1
|
Sergiou ASE, Gabora L. The cognitive and evolutionary science of behavioural modernity goes beyond material chronology. Behav Brain Sci 2025; 48:e16. [PMID: 39807724 DOI: 10.1017/s0140525x24000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Stibbard-Hawkes' taphonomic findings are valuable, and his call for caution warranted, but the hazards he raises are being mitigated by a multi-pronged approach; current research on behavioural/cognitive modernity is not based solely on material chronology. Theories synthesize data from archaeology, anthropology, psychology, neuroscience, and genetics, and predictions arising from these theories are tested with mathematical and agent-based models.
Collapse
Affiliation(s)
- Andoni S E Sergiou
- Human Behaviour and Cultural Evolution Group, Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, Cornwall, UK
| | - Liane Gabora
- Department of Psychology, University of British Columbia (Okanagan Campus), Kelowna, BC, Canada ://andonisergiou.comhttps://gabora-psych.ok.ubc.ca
| |
Collapse
|
2
|
Borg JM, Buskell A, Kapitany R, Powers ST, Reindl E, Tennie C. Evolved Open-Endedness in Cultural Evolution: A New Dimension in Open-Ended Evolution Research. ARTIFICIAL LIFE 2024; 30:417-438. [PMID: 37253238 DOI: 10.1162/artl_a_00406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The goal of Artificial Life research, as articulated by Chris Langton, is "to contribute to theoretical biology by locating life-as-we-know-it within the larger picture of life-as-it-could-be." The study and pursuit of open-ended evolution in artificial evolutionary systems exemplify this goal. However, open-ended evolution research is hampered by two fundamental issues: the struggle to replicate open-endedness in an artificial evolutionary system and our assumption that we only have one system (genetic evolution) from which to draw inspiration. We argue not only that cultural evolution should be seen as another real-world example of an open-ended evolutionary system but that the unique qualities seen in cultural evolution provide us with a new perspective from which we can assess the fundamental properties of, and ask new questions about, open-ended evolutionary systems, especially with regard to evolved open-endedness and transitions from bounded to unbounded evolution. Here we provide an overview of culture as an evolutionary system, highlight the interesting case of human cultural evolution as an open-ended evolutionary system, and contextualize cultural evolution by developing a new framework of (evolved) open-ended evolution. We go on to provide a set of new questions that can be asked once we consider cultural evolution within the framework of open-ended evolution and introduce new insights that we may be able to gain about evolved open-endedness as a result of asking these questions.
Collapse
Affiliation(s)
- James M Borg
- Aston University School of Informatics and Digital Engineering.
| | | | - Rohan Kapitany
- Keele University School of Psychology University of Oxford School of Anthropology and Museum Ethnography
| | | | - Eva Reindl
- Durham University Department of Anthropology University of St. Andrews School of Psychology and Neuroscience
| | - Claudio Tennie
- University of Tübingen Department of Early Prehistory and Quaternary Ecology
| |
Collapse
|
3
|
Butler S. Young people on social media in a globalized world: self-optimization in highly competitive and achievement-oriented forms of life. Front Psychol 2024; 15:1340605. [PMID: 39035080 PMCID: PMC11258645 DOI: 10.3389/fpsyg.2024.1340605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Research investigating young people's social media use has been criticized for its limited theoretical foundations and scope. This paper elaborates young people's social media activity from a socio-ecological evolutionary perspective (SEE), where young people's online exchanges cannot be divorced from the highly competitive and achievement-oriented modern market cultures in which they live. In highly competitive and achievement-oriented forms of life, young people's social media environments are often constituted as dynamic and evolving extrinsically oriented ecological niches that afford for status and identity enhancement while also affording for peer approval, belongingness, and self-worth nested within, and subordinate to, these higher-order affordances. The extrinsic value organization of social media platforms that serve young people's status and identity-enhancement are embodied by a community of mutually interdependent criteria that are evolutionary-based, developmentally salient, and market-driven: physical attractiveness, high (educational and extracurricular) achievements, and material success. Young people's online signaling of these interdependent extrinsic criteria affords for status-allocation and self-enhancement, where each criteria becomes an arena for social competition and identity formation, enabling young people to build personal and optimal models of social success congruent with their own interests and abilities. Young people's status and identity enhancing signaling of these extrinsic criteria is moving toward increasingly idealized or perfect embodiments, informed by accelerating, short-term positive feedback processes that benefit from the technological affordances and densely rewarding peer environments instantiated on social media.
Collapse
Affiliation(s)
- Stephen Butler
- Department of Psychology, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
4
|
González-Forero M. Evolutionary-developmental (evo-devo) dynamics of hominin brain size. Nat Hum Behav 2024; 8:1321-1333. [PMID: 38802541 PMCID: PMC11272587 DOI: 10.1038/s41562-024-01887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
Brain size tripled in the human lineage over four million years, but why this occurred remains uncertain. Here, to study what caused this brain expansion, I mathematically model the evolutionary and developmental (evo-devo) dynamics of hominin brain size. The model recovers (1) the evolution of brain and body sizes of seven hominin species starting from brain and body sizes of the australopithecine scale, (2) the evolution of the hominin brain-body allometry and (3) major patterns of human development and evolution. I show that the brain expansion recovered is not caused by direct selection for brain size but by its genetic correlation with developmentally late preovulatory ovarian follicles. This correlation is generated over development if individuals experience a challenging ecology and seemingly cumulative culture, among other conditions. These findings show that the evolution of exceptionally adaptive traits may not be primarily caused by selection for them but by developmental constraints that divert selection.
Collapse
|
5
|
Paige J, Perreault C. 3.3 million years of stone tool complexity suggests that cumulative culture began during the Middle Pleistocene. Proc Natl Acad Sci U S A 2024; 121:e2319175121. [PMID: 38885385 PMCID: PMC11214059 DOI: 10.1073/pnas.2319175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Cumulative culture, the accumulation of modifications, innovations, and improvements over generations through social learning, is a key determinant of the behavioral diversity across Homo sapiens populations and their ability to adapt to varied ecological habitats. Generations of improvements, modifications, and lucky errors allow humans to use technologies and know-how well beyond what a single naive individual could invent independently within their lifetime. The human dependence on cumulative culture may have shaped the evolution of biological and behavioral traits in the hominin lineage, including brain size, body size, life history, sociality, subsistence, and ecological niche expansion. Yet, we do not know when, in the human career, our ancestors began to depend on cumulative culture. Here, we show that hominins likely relied on a derived form of cumulative culture by at least ~600 kya, a result in line with a growing body of existing evidence. We analyzed the complexity of stone tool manufacturing sequences over the last 3.3 My of the archaeological record. We then compare these to the achievable complexity without cumulative culture, which we estimate using nonhuman primate technologies and stone tool manufacturing experiments. We find that archaeological technologies become significantly more complex than expected in the absence of cumulative culture only after ~600 kya.
