1
|
Mori H, Goji A, Hara M. Upregulation of Intracellular Zinc Ion Level after Differentiation of the Neural Stem/Progenitor Cells In Vitro with the Changes in Gene Expression of Zinc Transporters. Biol Trace Elem Res 2024; 202:4699-4714. [PMID: 38180597 DOI: 10.1007/s12011-023-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
We measured the intracellular zinc ion concentration of murine fetal neural stem/progenitor cells (NSPCs) and that in the differentiated cells. The NSPCs cultured with 1.5 μM Zn2+ proliferated slightly faster than that in the zinc-deficient medium and the intracellular zinc concentration of the NSPCs and that of their differentiated cells (DCs) cultured with 1.5 μM Zn2+ was 1.34-fold and 2.00-fold higher than those in the zinc-deficient medium, respectively. The zinc transporter genes upregulated over the 3.5-fold change were Zip1, Zip4, Zip12, Zip13, ZnT1, ZnT8, and ZnT10 whereas the only downregulated one was Zip8 during the differentiation of NSPCs to DCs. The cell morphologies of both NSPCs and DCs in the low oxygen culture condition consisting of 2%O2 and 5%CO2, the high carbon dioxide condition consisting of 21%O2 and 10%CO2, and the normal condition consisting of 21%O2 and 5%CO2 were essentially the same each other. The expression of Zip4, Zip8, Zip12, and Zip14 was not drastically changed depending on the O2 and CO2 concentrations.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Akari Goji
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Hara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
2
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy coupling and stoichiometry of Zn 2+/H + antiport by the prokaryotic cation diffusion facilitator YiiP. eLife 2023; 12:RP87167. [PMID: 37906094 PMCID: PMC10617992 DOI: 10.7554/elife.87167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
YiiP from Shewanella oneidensis is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Shujie Fan
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Maria Lopez-Redondo
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Ian Kenney
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Xihui Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Oliver Beckstein
- Department of Physics, Arizona State UniversityTempeUnited States
| | - David L Stokes
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
3
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy Coupling and Stoichiometry of Zn 2+/H + Antiport by the Cation Diffusion Facilitator YiiP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529644. [PMID: 36865113 PMCID: PMC9980050 DOI: 10.1101/2023.02.23.529644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
YiiP is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | - Shujie Fan
- Dept. of Physics, Arizona State University, Tempe AZ
| | | | - Ian Kenney
- Dept. of Physics, Arizona State University, Tempe AZ
| | - Xihui Zhang
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | | | - David L Stokes
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| |
Collapse
|
4
|
Yalcin-Ozkat G. Molecular Modeling Strategies of Cancer Multidrug Resistance. Drug Resist Updat 2021; 59:100789. [PMID: 34973929 DOI: 10.1016/j.drup.2021.100789] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. Hence, the increase in cancer cases observed in the elderly population, as well as in children and adolescents, makes human malignancies a prime target for anticancer drug development. Although highly effective chemotherapeutic agents are continuously developed and approved for clinical treatment, the major impediment towards curative cancer therapy remains multidrug resistance (MDR). In recent years, intensive studies have been carried out on the identification of new therapeutic molecules to reverse MDR efflux transporters of the ATP-binding cassette (ABC) superfamily. Although a great deal of progress has been made in the development of specific inhibitors for certain MDR efflux pumps in experimental studies, advanced computational studies can accelerate this drug development process. In the literature, there are many experimental studies on the impact of natural products and synthetic small molecules on the reversal of cancer MDR. Molecular modeling methods provide an opportunity to explain the activity of these molecules on the ABC-transporter family with non-covalent interactions as well as it is possible to carry out studies for the discovery of new anticancer drugs specific to MDR with these methods. The coordinate file of the 3-dimensional (3D) structure of the target protein is indispensable for molecular modeling studies. In some cases where a 3D structure cannot be obtained by experimental methods, the homology modeling method can be applied to obtain the file containing the target protein's information including atomic coordinates, secondary structure assignments, and atomic connectivity. Homology modeling studies are of great importance for efflux transporter proteins that still lack 3D structures due to crystallization problems with multiple hydrophobic transmembrane domains. Quantum mechanics, molecular docking and molecular dynamics simulation applications are the most frequently used molecular modeling methods in the literature to investigate non-covalent interactions between the drug-ABC transporter superfamily. The quantitative structure-activity relationship (QSAR) model provides a relationship between the chemical properties of a compound and its biological activity. Determining the pharmacophore region for a new drug molecule by superpositioning a series of molecules according to their physicochemical properties using QSAR models is another method in which molecular modeling is used in computational drug development studies with ABC transporter proteins. There are also in silico absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) studies conducted to make a prediction about the pharmacokinetic properties, and drug-likeness of new molecules. Drug repurposing studies, which have become a trending topic in recent years, involve identifying possible new targets for an already approved drug molecule. There are few studies in the literature in which drug repurposing performed by molecular modelling methods has been applied on ABC transporter proteins. The aim of the current paper is to create a complete review of drug development studies including aforementioned molecular modeling methods carried out between the years 2019-2021. Furthermore, an intensive investigation is also conducted on licensed applications and free web servers used in in silico studies. The current review is an up-to-date guide for researchers who plan to conduct computational studies with MDR transporter proteins.
