociceptor sensitization scenarios, we identified three ion channels and four molecular processes (from the 17 modeled transmembrane proteins and 28 intracellular signaling components) as potential regulators of the inflammation-induced increase in AP firing in response to mechanical forces. Moreover, we found that simulating single knockouts of transient receptor potential ankyrin 1 (TRPA1) and reducing the rates of Gαq-coupled receptor phosphorylation and Gαq subunit activation considerably altered the excitability of nociceptors (i.e., each modification increased or decreased the inflammation-induced fold change in the number of triggered APs compared to when all channels were present). These results suggest that altering the expression of TRPA1 or the concentration of intracellular Gαq might regulate the inflammation-induced increase in AP response of mechanosensitive muscle nociceptors.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Shivendra G. Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
8
|
Estrella E, Rockowitz S, Thorne M, Smith P, Petit J, Zehnder V, Yu RN, Bauer S, Berde C, Agrawal PB, Beggs AH, Gharavi AG, Kunkel L, Brownstein CA. Mendelian Disorders in an Interstitial Cystitis/Bladder Pain Syndrome Cohort. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200013. [PMID: 36910591 PMCID: PMC10000272 DOI: 10.1002/ggn2.202200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic pain disorder causing symptoms of urinary frequency, urgency, and bladder discomfort or pain. Although this condition affects a large population, little is known about its etiology. Genetic analyses of whole exome sequencing are performed on 109 individuals with IC/BPS. One family has a previously reported SIX5 variant (ENST00000317578.6:c.472G>A, p.Ala158Thr), consistent with Branchiootorenal syndrome 2 (BOR2). A likely pathogenic heterozygous variant in ATP2A2 (ENST00000539276.2:c.235G>A, p.Glu79Lys) is identified in two unrelated probands, indicating possible Darier-White disease. Two private heterozygous variants are identified in ATP2C1 (ENST00000393221.4:c.2358A>T, p.Glu786Asp (VUS/Likely Pathogenic) and ENST00000393221.4:c.989C>G, p.Thr330Ser (likely pathogenic)), indicative of Hailey-Hailey Disease. Sequence kernel association test analysis finds an increased burden of rare ATP2C1 variants in the IC/BPS cases versus a control cohort (p = 0.03, OR = 6.76), though does not survive Bonferroni correction. The data suggest that some individuals with IC/BPS may have unrecognized Mendelian syndromes. Comprehensive phenotyping and genotyping aid in understanding the range of diagnoses in the population-based IC/BPS cohort. Conversely, ATP2C1, ATP2A2, and SIX5 may be candidate genes for IC/BPS. Further evaluation with larger numbers is needed. Genetically screening individuals with IC/BPS may help diagnose and treat this painful disorder due to its heterogeneous nature.
Collapse
Affiliation(s)
- Elicia Estrella
- Department of NeurologyBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Shira Rockowitz
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- Research ComputingInformation TechnologyBoston Children's HospitalBostonMA02115USA
| | - Marielle Thorne
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Pressley Smith
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jeanette Petit
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Veronica Zehnder
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Richard N. Yu
- Department of UrologyBoston Children's HospitalBostonMA02115USA
| | - Stuart Bauer
- Department of UrologyBoston Children's HospitalBostonMA02115USA
| | - Charles Berde
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- Department of Anesthesiology, Critical Care and Pain MedicineBoston Children's HospitalBostonMA02115USA
- Department of AnaesthesiaHarvard Medical SchoolBostonMA02115USA
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- Division of Newborn MedicineBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Alan H. Beggs
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Ali G. Gharavi
- Institute for Genomic MedicineVagelos College of Physicians & SurgeonsColumbia UniversityNew YorkNY10032USA
- Division of NephrologyDepartment of MedicineVagelos College of Physicians & SurgeonsColumbia UniversityNew YorkNY10032USA
- Center for Precision Medicine and GenomicsDepartment of MedicineVagelos College of Physicians & SurgeonsColumbia UniversityNew YorkNY10032USA
| | - Louis Kunkel
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Catherine A. Brownstein
- Division of Genetics and Genomics Boston Children's HospitalHarvard Medical SchoolBostonMA02115USA
- The Manton Center for Orphan disease ResearchBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
9
|
Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider. Proc Natl Acad Sci U S A 2022; 119:2110932119. [PMID: 35074873 PMCID: PMC8812547 DOI: 10.1073/pnas.2110932119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.