Collapse
Affiliation(s)
- Jonathan Paige
- Department of Anthropology, University of Missouri, Columbia, MO65211
| | - Charles Perreault
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, Tempe, AZ85281
| |
Collapse
|
6
|
Meijer H. Janus faced: The co-evolution of war and peace in the human species. Evol Anthropol 2024:e22027. [PMID: 38623594 DOI: 10.1002/evan.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
The human species presents a paradox. No other species possesses the propensity to carry out coalitionary lethal attacks on adult conspecifics coupled with the inclination to establish peaceful relations with genetically unrelated groups. What explains this seemingly contradictory feature? Existing perspectives, the "deep roots" and "shallow roots" of war theses, fail to capture the plasticity of human intergroup behaviors, spanning from peaceful cooperation to warfare. By contrast, this article argues that peace and war have both deep roots, and they co-evolved through an incremental process over several million years. On the one hand, humans inherited the propensity for coalitionary lethal violence from their chimpanzee-like ancestor. Specifically, having first inherited the skills to engage in cooperative hunting, they gradually repurposed such capacity to execute coalitionary killings of adult conspecifics and subsequently enhanced it through technological innovations like the use of weapons. On the other hand, they underwent a process of cumulative cultural evolution and, subsequently, of self-domestication which led to heightened cooperative communication and increased prosocial behavior within and between groups. The combination of these two biocultural evolutionary processes-coupled with feedback loop effects between self-domestication and Pleistocene environmental variability-considerably broadened the human intergroup behavioral repertoire, thereby producing the distinctive combination of conflictual and peaceful intergroup relations that characterizes our species. To substantiate this argument, the article synthesizes and integrates the findings from a variety of disciplines, leveraging evidence from evolutionary anthropology, primatology, archeology, paleo-genetics, and paleo-climatology.
Collapse
Affiliation(s)
- Hugo Meijer
- Sciences Po, Center for International Studies (CERI), Paris, France
| |
Collapse
|
7
|
Henrich J, Muthukrishna M. What Makes Us Smart? Top Cogn Sci 2024; 16:322-342. [PMID: 37086053 DOI: 10.1111/tops.12656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
How did humans become clever enough to live in nearly every major ecosystem on earth, create vaccines against deadly plagues, explore the oceans depths, and routinely traverse the globe at 30,000 feet in aluminum tubes while nibbling on roasted almonds? Drawing on recent developments in our understanding of human evolution, we consider what makes us distinctively smarter than other animals. Contrary to conventional wisdom, human brilliance emerges not from our innate brainpower or raw computational capacities, but from the sharing of information in communities and networks over generations. We review how larger, more diverse, and more optimally interconnected networks of minds give rise to faster innovation and how the cognitive products of this cumulative cultural evolutionary process feedback to make us individually "smarter"-in the sense of being better at meeting the challenges and problems posed by our societies and socioecologies. Here, we consider not only how cultural evolution supplies us with "thinking tools" (like counting systems and fractions) but also how it has shaped our ontologies (e.g., do germs and witches exist?) and epistemologies, including our notions of what constitutes a "good reason" or "good evidence" (e.g., are dreams a source of evidence?). Building on this, we consider how cultural evolution has organized and distributed cultural knowledge and cognitive tasks among subpopulations, effectively shifting both thinking and production to the level of the community, population, or network, resulting in collective information processing and group decisions. Cultural evolution can turn mindless mobs into wise crowds by facilitating and constraining cognition through a wide variety of epistemic institutions-political, legal, and scientific. These institutions process information and aid better decision-making by suppressing or encouraging the use of different cultural epistemologies and ontologies.
Collapse
Affiliation(s)
- Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University
| | - Michael Muthukrishna
- Department of Psychological and Behavioral Science, London School of Economics and Political Science
| |
Collapse
|
8
|
Reis M, Kunde W. How to overcome biases against creativity: The role of familiarity with and confidence in original solutions. Cognition 2024; 245:105741. [PMID: 38350252 DOI: 10.1016/j.cognition.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Despite the societal relevance of creative ideas, humans favor traditional over more original solutions, conceivably because of the increased uncertainty that comes with trying novel approaches. Here, we tested whether this anti-creativity bias can be counteracted by increasing familiarity with, and confidence in, creative solutions. Participants chose between creative and traditional uses for given objects. In study 1 (N = 67 international adults), these objects repeated either identically or conceptually during the experiment; and in study 2 (N = 68 international adults), choice options were either self-generated or externally provided. Spatial and temporal measures of response selection indicated an implicit bias towards the traditional approach, independent of repetition type (study 1). This attraction towards the norm was also found for self-generated creative ideas, but it was considerably reduced compared to other-generated ideas (study 2). Instead of increasing familiarity, building confidence in creative solutions might thus be the key to reduce corresponding uncertainty and promote successful creative ideation.
Collapse
Affiliation(s)
- Moritz Reis
- Institute of Psychology, University of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Wilfried Kunde
- Institute of Psychology, University of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| |
Collapse
|
9
|
Charbonneau M, Curioni A, McEllin L, Strachan JWA. Flexible Cultural Learning Through Action Coordination. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:201-222. [PMID: 37458767 DOI: 10.1177/17456916231182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The cultural transmission of technical know-how has proven vital to the success of our species. The broad diversity of learning contexts and social configurations, as well as the various kinds of coordinated interactions they involve, speaks to our capacity to flexibly adapt to and succeed in transmitting vital knowledge in various learning contexts. Although often recognized by ethnographers, the flexibility of cultural learning has so far received little attention in terms of cognitive mechanisms. We argue that a key feature of the flexibility of cultural learning is that both the models and learners recruit cognitive mechanisms of action coordination to modulate their behavior contingently on the behavior of their partner, generating a process of mutual adaptation supporting the successful transmission of technical skills in diverse and fluctuating learning environments. We propose that the study of cultural learning would benefit from the experimental methods, results, and insights of joint-action research and, complementarily, that the field of joint-action research could expand its scope by integrating a learning and cultural dimension. Bringing these two fields of research together promises to enrich our understanding of cultural learning, its contextual flexibility, and joint action coordination.
Collapse
Affiliation(s)
- Mathieu Charbonneau
- Africa Institute for Research in Economics and Social Sciences, Université Mohammed VI Polytechnique
| | | | - Luke McEllin
- Department of Cognitive Science, Central European University
| | | |
Collapse
|
10
|
Schwartz E, Nenning KH, Heuer K, Jeffery N, Bertrand OC, Toro R, Kasprian G, Prayer D, Langs G. Evolution of cortical geometry and its link to function, behaviour and ecology. Nat Commun 2023; 14:2252. [PMID: 37080952 PMCID: PMC10119184 DOI: 10.1038/s41467-023-37574-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Studies in comparative neuroanatomy and of the fossil record demonstrate the influence of socio-ecological niches on the morphology of the cerebral cortex, but have led to oftentimes conflicting theories about its evolution. Here, we study the relationship between the shape of the cerebral cortex and the topography of its function. We establish a joint geometric representation of the cerebral cortices of ninety species of extant Euarchontoglires, including commonly used experimental model organisms. We show that variability in surface geometry relates to species' ecology and behaviour, independent of overall brain size. Notably, ancestral shape reconstruction of the cortical surface and its change during evolution enables us to trace the evolutionary history of localised cortical expansions, modal segregation of brain function, and their association to behaviour and cognition. We find that individual cortical regions follow different sequences of area increase during evolutionary adaptations to dynamic socio-ecological niches. Anatomical correlates of this sequence of events are still observable in extant species, and relate to their current behaviour and ecology. We decompose the deep evolutionary history of the shape of the human cortical surface into spatially and temporally conscribed components with highly interpretable functional associations, highlighting the importance of considering the evolutionary history of cortical regions when studying their anatomy and function.