Collapse
Affiliation(s)
- Gozde Yalcin-Ozkat
- Recep Tayyip Erdogan University, Faculty of Engineering and Architecture, Bioengineering Department, 53100, Rize, Turkey; Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106, Magdeburg, Germany.
| |
Collapse
|
5
|
Nash Y, Ganoth A, Borenstein-Auerbach N, Levy-Barazany H, Goldsmith G, Kopelevich A, Pozyuchenko K, Sakhneny L, Lazdon E, Blanga-Kanfi S, Alhadeff R, Benromano T, Landsman L, Tsfadia Y, Frenkel D. From virus to diabetes therapy: Characterization of a specific insulin-degrading enzyme inhibitor for diabetes treatment. FASEB J 2021; 35:e21374. [PMID: 33835493 DOI: 10.1096/fj.201901945r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Inhibition of insulin-degrading enzyme (IDE) is a possible target for treating diabetes. However, it has not yet evolved into a medical intervention, mainly because most developed inhibitors target the zinc in IDE's catalytic site, potentially causing toxicity to other essential metalloproteases. Since IDE is a cellular receptor for the varicella-zoster virus (VZV), we constructed a VZV-based inhibitor. We computationally characterized its interaction site with IDE showing that the peptide specifically binds inside IDE's central cavity, however, not in close proximity to the zinc ion. We confirmed the peptide's effective inhibition on IDE activity in vitro and showed its efficacy in ameliorating insulin-related defects in types 1 and 2 diabetes mouse models. In addition, we suggest that inhibition of IDE may ameliorate the pro-inflammatory profile of CD4+ T-cells toward insulin. Together, we propose a potential role of a designed VZV-derived peptide to serve as a selectively-targeted and as an efficient diabetes therapy.
Collapse
Affiliation(s)
- Yuval Nash
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Ganoth
- The Interdisciplinary Center (IDC), Herzliya, Israel.,Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nofit Borenstein-Auerbach
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hilit Levy-Barazany
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Guy Goldsmith
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Kopelevich
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Katia Pozyuchenko
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lina Sakhneny
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Lazdon
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Blanga-Kanfi
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Raphael Alhadeff
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Tali Benromano
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Tsfadia
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Sala D, Giachetti A, Rosato A. Insights into the Dynamics of the Human Zinc Transporter ZnT8 by MD Simulations. J Chem Inf Model 2021; 61:901-912. [PMID: 33508935 PMCID: PMC8023586 DOI: 10.1021/acs.jcim.0c01139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 02/07/2023]
Abstract
ZnT8 is a human zinc(II) transporter expressed at the membrane of secretory granules where it contributes to insulin storage importing zinc ions from the cytosol. In the human population, the two most common ZnT8 variants carry an arginine (R325) or a tryptophan (W325) in position 325. The former variant has the most efficient kinetics in zinc transport and has been correlated to a higher risk of developing insulin resistance. On the contrary, the W325 variant is less active and protects against type-2-diabetes. Here, we used molecular dynamics (MD) simulations to investigate the main differences between the R325 and W325 variants in the interaction with zinc(II) ions. Our simulations suggested that the position of the metal ion within the transport site was not the same for the two variants, underlying a different rearrangement of the transmembrane (TM) helices in the channel. The W325 variant featured a peculiar zinc environment not detected in the experimental structures. With respect to conformational dynamics, we observed that the R325 variant was significantly more flexible than W325, with the main role played by the transmembrane domain (TMD) and the C-terminal domain (CTD). This dynamics affected the packing of the TM helices and thus the channel accessibility from the cytosol. The dimer interface that keeps the two TM channels in contact became looser in both variants upon zinc binding to the transport site, suggesting that this may be an important step toward the switch from the inward- to the outward-facing state of the protein.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio
Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Lehvy AI, Horev G, Golan Y, Glaser F, Shammai Y, Assaraf YG. Alterations in ZnT1 expression and function lead to impaired intracellular zinc homeostasis in cancer. Cell Death Discov 2019; 5:144. [PMID: 31728210 PMCID: PMC6851190 DOI: 10.1038/s41420-019-0224-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 02/08/2023] Open
Abstract