Collapse
|
10
|
Eiber CD, Payne SC, Biscola NP, Havton LA, Keast JR, Osborne PB, Fallon JB. Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces. J Neural Eng 2021; 18. [PMID: 34740201 DOI: 10.1088/1741-2552/ac36e2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022]
Abstract
Objective.Neuromodulation of visceral nerves is being intensively studied for treating a wide range of conditions, but effective translation requires increasing the efficacy and predictability of neural interface performance. Here we use computational models of rat visceral nerve to predict how neuroanatomical variability could affect both electrical stimulation and recording with an experimental planar neural interface.Approach.We developed a hybrid computational pipeline,VisceralNerveEnsembleRecording andStimulation (ViNERS), to couple finite-element modelling of extracellular electrical fields with biophysical simulations of individual axons. Anatomical properties of fascicles and axons in rat pelvic and vagus nerves were measured or obtained from public datasets. To validate ViNERS, we simulated pelvic nerve stimulation and recording with an experimental four-electrode planar array.Main results.Axon diameters measured from pelvic nerve were used to model a population of myelinated and unmyelinated axons and simulate recordings of electrically evoked single-unit field potentials (SUFPs). Across visceral nerve fascicles of increasing size, our simulations predicted an increase in stimulation threshold and a decrease in SUFP amplitude. Simulated threshold changes were dominated by changes in perineurium thickness, which correlates with fascicle diameter. We also demonstrated that ViNERS could simulate recordings of electrically-evoked compound action potentials (ECAPs) that were qualitatively similar to pelvic nerve recording made with the array used for simulation.Significance.We introduce ViNERS as a new open-source computational tool for modelling large-scale stimulation and recording from visceral nerves. ViNERS predicts how neuroanatomical variation in rat pelvic nerve affects stimulation and recording with an experimental planar electrode array. We show ViNERS can simulate ECAPS that capture features of our recordings, but our results suggest the underlying NEURON models need to be further refined and specifically adapted to accurately simulate visceral nerve axons.
Collapse
Affiliation(s)
- Calvin D Eiber
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Sophie C Payne
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, The University of Melbourne, Victoria, Australia
| | - Natalia P Biscola
- Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Leif A Havton
- Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, The University of Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Nagaraja S, Queme LF, Hofmann MC, Tewari SG, Jankowski MP, Reifman J. In silico Identification of Key Factors Driving the Response of Muscle Sensory Neurons to Noxious Stimuli. Front Neurosci 2021; 15:719735. [PMID: 34566566 PMCID: PMC8461020 DOI: 10.3389/fnins.2021.719735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Nociceptive nerve endings embedded in muscle tissue transduce peripheral noxious stimuli into an electrical signal [i.e., an action potential (AP)] to initiate pain sensations. A major contributor to nociception from the muscles is mechanosensation. However, due to the heterogeneity in the expression of proteins, such as ion channels, pumps, and exchangers, on muscle nociceptors, we currently do not know the relative contributions of different proteins and signaling molecules to the neuronal response due to mechanical stimuli. In this study, we employed an integrated approach combining a customized experimental study in mice with a computational model to identify key proteins that regulate mechanical nociception in muscles. First, using newly collected data from somatosensory recordings in mouse hindpaw muscles, we developed and then validated a computational model of a mechanosensitive mouse muscle nociceptor. Next, by performing global sensitivity analyses that simulated thousands of nociceptors, we identified three ion channels (among the 17 modeled transmembrane proteins and four endoplasmic reticulum proteins) as potential regulators of the nociceptor response to mechanical forces in both the innocuous and noxious range. Moreover, we found that simulating single knockouts of any of the three ion channels, delayed rectifier voltage-gated K+ channel (Kv1.1) or mechanosensitive channels Piezo2 or TRPA1, considerably altered the excitability of the nociceptor (i.e., each knockout increased or decreased the number of triggered APs compared to when all channels were present). These results suggest that altering expression of the gene encoding Kv1.1, Piezo2, or TRPA1 might regulate the response of mechanosensitive muscle nociceptors.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
12
|
Suleimanova A, Talanov M, van den Maagdenberg AMJM, Giniatullin R. Deciphering in silico the Role of Mutated Na V 1.1 Sodium Channels in Enhancing Trigeminal Nociception in Familial Hemiplegic Migraine Type 3. Front Cell Neurosci 2021; 15:644047. [PMID: 34135733 PMCID: PMC8200561 DOI: 10.3389/fncel.2021.644047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.