Collapse
Affiliation(s)
- Ernst Schwartz
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Nathan Jeffery
- Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool, England
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès., Barcelona, Spain
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, EH9 3FE, United Kingdom
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria.
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Wilson DS, Madhavan G, Gelfand MJ, Hayes SC, Atkins PWB, Colwell RR. Multilevel cultural evolution: From new theory to practical applications. Proc Natl Acad Sci U S A 2023; 120:e2218222120. [PMID: 37036975 PMCID: PMC10120078 DOI: 10.1073/pnas.2218222120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Evolutionary science has led to many practical applications of genetic evolution but few practical uses of cultural evolution. This is because the entire study of evolution was gene centric for most of the 20th century, relegating the study and application of human cultural change to other disciplines. The formal study of human cultural evolution began in the 1970s and has matured to the point of deriving practical applications. We provide an overview of these developments and examples for the topic areas of complex systems science and engineering, economics and business, mental health and well-being, and global change efforts.
Collapse
Affiliation(s)
- David Sloan Wilson
- ProSocial World, Austin, TX78738
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY13902
| | - Guru Madhavan
- National Academy of Engineering, Washington, DC20001
| | | | - Steven C. Hayes
- Department of Psychology, University of Nevada, Reno, NV89557
| | - Paul W. B. Atkins
- ProSocial World, Austin, TX78738
- Crawford School of Public Policy, Australian National University, CanberraACT 0200, Australia
| | - Rita R. Colwell
- Department of Cell Biology and Molecular Genetics, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD20742
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| |
Collapse
|
12
|
Ben-Oren Y, Kolodny O, Creanza N. Cultural specialization as a double-edged sword: division into specialized guilds might promote cultural complexity at the cost of higher susceptibility to cultural loss. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210418. [PMID: 36688386 PMCID: PMC9869445 DOI: 10.1098/rstb.2021.0418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transition to specialization of knowledge within populations could have facilitated the accumulation of cultural complexity in humans. Specialization allows populations to increase their cultural repertoire without requiring that members of that population increase their individual capacity to accumulate knowledge. However, specialization also means that domain-specific knowledge can be concentrated in small subsets of the population, making it more susceptible to loss. Here, we use a model of cultural evolution to demonstrate that specialized populations can be more sensitive to stochastic loss of knowledge than populations without subdivision of knowledge, and that demographic and environmental changes have an amplified effect on populations with knowledge specialization. Finally, we suggest that specialization can be a double-edged sword; specialized populations may have an advantage in accumulating cultural traits but may also be less likely to expand and establish themselves successfully in new demes owing to the increased cultural loss that they experience during the population bottlenecks that often characterize such expansions. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Yotam Ben-Oren
- Department of Ecology, Evolution, and Behavior, Silberman Institute for Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Oren Kolodny
- Department of Ecology, Evolution, and Behavior, Silberman Institute for Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nicole Creanza
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
13
|
Seitz RJ, Angel HF, Paloutzian RF. Bridging the gap between believing and memory functions. EUROPES JOURNAL OF PSYCHOLOGY 2023; 19:113-124. [PMID: 37063695 PMCID: PMC10103061 DOI: 10.5964/ejop.7461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/11/2022] [Indexed: 03/01/2023]
Abstract
Believing has recently been recognized as a fundamental brain function linking a person’s experience with his or her attitude, actions and predictions. In general, believing results from the integration of ambient information with emotions and can be reinforced or modulated in a probabilistic fashion by new experiences. Although these processes occur in the subliminal realm, humans can become aware of what they believe and express it verbally. We explain how believing is interwoven with memory functions in a multifaceted fashion. Linking the typically rapid and adequate reactions of a subject to what he/she believes is enabled by working memory. Perceptions are stored in episodic memory as beneficial or aversive events, while the corresponding verbal descriptions of what somebody believes are stored in semantic memory. After recall from memory of what someone believes, personally relevant information can be communicated to other people. Thus, memory is essential for maintaining what people believe.
Collapse
Affiliation(s)
- Rüdiger J. Seitz
- Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
14
|
Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 2023; 13:2877. [PMID: 36807588 PMCID: PMC9938911 DOI: 10.1038/s41598-023-29994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Stone-tool making is an ancient human skill thought to have played a key role in the bio-cultural co-evolutionary feedback that produced modern brains, culture, and cognition. To test the proposed evolutionary mechanisms underpinning this hypothesis we studied stone-tool making skill learning in modern participants and examined interactions between individual neurostructural differences, plastic accommodation, and culturally transmitted behavior. We found that prior experience with other culturally transmitted craft skills increased both initial stone tool-making performance and subsequent neuroplastic training effects in a frontoparietal white matter pathway associated with action control. These effects were mediated by the effect of experience on pre-training variation in a frontotemporal pathway supporting action semantic representation. Our results show that the acquisition of one technical skill can produce structural brain changes conducive to the discovery and acquisition of additional skills, providing empirical evidence for bio-cultural feedback loops long hypothesized to link learning and adaptive change.
Collapse
|
15
|
Socioconnectomics: Connectomics Should Be Extended to Societies to Better Understand Evolutionary Processes. SCI 2023. [DOI: 10.3390/sci5010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Connectomics, which is the network study of connectomes or maps of the nervous system of an organism, should be applied and expanded to human and animal societies, resulting in the birth of the domain of socioconnectomics compared to neuroconnectomics. This new network study framework would open up new perspectives in evolutionary biology and add new elements to theories, such as the social and cultural brain hypotheses. Answering questions about network topology, specialization, and their connections with functionality at one level (i.e., neural or societal) may help in understanding the evolutionary trajectories of these patterns at the other level. Expanding connectomics to societies should be done in comparison and combination with multilevel network studies and the possibility of multiorganization selection processes. The study of neuroconnectomes and socioconnectomes in animals, from simpler to more advanced ones, could lead to a better understanding of social network evolution and the feedback between social complexity and brain complexity.
Collapse
|
16
|
Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic Spines: Synaptogenesis and Synaptic Pruning for the Developmental Organization of Brain Circuits. ADVANCES IN NEUROBIOLOGY 2023; 34:143-221. [PMID: 37962796 DOI: 10.1007/978-3-031-36159-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.The activity-dependent stabilization and selective elimination of the initially overproduced synapses is a major mechanism for generating diversity of neural connections beyond their genetic determination. The largest number of overproduced synapses was found in the monkey and human cerebral cortex. The highest (exceeding adult values by two- to threefold) and most protracted overproduction (up to third decade of life) was described for associative layer IIIC pyramidal neurons in the human dorsolateral prefrontal cortex.Therefore, the highest proportion and extraordinarily extended phase of synaptic spine overproduction is a hallmark of neural circuitry in human higher-order associative areas. This indicates that microcircuits processing the most complex human cognitive functions have the highest level of developmental plasticity. This finding is the backbone for understanding the effect of environmental impact on the development of the most complex, human-specific cognitive and emotional capacities, and on the late onset of human-specific neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Scott-Phillips T. Biological adaptations for cultural transmission? Biol Lett 2022; 18:20220439. [PMID: 36448292 PMCID: PMC9709567 DOI: 10.1098/rsbl.2022.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
According to several interlinked and influential lines of argument, human minds have been shaped by natural selection so as to include biological adaptations with the evolved, naturally selected function to facilitate the transmission of cultural knowledge. This 'cultural minds' hypothesis has proved highly influential, and if it is correct it is a major step forward in understanding how and why humans have survived and prospered in a hugely diverse range of ecologies. It can be contrasted with a 'social minds' hypothesis, according to which cultural transmission occurs as an outcome, but not the biologically evolved function, of social cognition the domain of which is relatively small-group interaction. Here, I critique the cultural minds hypothesis and I argue that the data favour the social minds perspective. Cultural phenomena can clearly emerge and persist over time without cognitive adaptations for cultural transmission. Overtly intentional communication plays an especially pivotal role.