Zinc is vital for the structure and function of ~3000 human proteins and hence plays key physiological roles. Consequently, impaired zinc homeostasis is associated with various human diseases including cancer. Intracellular zinc levels are tightly regulated by two families of zinc transporters: ZIPs and ZnTs; ZIPs import zinc into the cytosol from the extracellular milieu, or from the lumen of organelles into the cytoplasm. In contrast, the vast majority of ZnTs compartmentalize zinc within organelles, whereas the ubiquitously expressed ZnT1 is the sole zinc exporter. Herein, we explored the hypothesis that qualitative and quantitative alterations in ZnT1 activity impair cellular zinc homeostasis in cancer. Towards this end, we first used bioinformatics to analyze inactivating mutations in ZIPs and ZNTs, catalogued in the COSMIC and gnomAD databases, representing tumor specimens and healthy population controls, respectively. ZnT1, ZnT10, ZIP8, and ZIP10 showed extremely high rates of loss of function mutations in cancer as compared to healthy controls. Analysis of the putative functional impact of missense mutations in ZnT1-ZnT10 and ZIP1-ZIP14, using homologous protein alignment and structural predictions, revealed that ZnT1 displays a markedly increased frequency of predicted functionally deleterious mutations in malignant tumors, as compared to a healthy population. Furthermore, examination of ZnT1 expression in 30 cancer types in the TCGA database revealed five tumor types with significant ZnT1 overexpression, which predicted dismal prognosis for cancer patient survival. Novel functional zinc transport assays, which allowed for the indirect measurement of cytosolic zinc levels, established that wild type ZnT1 overexpression results in low intracellular zinc levels. In contrast, overexpression of predicted deleterious ZnT1 missense mutations did not reduce intracellular zinc levels, validating eight missense mutations as loss of function (LoF) mutations. Thus, alterations in ZnT1 expression and LoF mutations in ZnT1 provide a molecular mechanism for impaired zinc homeostasis in cancer formation and/or progression.
Collapse
Affiliation(s)
- Adrian Israel Lehvy
- 1The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Guy Horev
- 2Bioinformatics Knowledge Unit, The Lorry, I. Lokey Interdisciplinary Center for Life, Sciences and Engineering, Technion-Israel, Institute of Technology, Haifa, Israel
| | - Yarden Golan
- 1The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fabian Glaser
- 2Bioinformatics Knowledge Unit, The Lorry, I. Lokey Interdisciplinary Center for Life, Sciences and Engineering, Technion-Israel, Institute of Technology, Haifa, Israel
| | - Yael Shammai
- 1The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda Gérard Assaraf
- 1The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat 2019; 48:100662. [PMID: 31927437 DOI: 10.1016/j.drup.2019.100662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Like physics in the 19th century, biology and molecular biology in particular, has been fertilized and enhanced like few other scientific fields, by the incorporation of mathematical methods. In the last decades, a whole new scientific field, bioinformatics, has developed with an output of over 30,000 papers a year (Pubmed search using the keyword "bioinformatics"). Huge databases of mass throughput data have been established, with ArrayExpress alone containing more than 2.7 million assays (October 2019). Computational methods have become indispensable tools in molecular biology, particularly in one of the most challenging areas of cancer research, multidrug resistance (MDR). However, confronted with a plethora of different algorithms, approaches, and methods, the average researcher faces key questions: Which methods do exist? Which methods can be used to tackle the aims of a given study? Or, more generally, how do I use computational biology/bioinformatics to bolster my research? The current review is aimed at providing guidance to existing methods with relevance to MDR research. In particular, we provide an overview on: a) the identification of potential biomarkers using expression data; b) the prediction of treatment response by machine learning methods; c) the employment of network approaches to identify gene/protein regulatory networks and potential key players; d) the identification of drug-target interactions; e) the use of bipartite networks to identify multidrug targets; f) the identification of cellular subpopulations with the MDR phenotype; and, finally, g) the use of molecular modeling methods to guide and enhance drug discovery. This review shall serve as a guide through some of the basic concepts useful in MDR research. It shall give the reader some ideas about the possibilities in MDR research by using computational tools, and, finally, it shall provide a short overview of relevant literature.
Collapse
Affiliation(s)
- A Tolios
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Institute of Clinical Chemistry and Laboratory Medicine, Heinrich Heine University, Duesseldorf, Germany.
| | - J De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain.
| | - E Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital and Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.
| | - P Trouillas
- UMR 1248 INSERM, Univ. Limoges, 2 rue du Dr Marland, 87052, Limoges, France; RCPTM, University Palacký of Olomouc, tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| | - A Scorilas
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | - T Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria; ScienceConsult - DI Thomas Mohr KG, Guntramsdorf, Austria.