Collapse
Affiliation(s)
- Alina Suleimanova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Max Talanov
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Features of Action Potentials from Identified Thalamic Nuclei in Anesthetized Patients. Brain Sci 2020; 10:brainsci10121002. [PMID: 33348660 PMCID: PMC7766545 DOI: 10.3390/brainsci10121002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
Abstract
Our objective was to describe the electrophysiological properties of the extracellular action potential (AP) picked up through microelectrode recordings (MERs). Five patients were operated under general anesthesia for centromedian deep brain stimulation (DBS). APs from the same cell were pooled to obtain a mean AP (mAP). The amplitudes and durations for all 2/3 phases were computed from the mAP, together with the maximum (dVmax) and minimum (dVmin) values of the first derivative, as well as the slopes of different phases during repolarization. The mAPs are denominated according to the phase polarity (P/N for positive/negative). We obtained a total of 1109 mAPs, most of the positive (98.47%) and triphasic (93.69%) with a small P/N deflection (Vphase1) before depolarization. The percentage of the different types of mAPs was different for the nuclei addressed. The relationship between dVmax and the depolarizing phase is specific. The descending phase of the first derivative identified different phases during the repolarizing period. We observed a high correlation between Vphase1 and the amplitudes of either depolarization or repolarization phases. Human thalamic nuclei differ in their electrophysiological properties of APs, even under general anesthesia. Capacitive current, which is probably responsible for Vphase1, is very common in thalamic APs. Moreover, subtle differences during repolarization are neuron-specific.
Collapse
|
14
|
Verma P, Eaton M, Kienle A, Flockerzi D, Yang Y, Ramkrishna D. Examining Sodium and Potassium Channel Conductances Involved in Hyperexcitability of Chemotherapy-Induced Peripheral Neuropathy: A Mathematical and Cell Culture-Based Study. Front Comput Neurosci 2020; 14:564980. [PMID: 33178002 PMCID: PMC7593680 DOI: 10.3389/fncom.2020.564980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/02/2020] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a prevalent, painful side effect which arises due to a number of chemotherapy agents. CIPN can have a prolonged effect on quality of life. Chemotherapy treatment is often reduced or stopped altogether because of the severe pain. Currently, there are no FDA-approved treatments for CIPN partially due to its complex pathogenesis in multiple pathways involving a variety of channels, specifically, voltage-gated ion channels. One aspect of neuropathic pain in vitro is hyperexcitability in dorsal root ganglia (DRG) peripheral sensory neurons. Our study employs bifurcation theory to investigate the role of voltage-gated ion channels in inducing hyperexcitability as a consequence of spontaneous firing due to the common chemotherapy agent paclitaxel. Our mathematical investigation of a reductionist DRG neuron model comprised of sodium channel Nav1.7, sodium channel Nav1.8, delayed rectifier potassium channel, A-type transient potassium channel, and a leak channel suggests that Nav1.8 and delayed rectifier potassium channel conductances are critical for hyperexcitability of small DRG neurons. Introducing paclitaxel into the model, our bifurcation analysis predicts that hyperexcitability is highest for a medium dose of paclitaxel, which is supported by multi-electrode array (MEA) recordings. Furthermore, our findings using MEA reveal that Nav1.8 blocker A-803467 and delayed rectifier potassium enhancer L-alpha-phosphatidyl-D-myo-inositol 4,5-diphosphate, dioctanoyl (PIP2) can reduce paclitaxel-induced hyperexcitability of DRG neurons. Our approach can be readily extended and used to investigate various other contributors of hyperexcitability in CIPN.