Collapse
Affiliation(s)
- Thom Scott-Phillips
- Institute of Language, Cognition Logic and Information, Ikerbasque, San Sebastian, Spain
| |
Collapse
|
18
|
Seitz RJ, Angel HF, Paloutzian RF, Taves A. Believing and social interactions: effects on bodily expressions and personal narratives. Front Behav Neurosci 2022; 16:894219. [PMID: 36275855 PMCID: PMC9584167 DOI: 10.3389/fnbeh.2022.894219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The processes of believing integrate external perceptual information from the environment with internal emotional states and prior experience to generate probabilistic neural representations of events, i.e., beliefs. As these neural representations manifest mostly below the level of a person's conscious awareness, they may inadvertently affect the spontaneous person's bodily expressions and prospective behavior. By yet to be understood mechanisms people can become aware of these representations and reflect upon them. Typically, people can communicate the content of their beliefs as personal statements and can summarize the narratives of others to themselves or to other people. Here, we describe that social interactions may benefit from the consistency between a person's bodily expressions and verbal statements because the person appears authentic and ultimately trustworthy. The transmission of narratives can thus lay the groundwork for social cooperation within and between groups and, ultimately, between communities and nations. Conversely, a discrepancy between bodily expressions and narratives may cause distrust in the addressee(s) and eventually may destroy social bonds.
Collapse
Affiliation(s)
- Rüdiger J. Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hans-Ferdinand Angel
- Institute of Catechetic and Pedagogic of Religion, Karl Franzens University Graz, Graz, Austria
| | | | - Ann Taves
- Department of Religious Studies, University of California, Santa Barbara, CA, United States
| |
Collapse
|
19
|
Integrating cultural evolution and behavioral genetics. Behav Brain Sci 2022; 45:e182. [PMID: 36098400 DOI: 10.1017/s0140525x22000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 29 commentaries amplified our key arguments; offered extensions, implications, and applications of the framework; and pushed back and clarified. To help forge the path forward for cultural evolutionary behavioral genetics, we (1) focus on conceptual disagreements and misconceptions about the concepts of heritability and culture; (2) further discuss points raised about the intertwined relationship between culture and genes; and (3) address extensions to the proposed framework, particularly as it relates to cultural clusters, development, and power. These commentaries, and the deep engagement they represent, reinforce the importance of integrating cultural evolution and behavioral genetics.
Collapse
|
20
|
Down a Rabbit Hole: Burrowing Behaviour and Larger Home Ranges are Related to Larger Brains in Leporids. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractStudies on the evolution of brain size variation usually focus on large clades encompassing broad phylogenetic groups. This risks introducing ‘noise’ in the results, often obscuring effects that might be detected in less inclusive clades. Here, we focus on a sample of endocranial volumes (endocasts) of 18 species of rabbits and hares (Lagomorpha: Leporidae), which are a discrete radiation of mammals with a suitably large range of body sizes. Using 60 individuals, we test five popular hypotheses on brain size and olfactory bulb evolution in mammals. We also address the pervasive issue of missing data, using multiple phylogenetic imputations as to conserve the full sample size for all analyses. Our analyses show that home range and burrowing behaviour are the only predictors of leporid brain size variation. Litter size, which is one of the most widely reported constraints on brain size, was unexpectedly not associated with brain size. However, a constraining effect may be masked by a strong association of litter size with temperature seasonality, warranting further study. Lastly, we show that unreasonable estimations of phylogenetic signal (Pagel’s lamba) warrant additional caution when using small sample sizes, such as ours, in comparative studies.
Collapse
|
21
|
Crespi BJ, Flinn MV, Summers K. Runaway Social Selection in Human Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.894506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Darwin posited that social competition among conspecifics could be a powerful selective pressure. Alexander proposed a model of human evolution involving a runaway process of social competition based on Darwin’s insight. Here we briefly review Alexander’s logic, and then expand upon his model by elucidating six core arenas of social selection that involve runaway, positive-feedback processes, and that were likely involved in the evolution of the remarkable combination of adaptations in humans. We discuss how these ideas fit with the hypothesis that a key life history innovation that opened the door to runaway social selection, and cumulative culture, during hominin evolution was increased cooperation among individuals in small fission-fusion groups.
Collapse
|
22
|
Ganesh K, Gabora L. Modeling Discontinuous Cultural Evolution: The Impact of Cross-Domain Transfer. Front Psychol 2022; 13:786072. [PMID: 35282262 PMCID: PMC8908956 DOI: 10.3389/fpsyg.2022.786072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
This paper uses autocatalytic networks to model discontinuous cultural transitions involving cross-domain transfer, using as an illustrative example, artworks inspired by the oldest-known uncontested example of figurative art: the carving of the Hohlenstein-Stadel Löwenmensch, or lion-human. Autocatalytic networks provide a general modeling setting in which nodes are not just passive transmitters of activation; they actively galvanize, or "catalyze" the synthesis of novel ("foodset-derived") nodes from existing ones (the "foodset.") This makes them uniquely suited to model how new structure grows out of earlier structure, i.e., cumulative, generative network growth. They have been used to model the origin and early evolution of biological life, and the emergence of cognitive structures capable of undergoing cultural evolution. We conducted a study in which six individual creators and one group generated music, prose, poetry, and visual art inspired by the Hohlenstein-Stadel Löwenmensch, and answered questions about the process. The data revealed four through-lines by which they expressed the Löwenmensch in an alternative art form: (1) lion-human hybrid, (2) subtracting from the whole to reveal the form within, (3) deterioration, and (4) waiting to be found with a story to tell. Autocatalytic networks were used to model how these four spontaneously derived through-lines form a cultural lineage from Löwenmensch to artist to audience. We used the resulting data from three creators to model the cross-domain transfer from inspirational source (sculpted figurine) to creative product (music, poetry, prose, visual art). These four spontaneously-generated threads of cultural continuity formed the backbone of this Löwenmensch-inspired cultural lineage, enabling culture to evolve even in the face of discontinuity at the level conventional categories or domains. We know of no other theory of cultural evolution that accommodates cross-domain transfer or other forms of discontinuity. The approach paves the way for a broad scientific framework for the origins of evolutionary processes.