| |
Collapse
|
9
|
Sala D, Giachetti A, Rosato A. An atomistic view of the YiiP structural changes upon zinc(II) binding. Biochim Biophys Acta Gen Subj 2019; 1863:1560-1567. [PMID: 31176764 DOI: 10.1016/j.bbagen.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND YiiP is a bacterial zinc-for-proton antiporter belonging to the cation diffusion facilitator family. The zinc(II) ions are transported across the cell membrane, from the cytosol to the extracellular space. METHODS We performed atomistic molecular dynamics simulations of the YiiP dimer with zinc(II) ions in solution to elucidate how the metal ions interact with the protein while moving from the cytosol to the transport site. RESULTS We observed that of the two cavities of the dimer, only one was accessible from the cytosol during transport. Zinc(II) binding to D49 of the transport site triggered a rearrangement of the transmembrane domain that closed the accessible cavity. Finally, we analyzed the free-energy profiles of metal transit in the channel and observed the existence of a high barrier preventing release from the transport site. CONCLUSIONS The observed dynamics is consistent with the dimer-dimer interface forming a stable scaffold against which the rest of the trans-membrane rearranges. GENERAL SIGNIFICANCE Zinc(II) transporters are present in all kingdoms of life. The present study highlights structural features that might be of general relevance.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM), University of Florence, Tuscany, Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Tuscany, Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Tuscany, Sesto Fiorentino, Italy; Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Tuscany, Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Tuscany, Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Golan Y, Alhadeff R, Glaser F, Ganoth A, Warshel A, Assaraf YG. Correction: Demonstrating aspects of multiscale modeling by studying the permeation pathway of the human ZnT2 zinc transporter. PLoS Comput Biol 2019; 15:e1007021. [PMID: 31042699 PMCID: PMC6493709 DOI: 10.1371/journal.pcbi.1007021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Golan Y, Alhadeff R, Warshel A, Assaraf YG. ZnT2 is an electroneutral proton-coupled vesicular antiporter displaying an apparent stoichiometry of two protons per zinc ion. PLoS Comput Biol 2019; 15:e1006882. [PMID: 30893306 PMCID: PMC6443192 DOI: 10.1371/journal.pcbi.1006882] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/01/2019] [Accepted: 02/18/2019] [Indexed: 01/29/2023] Open
Abstract
Zinc is a vital trace element crucial for the proper function of some 3,000 cellular proteins. Specifically, zinc is essential for key physiological processes including nucleic acid metabolism, regulation of gene expression, signal transduction, cell division, immune- and nervous system functions, wound healing, and apoptosis. Consequently, impairment of zinc homeostasis disrupts key cellular functions resulting in various human pathologies. Mammalian zinc transport proceeds via two transporter families ZnT and ZIP. However, the detailed mechanism of action of ZnT2, which is responsible for vesicular zinc accumulation and zinc secretion into breast milk during lactation, is currently unknown. Moreover, although the putative coupling of zinc transport to the proton gradient in acidic vesicles has been suggested, it has not been conclusively established. Herein we modeled the mechanism of action of ZnT2 and demonstrated both computationally and experimentally, using functional zinc transport assays, that ZnT2 is indeed a proton-coupled zinc antiporter. Bafilomycin A1, a specific inhibitor of vacuolar-type proton ATPase (V-ATPase) which alkalizes acidic vesicles, abolished ZnT2-dependent zinc transport into intracellular vesicles. Moreover, using LysoTracker Red and Lyso-pHluorin, we further showed that upon transient ZnT2 overexpression in intracellular vesicles and addition of exogenous zinc, the vesicular pH underwent alkalization, presumably due to a proton-zinc antiport; this phenomenon was reversed in the presence of TPEN, a specific zinc chelator. Finally, based on computational energy calculations, we propose that ZnT2 functions as an antiporter with a stoichiometry of 2H+/Zn2+ ion. Hence, ZnT2 is a proton motive force-driven, electroneutral vesicular zinc exchanger, concentrating zinc in acidic vesicles on the expense of proton extrusion to the cytoplasm. Herein we explored the mechanism of action of the human ZnT2 zinc transporter. ZnT2 is essential for zinc accumulation in breast milk and is therefore of paramount medical significance. Expanding on our previous study, we herein present energy calculations suggesting that ZnT2 functions as a proton/zinc antiporter. Our calculations consist of electrostatic and pKa calculations as well as zinc binding free-energy curves. Upon integration of our calculation results, we conclude that ZnT2 functions as an antiporter with a 2H+/Zn2+ stoichiometry, construct a Monte Carlo model to test this mode of ZnT2 transport activity, and validate our computational results experimentally using live human breast epithelial cells. These functional experiments reveal that ZnT2 cannot function in the absence of protons suggesting that it operates as a substrate-induced alternating-access transporter, displaying an apparent 2H+/Zn2+ stoichiometry.
Collapse
Affiliation(s)
- Yarden Golan
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Raphael Alhadeff
- Department of Chemistry, University of Southern California, Los Angeles, California
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|