Collapse
Affiliation(s)
- Parul Verma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Muriel Eaton
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Achim Kienle
- Process Synthesis and Dynamics Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Automation/Modeling, Otto von Guericke University, Magdeburg, Germany
| | - Dietrich Flockerzi
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Otto von Guericke University, Magdeburg, Germany
| | - Yang Yang
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Doraiswami Ramkrishna
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Computational analysis of a 9D model for a small DRG neuron. J Comput Neurosci 2020; 48:429-444. [PMID: 32862338 DOI: 10.1007/s10827-020-00761-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Small dorsal root ganglion (DRG) neurons are primary nociceptors which are responsible for sensing pain. Elucidation of their dynamics is essential for understanding and controlling pain. To this end, we present a numerical bifurcation analysis of a small DRG neuron model in this paper. The model is of Hodgkin-Huxley type and has 9 state variables. It consists of a Nav1.7 and a Nav1.8 sodium channel, a leak channel, a delayed rectifier potassium, and an A-type transient potassium channel. The dynamics of this model strongly depend on the maximal conductances of the voltage-gated ion channels and the external current, which can be adjusted experimentally. We show that the neuron dynamics are most sensitive to the Nav1.8 channel maximal conductance ([Formula: see text]). Numerical bifurcation analysis shows that depending on [Formula: see text] and the external current, different parameter regions can be identified with stable steady states, periodic firing of action potentials, mixed-mode oscillations (MMOs), and bistability between stable steady states and stable periodic firing of action potentials. We illustrate and discuss the transitions between these different regimes. We further analyze the behavior of MMOs. As the external current is decreased, we find that MMOs appear after a cyclic limit point. Within this region, bifurcation analysis shows a sequence of isolated periodic solution branches with one large action potential and a number of small amplitude peaks per period. For decreasing external current, the number of small amplitude peaks is increasing and the distance between the large amplitude action potentials is growing, finally tending to infinity and thereby leading to a stable steady state. A closer inspection reveals more complex concatenated MMOs in between these periodic MMO branches, forming Farey sequences. Lastly, we also find small solution windows with aperiodic oscillations which seem to be chaotic. The dynamical patterns found here-as consequences of bifurcation points regulated by different parameters-have potential translational significance as repetitive firing of action potentials imply pain of some form and intensity; manipulating these patterns by regulating the different parameters could aid in investigating pain dynamics.
Collapse
|
16
|
Suleimanova A, Talanov M, Gafurov O, Gafarov F, Koroleva K, Virenque A, Noe FM, Mikhailov N, Nistri A, Giniatullin R. Modeling a Nociceptive Neuro-Immune Synapse Activated by ATP and 5-HT in Meninges: Novel Clues on Transduction of Chemical Signals Into Persistent or Rhythmic Neuronal Firing. Front Cell Neurosci 2020; 14:135. [PMID: 32508598 PMCID: PMC7248338 DOI: 10.3389/fncel.2020.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Extracellular ATP and serotonin (5-HT) are powerful triggers of nociceptive firing in the meninges, a process supporting headache and whose cellular mechanisms are incompletely understood. The current study aimed to develop, with the neurosimulator NEURON, a novel approach to explore in silico the molecular determinants of the long-lasting, pulsatile nature of migraine attacks. The present model included ATP and 5-HT release, ATP diffusion and hydrolysis, 5-HT uptake, differential activation of ATP P2X or 5-HT3 receptors, and receptor subtype-specific desensitization. The model also tested the role of branched meningeal fibers with multiple release sites. Spike generation and propagation were simulated using variable contribution by potassium and sodium channels in a multi-compartment fiber environment. Multiple factors appeared important to ensure prolonged nociceptive firing potentially relevant to long-lasting pain. Crucial roles were observed in: (i) co-expression of ATP P2X2 and P2X3 receptor subunits; (ii) intrinsic activation/inactivation properties of sodium Nav1.8 channels; and (iii) temporal and spatial distribution of ATP/5-HT release sites along the branches of trigeminal nerve fibers. Based on these factors we could obtain either persistent activation of nociceptive firing or its periodic bursting mimicking the pulsating nature of pain. In summary, our model proposes a novel tool for the exploration of peripheral nociception to test the contribution of clinically relevant factors to headache including migraine pain.