Collapse
Affiliation(s)
| | - Liane Gabora
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
23
|
Park PS. The Evolution of Cognitive Biases in Human Learning. J Theor Biol 2022; 541:111031. [PMID: 35143847 DOI: 10.1016/j.jtbi.2022.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Abstract
Cognitive biases like underinference, the hard-easy effect, and recurrently non-monotonic confidence are evolutionarily puzzling when viewed as persistent flaws in how people learn from environmental feedback. To explain these empirically robust cognitive biases from an evolutionary perspective, we propose a model of ancestral human learning based on the cultural-evolutionary-theoretic hypothesis that the primary selection pressure acting on ancestral human cognition pertained not to learning individually from environmental feedback, but to socially learning task-specific knowledge. In our model-which is inspired by classical Bayesian models-an ancestral human learner (the student) attempts to learn task-specific knowledge from a role model, with the option of switching between different tasks and role models. Suppose that the student's method of learning from their role model is a priori uncertain-in that it can either be successful imitation learning or de facto innovation learning-and the ecological fitness costs of meaningfully retaining environmental feedback are high. Then, the student's fitness-maximizing strategy does not retain their environmental feedback and-depending on the choice of model parameters-can be characterized by all of the aforementioned cognitive biases. Specifically, in order for the evolutionarily optimal estimate of confidence in this learning environment to be recurrently non-monotonic, it is necessary (as long as the environment's marginal payoff function satisfies a plausible quantitative condition) that a positive proportion of ancestral humans' attempted imitation learning was unknowingly implemented as de facto innovation learning. Moreover, an ecologically rational strategy of selective social learning can plausibly cause the evolutionarily optimal estimate of confidence to be recurrently non-monotonic in the empirically documented way: general increase with an intermediate period of decrease.
Collapse
Affiliation(s)
- Peter S Park
- Department of Mathematics, Harvard University, 1 Oxford St., Cambridge, MA 02138, USA.
| |
Collapse
|
24
|
Schimmelpfennig R, Razek L, Schnell E, Muthukrishna M. Paradox of diversity in the collective brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200316. [PMID: 34894736 PMCID: PMC8666911 DOI: 10.1098/rstb.2020.0316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022] Open
Abstract
Human societies are collective brains. People within every society have cultural brains-brains that have evolved to selectively seek out adaptive knowledge and socially transmit solutions. Innovations emerge at a population level through the transmission of serendipitous mistakes, incremental improvements and novel recombinations. The rate of innovation through these mechanisms is a function of (1) a society's size and interconnectedness (sociality), which affects the number of models available for learning; (2) fidelity of information transmission, which affects how much information is lost during social learning; and (3) cultural trait diversity, which affects the range of possible solutions available for recombination. In general, and perhaps surprisingly, all three levers can increase and harm innovation by creating challenges around coordination, conformity and communication. Here, we focus on the 'paradox of diversity'-that cultural trait diversity offers the largest potential for empowering innovation, but also poses difficult challenges at both an organizational and societal level. We introduce 'cultural evolvability' as a framework for tackling these challenges, with implications for entrepreneurship, polarization and a nuanced understanding of the effects of diversity. This framework can guide researchers and practitioners in how to reap the benefits of diversity by reducing costs. This article is part of a discussion meeting issue 'The emergence of collective knowledge and cumulative culture in animals, humans and machines'.
Collapse
Affiliation(s)
- Robin Schimmelpfennig
- Department of Organizational Behavior, University of Lausanne (UNIL), Chavannes-près-Renens, Lausanne 1015, Switzerland
| | - Layla Razek
- Department of Biology, McGill University, Dr Penfield Avenue, Montreal, Canada H3A 1B1
| | - Eric Schnell
- Department of Psychological and Behavioural Science, London School of Economics and Political Science (LSE), Houghton Street, London WC2A 2AE, UK
| | - Michael Muthukrishna
- Department of Psychological and Behavioural Science, London School of Economics and Political Science (LSE), Houghton Street, London WC2A 2AE, UK
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
25
|
Markov AV, Markov MA. Coevolution of Brain, Culture, and Lifespan: Insights from Computer Simulations. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1503-1525. [PMID: 34937531 DOI: 10.1134/s0006297921120014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Humans possess a number of traits that are rare or absent in other primates, including large brain size, culture, language, extended lifespan (LS), and long post-reproductive period. Here, we use a computer model, TribeSim, originally designed to explore the autocatalytic coevolution of the hominin brain and culture within the framework of the "cultural drive" theory, to find out how culture and brain could coevolve with LS (or aging rate). We show that in the absence of culture, the evolution of LS depends on the intensity of the between-group competition (BGC): strong BGC results in shorter LS. Culture, however, favors genetic evolution of longer LS even if the BGC is strong. Extended LS, in turn, enhances cultural development, thus creating positive feedback. Cultural evolution of LS (accumulation of survival-enhancing or survival-impairing knowledge) differs from the genetic evolution of the same trait, partially because "memes" (ideas, skills, and behaviors) that reduce the risk of death tend to spread in the meme pool even if it is not beneficial to genes. Consequently, cultural evolution of aging tends to result in longer LS than genetic evolution of the same trait. If LS evolves both genetically and culturally, the typical result is a society in which young individuals, due to their genetic predisposition, lead a riskier lifestyle in exchange for a chance to gain additional resources, but accumulate survival-enhancing knowledge with age. Simulations also showed that cultural evolution of adaptive behaviors can contribute to the genetic evolution of a long post-reproductive period, e.g., if the presence of knowledgeable long-livers increases the competitiveness of the group.
Collapse
Affiliation(s)
- Alexander V Markov
- Lomonosov Moscow State University, Moscow, 119991, Russia. .,Paleontological Institute of the Russian Academy of Sciences, Moscow, 117997, Russia
| | | |
Collapse
|
26
|
Gabora L, Steel M. Modeling a Cognitive Transition at the Origin of Cultural Evolution Using Autocatalytic Networks. Cogn Sci 2021; 44:e12878. [PMID: 32909644 DOI: 10.1111/cogs.12878] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/23/2020] [Accepted: 06/11/2020] [Indexed: 01/22/2023]
Abstract
Autocatalytic networks have been used to model the emergence of self-organizing structure capable of sustaining life and undergoing biological evolution. Here, we model the emergence of cognitive structure capable of undergoing cultural evolution. Mental representations (MRs) of knowledge and experiences play the role of catalytic molecules, and interactions among them (e.g., the forging of new associations) play the role of reactions and result in representational redescription. The approach tags MRs with their source, that is, whether they were acquired through social learning, individual learning (of pre-existing information), or creative thought (resulting in the generation of new information). This makes it possible to model how cognitive structure emerges and to trace lineages of cumulative culture step by step. We develop a formal representation of the cultural transition from Oldowan to Acheulean tool technology using Reflexively Autocatalytic and Food set generated (RAF) networks. Unlike more primitive Oldowan stone tools, the Acheulean hand axe required not only the capacity to envision and bring into being something that did not yet exist, but hierarchically structured thought and action, and the generation of new MRs: the concepts EDGING, THINNING, SHAPING, and a meta-concept, HAND AXE. We show how this constituted a key transition toward the emergence of semantic networks that were self-organizing, self-sustaining, and autocatalytic, and we discuss how such networks replicated through social interaction. The model provides a promising approach to unraveling one of the greatest anthropological mysteries: that of why development of the Acheulean hand axe was followed by over a million years of cultural stasis.
Collapse
Affiliation(s)
- Liane Gabora
- Department of Psychology, University of British Columbia
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury
| |
Collapse
|
27
|
Abstract
Natural selection successfully explains how organisms accumulate adaptive change despite that traits acquired over a lifetime are eliminated at the end of each generation. However, in some domains that exhibit cumulative, adaptive change-e.g. cultural evolution, and earliest life-acquired traits are retained; these domains do not face the problem that Darwin's theory was designed to solve. Lack of transmission of acquired traits occurs when germ cells are protected from environmental change, due to a self-assembly code used in two distinct ways: (i) actively interpreted during development to generate a soma, and (ii) passively copied without interpretation during reproduction to generate germ cells. Early life and cultural evolution appear not to involve a self-assembly code used in these two ways. We suggest that cumulative, adaptive change in these domains is due to a lower-fidelity evolutionary process, and model it using reflexively autocatalytic and foodset-generated networks. We refer to this more primitive evolutionary process as self-other reorganization (SOR) because it involves internal self-organizing and self-maintaining processes within entities, as well as interaction between entities. SOR encompasses learning but in general operates across groups. We discuss the relationship between SOR and Lamarckism, and illustrate a special case of SOR without variation.
Collapse
Affiliation(s)
- Liane Gabora
- Department of Psychology, University of British Columbia, Kelowna British Columbia, Canada
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
28
|
Lightner AD, Heckelsmiller C, Hagen EH. Ethnoscientific expertise and knowledge specialisation in 55 traditional cultures. EVOLUTIONARY HUMAN SCIENCES 2021; 3:e37. [PMID: 37588549 PMCID: PMC10427309 DOI: 10.1017/ehs.2021.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
People everywhere acquire high levels of conceptual knowledge about their social and natural worlds, which we refer to as ethnoscientific expertise. Evolutionary explanations for expertise are still widely debated. We analysed ethnographic text records (N = 547) describing ethnoscientific expertise among 55 cultures in the Human Relations Area Files to investigate the mutually compatible roles of collaboration, proprietary knowledge, cultural transmission, honest signalling, and mate provisioning. We found relatively high levels of evidence for collaboration, proprietary knowledge, and cultural transmission, and lower levels of evidence for honest signalling and mate provisioning. In our exploratory analyses, we found that whether expertise involved proprietary vs. transmitted knowledge depended on the domain of expertise. Specifically, medicinal knowledge was positively associated with secretive and specialised knowledge for resolving uncommon and serious problems, i.e. proprietary knowledge. Motor skill-related expertise, such as subsistence and technological skills, was positively associated with broadly competent and generous teachers, i.e. cultural transmission. We also found that collaborative expertise was central to both of these models, and was generally important across different knowledge and skill domains.
Collapse
Affiliation(s)
- Aaron D. Lightner
- Department of Anthropology, Washington State University, Pullman, WA, USA
| | | | - Edward H. Hagen
- Department of Anthropology, Washington State University, Pullman, WA, USA
| |
Collapse
|
29
|
Waring TM, Wood ZT. Long-term gene-culture coevolution and the human evolutionary transition. Proc Biol Sci 2021; 288:20210538. [PMID: 34074122 PMCID: PMC8170228 DOI: 10.1098/rspb.2021.0538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
It has been suggested that the human species may be undergoing an evolutionary transition in individuality (ETI). But there is disagreement about how to apply the ETI framework to our species, and whether culture is implicated as either cause or consequence. Long-term gene-culture coevolution (GCC) is also poorly understood. Some have argued that culture steers human evolution, while others proposed that genes hold culture on a leash. We review the literature and evidence on long-term GCC in humans and find a set of common themes. First, culture appears to hold greater adaptive potential than genetic inheritance and is probably driving human evolution. The evolutionary impact of culture occurs mainly through culturally organized groups, which have come to dominate human affairs in recent millennia. Second, the role of culture appears to be growing, increasingly bypassing genetic evolution and weakening genetic adaptive potential. Taken together, these findings suggest that human long-term GCC is characterized by an evolutionary transition in inheritance (from genes to culture) which entails a transition in individuality (from genetic individual to cultural group). Thus, research on GCC should focus on the possibility of an ongoing transition in the human inheritance system.
Collapse
Affiliation(s)
- Timothy M. Waring
- School of Economics, Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Zachary T. Wood
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| |
Collapse
|
30
|
Richerson PJ, Gavrilets S, de Waal FBM. Modern theories of human evolution foreshadowed by Darwin's Descent of Man. Science 2021; 372:372/6544/eaba3776. [PMID: 34016754 DOI: 10.1126/science.aba3776] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Charles Darwin's The Descent of Man, published 150 years ago, laid the grounds for scientific studies into human origins and evolution. Three of his insights have been reinforced by modern science. The first is that we share many characteristics (genetic, developmental, physiological, morphological, cognitive, and psychological) with our closest relatives, the anthropoid apes. The second is that humans have a talent for high-level cooperation reinforced by morality and social norms. The third is that we have greatly expanded the social learning capacity that we see already in other primates. Darwin's emphasis on the role of culture deserves special attention because during an increasingly unstable Pleistocene environment, cultural accumulation allowed changes in life history; increased cognition; and the appearance of language, social norms, and institutions.
Collapse
Affiliation(s)
- Peter J Richerson
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Sergey Gavrilets
- Department of Ecology and Evolutionary Biology, Department of Mathematics, National Institute for Mathematical and Biological Synthesis, Center for the Dynamics of Social Complexity, University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
31
|
Belkina EG, Shiglik A, Sopilko NG, Lysenkov SN, Markov AV. Mate choice copying in Drosophila is probably less robust than previously suggested. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Abstract
Behavioral genetics and cultural evolution have both revolutionized our understanding of human behavior-largely independent of each other. Here we reconcile these two fields under a dual inheritance framework, offering a more nuanced understanding of the interaction between genes and culture. Going beyond typical analyses of gene-environment interactions, we describe the cultural dynamics that shape these interactions by shaping the environment and population structure. A cultural evolutionary approach can explain, for example, how factors such as rates of innovation and diffusion, density of cultural sub-groups, and tolerance for behavioral diversity impact heritability estimates, thus yielding predictions for different social contexts. Moreover, when cumulative culture functionally overlaps with genes, genetic effects become masked, unmasked, or even reversed, and the causal effects of an identified gene become confounded with features of the cultural environment. The manner of confounding is specific to a particular society at a particular time, but a WEIRD (Western, educated, industrialized, rich, democratic) sampling problem obscures this boundedness. Cultural evolutionary dynamics are typically missing from models of gene-to-phenotype causality, hindering generalizability of genetic effects across societies and across time. We lay out a reconciled framework and use it to predict the ways in which heritability should differ between societies, between socioeconomic levels and other groupings within some societies but not others, and over the life course. An integrated cultural evolutionary behavioral genetic approach cuts through the nature-nurture debate and helps resolve controversies in topics such as IQ.