Collapse
Affiliation(s)
| | - Max Talanov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Fail' Gafarov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Ksenia Koroleva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Anaïs Virenque
- Neuroscience Center, Helsinki University, Helsinki, Finland
| | | | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies, Trieste, Italy
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Mandge D, Shukla PR, Bhatnagar A, Manchanda R. Computational Model for Cross-Depolarization in DRG Neurons via Satellite Glial Cells using [K] o: Role of Kir4.1 Channels and Extracellular Leakage. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2320-2323. [PMID: 31946364 DOI: 10.1109/embc.2019.8857153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Satellite glial cells (SGCs) are glial cells found in the peripheral nervous system where they tightly envelop the somata of the primary sensory neurons such as dorsal root ganglion (DRG) neurons and nodose ganglion (NG) neurons. The somata of these neurons are generally compactly packed in their respective ganglia (DRG and NG). SGCs covering a neuron behave as an insulator of electrical activity from neighbouring neurons within the ganglion. Several studies have however shown that the somata show "cross-depolarization" (CD). Origin of CDs has been hypothesized to be chemical in nature: either from neurotransmitter release from both SGCs and somata or from elevation of extracellular potassium concentration ([K]o) in the vicinity of somata. Here, we investigate the role of Kir4.1 channels on SGC and diffusion/clearance factor (β) of [K]o from the space between SGC and DRG neuron somata to the bulk extracellular space in ganglion. We show using two "Soma-SGC Units" interacting via gap junction that a combination of Kir4.1 and β could be responsible for CD between DRG neuron somata in pathological conditions.
Collapse
|
18
|
Gupta S, Manchanda R. A computational model of large conductance voltage and calcium activated potassium channels: implications for calcium dynamics and electrophysiology in detrusor smooth muscle cells. J Comput Neurosci 2019; 46:233-256. [PMID: 31025235 DOI: 10.1007/s10827-019-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
The large conductance voltage and calcium activated potassium (BK) channels play a crucial role in regulating the excitability of detrusor smooth muscle, which lines the wall of the urinary bladder. These channels have been widely characterized in terms of their molecular structure, pharmacology and electrophysiology. They control the repolarising and hyperpolarising phases of the action potential, thereby regulating the firing frequency and contraction profiles of the smooth muscle. Several groups have reported varied profiles of BK currents and I-V curves under similar experimental conditions. However, no single computational model has been able to reconcile these apparent discrepancies. In view of the channels' physiological importance, it is imperative to understand their mechanistic underpinnings so that a realistic model can be created. This paper presents a computational model of the BK channel, based on the Hodgkin-Huxley formalism, constructed by utilising three activation processes - membrane potential, calcium inflow from voltage-gated calcium channels on the membrane and calcium released from the ryanodine receptors present on the sarcoplasmic reticulum. In our model, we attribute the discrepant profiles to the underlying cytosolic calcium received by the channel during its activation. The model enables us to make heuristic predictions regarding the nature of the sub-membrane calcium dynamics underlying the BK channel's activation. We have employed the model to reproduce various physiological characteristics of the channel and found the simulated responses to be in accordance with the experimental findings. Additionally, we have used the model to investigate the role of this channel in electrophysiological signals, such as the action potential and spontaneous transient hyperpolarisations. Furthermore, the clinical effects of BK channel openers, mallotoxin and NS19504, were simulated for the detrusor smooth muscle cells. Our findings support the proposed application of these drugs for amelioration of the condition of overactive bladder. We thus propose a physiologically realistic BK channel model which can be integrated with other biophysical mechanisms such as ion channels, pumps and exchangers to further elucidate its micro-domain interaction with the intracellular calcium environment.
Collapse
Affiliation(s)
- Suranjana Gupta
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Rohit Manchanda
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|