Collapse
|
33
|
Avin S, Currie A, Montgomery SH. An agent-based model clarifies the importance of functional and developmental integration in shaping brain evolution. BMC Biol 2021; 19:97. [PMID: 33971877 PMCID: PMC8111752 DOI: 10.1186/s12915-021-01024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
Background Vertebrate brain structure is characterised not only by relative consistency in scaling between components, but also by many examples of divergence from these general trends.. Alternative hypotheses explain these patterns by emphasising either ‘external’ processes, such as coordinated or divergent selection, or ‘internal’ processes, like developmental coupling among brain regions. Although these hypotheses are not mutually exclusive, there is little agreement over their relative importance across time or how that importance may vary across evolutionary contexts. Results We introduce an agent-based model to simulate brain evolution in a ‘bare-bones’ system and examine dependencies between variables shaping brain evolution. We show that ‘concerted’ patterns of brain evolution do not, in themselves, provide evidence for developmental coupling, despite these terms often being treated as synonymous in the literature. Instead, concerted evolution can reflect either functional or developmental integration. Our model further allows us to clarify conditions under which such developmental coupling, or uncoupling, is potentially adaptive, revealing support for the maintenance of both mechanisms in neural evolution. Critically, we illustrate how the probability of deviation from concerted evolution depends on the cost/benefit ratio of neural tissue, which increases when overall brain size is itself under constraint. Conclusions We conclude that both developmentally coupled and uncoupled brain architectures can provide adaptive mechanisms, depending on the distribution of selection across brain structures, life history and costs of neural tissue. However, when constraints also act on overall brain size, heterogeneity in selection across brain structures will favour region specific, or mosaic, evolution. Regardless, the respective advantages of developmentally coupled and uncoupled brain architectures mean that both may persist in fluctuating environments. This implies that developmental coupling is unlikely to be a persistent constraint, but could evolve as an adaptive outcome to selection to maintain functional integration.
Collapse
Affiliation(s)
- Shahar Avin
- Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK
| | - Adrian Currie
- Department of Sociology, Philosophy and Anthropology, University of Exeter, Exeter, UK
| | | |
Collapse
|
34
|
Social Learning and Innovation in Adolescence. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2021; 32:239-278. [DOI: 10.1007/s12110-021-09391-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
|
35
|
Baimel A, Juda M, Birch S, Henrich J. Machiavellian strategist or cultural learner? Mentalizing and learning over development in a resource-sharing game. EVOLUTIONARY HUMAN SCIENCES 2021; 3:e14. [PMID: 37588525 PMCID: PMC10427301 DOI: 10.1017/ehs.2021.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Theorists have sought to identify the key selection pressures that drove the evolution of our species' cognitive abilities, life histories and cooperative inclinations. Focusing on two leading theories, each capable of accounting for many of the rapid changes in our lineage, we present a simple experiment designed to assess the explanatory power of both the Machiavellian Intelligence and the Cultural Brain/Intelligence Hypotheses. Children (aged 3-7 years) observed a novel social interaction that provided them with behavioural information that could either be used to outmanoeuvre a partner in subsequent interactions or for cultural learning. The results show that, even after four rounds of repeated interaction and sometimes lower pay-offs, children continued to rely on copying the observed behaviour instead of harnessing the available social information to strategically extract pay-offs (stickers) from their partners. Analyses further reveal that superior mentalizing abilities are associated with more targeted cultural learning - the selective copying of fewer irrelevant actions - while superior generalized cognitive abilities are associated with greater imitation of irrelevant actions. Neither mentalizing capacities nor more general measures of cognition explain children's ability to strategically use social information to maximize pay-offs. These results provide developmental evidence favouring the Cultural Brain/Intelligence Hypothesis over the Machiavellian Intelligence Hypothesis.
Collapse
Affiliation(s)
- Adam Baimel
- Department of Psychology, Health and Professional Development, Oxford Brookes University, Oxford, UK
| | - Myriam Juda
- Department of Psychology, Simon Fraser University, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susan Birch
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
36
|
Romano A, Sutter M, Liu JH, Balliet D. Political ideology, cooperation and national parochialism across 42 nations. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200146. [PMID: 33611989 DOI: 10.1098/rstb.2020.0146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Political ideology has been hypothesized to be associated with cooperation and national parochialism (i.e. greater cooperation with members of one's nation), with liberals thought to have more cooperation with strangers and less national parochialism, compared to conservatives. However, previous findings are limited to few-and predominantly western-nations. Here, we present a large-scale cross-societal experiment that can test hypotheses on the relation between political ideology, cooperation and national parochialism around the globe. To do so, we recruited 18 411 participants from 42 nations. Participants made decisions in a prisoner's dilemma game, and we manipulated the nationality of their interaction partner (national ingroup member, national outgroup member or unidentified stranger). We found that liberals, compared to conservatives, displayed slightly greater cooperation, trust in others and greater identification with the world as a whole. Conservatives, however, identified more strongly with their own nation and displayed slightly greater national parochialism in cooperation. Importantly, the association between political ideology and behaviour was significant in nations characterized by higher wealth, stronger rule of law and better government effectiveness. We discuss the implications of these findings for understanding the association between political ideology and cooperation. This article is part of the theme issue 'The political brain: neurocognitive and computational mechanisms'.
Collapse
Affiliation(s)
- Angelo Romano
- Department of Social, Economic and Organizational Psychology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Matthias Sutter
- Max Planck Institute for Research on Collective Goods, 53113 Bonn, Germany.,Department of Economics, University of Cologne, 50923 Cologne, Germany.,Department of Public Finance, University of Innsbruck, 6020 Innsbruck, Austria
| | - James H Liu
- School of Psychology, Massey University, Palmerston North, 4442 New Zealand
| | - Daniel Balliet
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, 1081BT Amsterdam, The Netherlands
| |
Collapse
|
37
|
Abstract
Humanity has regarded itself as intellectually superior to other species for millennia, yet human cognitive uniqueness remains poorly understood. Here, we evaluate candidate traits plausibly underlying our distinctive cognition (including mental time travel, tool use, problem solving, social cognition, and communication) as well as domain generality, and we consider how human cognitive uniqueness may have evolved. We conclude that there are no traits present in humans and absent in other animals that in isolation explain our species' superior cognitive performance; rather, there are many cognitive domains in which humans possess unusually potent capabilities compared to those found in other species. Humans are flexible cognitive all-rounders, whose proficiency arises through interactions and reinforcement between cognitive domains at multiple scales.
Collapse
Affiliation(s)
- Kevin Laland
- School of Biology, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom;
| | - Amanda Seed
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews KY16 9JP, United Kingdom
| |
Collapse
|
38
|
|
39
|
Windzio M. The "Social Brain," Reciprocity, and Social Network Segregation along Ethnic Boundaries. HUMAN NATURE (HAWTHORNE, N.Y.) 2020; 31:443-461. [PMID: 33428108 PMCID: PMC7882588 DOI: 10.1007/s12110-020-09382-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
How does segregation along ethnic boundaries emerge in social networks? Human evolution resulted in highly social beings, capable of prosociality, mindreading, and self-control, which are important aspects of the “social brain.” Our neurophysiologically “wired” social cognition implies different cognitive goal frames. In line with recent developments in behavioral theory, the present study defines network ties as episodes of social exchange. This dynamic definition can account for shifts in goal frames during an exchange episode: whereas deliberate choice and hedonic or gain goals drive the initiation of a tie, given the opportunity structure, the normative goal frame activates a strong dynamic effect of reciprocity, which limits actors’ choice set and appears as “self-organization” at the network level. Longitudinal analyses of 18 birthday party networks comprising 501 students support the definition of network ties as exchange episodes, as well as the relevance of humans’ inherent tendency to reciprocate. However, reciprocation is much stronger in dyads of the same ethnicity than in dyads of different ethnicities. Network segregation along ethnic boundaries results from deliberate decisions during the initiation of an episode, but also from different commitments to reciprocity during the ongoing exchange process, depending on intra or interethnic dyadic constellations.
Collapse
Affiliation(s)
- Michael Windzio
- University of Bremen, SOCIUM, PO Box 330 440, 28334, Bremen, Germany.
| |
Collapse
|
40
|
Gabora L, Steel M. A model of the transition to behavioural and cognitive modernity using reflexively autocatalytic networks. J R Soc Interface 2020; 17:20200545. [PMID: 33109019 DOI: 10.1098/rsif.2020.0545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This paper proposes a model of the cognitive mechanisms underlying the transition to behavioural and cognitive modernity in the Upper Palaeolithic using autocatalytic networks. These networks have been used to model life's origins. More recently, they have been applied to the emergence of cognitive structure capable of undergoing cultural evolution. Mental representations of knowledge and experiences play the role of catalytic molecules, the interactions among them (e.g. the forging of new associations or affordances) play the role of reactions, and thought processes are modelled as chains of these interactions. We posit that one or more genetic mutations may have allowed thought to be spontaneously tailored to the situation by modulating the degree of (i) divergence (versus convergence), (ii) abstractness (versus concreteness), and (iii) context specificity. This culminated in persistent, unified autocatalytic semantic networks that bridged previously compartmentalized knowledge and experience. We explain the model using one of the oldest-known uncontested examples of figurative art: the carving of the Hohlenstein-Stadel Löwenmensch, or lion man. The approach keeps track of where in a cultural lineage each innovation appears, and models cumulative change step by step. It paves the way for a broad scientific framework for the origins of both biological and cultural evolutionary processes.
Collapse
Affiliation(s)
- Liane Gabora
- Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
41
|
Abstract
Humans are an ultrasocial species. This sociality, however, cannot be fully explained by the canonical approaches found in evolutionary biology, psychology, or economics. Understanding our unique social psychology requires accounting not only for the breadth and intensity of human cooperation but also for the variation found across societies, over history, and among behavioral domains. Here, we introduce an expanded evolutionary approach that considers how genetic and cultural evolution, and their interaction, may have shaped both the reliably developing features of our minds and the well-documented differences in cultural psychologies around the globe. We review the major evolutionary mechanisms that have been proposed to explain human cooperation, including kinship, reciprocity, reputation, signaling, and punishment; we discuss key culture-gene coevolutionary hypotheses, such as those surrounding self-domestication and norm psychology; and we consider the role of religions and marriage systems. Empirically, we synthesize experimental and observational evidence from studies of children and adults from diverse societies with research among nonhuman primates.
Collapse
Affiliation(s)
- Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| | - Michael Muthukrishna
- Department of Psychological and Behavioural Science, London School of Economics and Political Science, London WC2A 2AE, United Kingdom;
| |
Collapse
|
42
|
Subiaul F, Stanton MA. Intuitive invention by summative imitation in children and adults. Cognition 2020; 202:104320. [DOI: 10.1016/j.cognition.2020.104320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023]
|
43
|
Winegard B, Winegard B, Anomaly J. Dodging Darwin: Race, evolution, and the hereditarian hypothesis. PERSONALITY AND INDIVIDUAL DIFFERENCES 2020. [DOI: 10.1016/j.paid.2020.109915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Marijuán PC, Navarro J. Sociotype and cultural evolution: The acceleration of cultural change alongside industrial revolutions. Biosystems 2020; 195:104170. [DOI: 10.1016/j.biosystems.2020.104170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
|
45
|
Derbyshire E, Obeid R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients 2020; 12:E1731. [PMID: 32531929 PMCID: PMC7352907 DOI: 10.3390/nu12061731] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
The foundations of neurodevelopment across an individual's lifespan are established in the first 1000 days of life (2 years). During this period an adequate supply of nutrients are essential for proper neurodevelopment and lifelong brain function. Of these, evidence for choline has been building but has not been widely collated using systematic approaches. Therefore, a systematic review was performed to identify the animal and human studies looking at inter-relationships between choline, neurological development, and brain function during the first 1000 days of life. The database PubMed was used, and reference lists were searched. In total, 813 publications were subject to the title/abstract review, and 38 animal and 16 human studies were included after evaluation. Findings suggest that supplementing the maternal or child's diet with choline over the first 1000 days of life could subsequently: (1) support normal brain development (animal and human evidence), (2) protect against neural and metabolic insults, particularly when the fetus is exposed to alcohol (animal and human evidence), and (3) improve neural and cognitive functioning (animal evidence). Overall, most offspring would benefit from increased choline supply during the first 1000 days of life, particularly in relation to helping facilitate normal brain development. Health policies and guidelines should consider re-evaluation to help communicate and impart potential choline benefits through diet and/or supplementation approaches across this critical life stage.
Collapse
Affiliation(s)
| | - Rima Obeid
- Department of Clinical Chemistry, University Hospital of the Saarland, Building 57, 66424 Homburg, Germany;
| |
Collapse
|
46
|
Markov AV, Markov MA. Runaway brain-culture coevolution as a reason for larger brains: Exploring the "cultural drive" hypothesis by computer modeling. Ecol Evol 2020; 10:6059-6077. [PMID: 32607213 PMCID: PMC7319167 DOI: 10.1002/ece3.6350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Scale and tempo of brain expansion in the course of human evolution implies that this process was driven by a positive feedback. The "cultural drive" hypothesis suggests a possible mechanism for the runaway brain-culture coevolution wherein high-fidelity social learning results in accumulation of cultural traditions which, in turn, promote selection for still more efficient social learning. Here we explore this evolutionary mechanism by means of computer modeling. Simulations confirm its plausibility in a social species in a socio-ecological situation that makes the sporadic invention of new beneficial and cognitively demanding behaviors possible. The chances for the runaway brain-culture coevolution increase when some of the culturally transmitted behaviors are individually beneficial while the others are group-beneficial. In this case, "cultural drive" is possible under varying levels of between-group competition and migration. Modeling implies that brain expansion can receive additional boost if the evolving mechanisms of social learning are costly in terms of brain expansion (e.g., rely on complex neuronal circuits) and tolerant to the complexity of information transferred, that is, make it possible to transfer complex skills and concepts easily. Human language presumably fits this description. Modeling also confirms that the runaway brain-culture coevolution can be accelerated by additional positive feedback loops via population growth and life span extension, and that between-group competition and cultural group selection can facilitate the propagation of group-beneficial behaviors and remove maladaptive cultural traditions from the population's culture, which individual selection is unable to do.
Collapse
Affiliation(s)
- Alexander V. Markov
- Faculty of BiologyMoscow State UniversityMoscowRussia
- Paleontological Institute of the Russian Academy of SciencesMoscowRussia
| | - Mikhail A. Markov
- Faculty of BiologyMoscow State UniversityMoscowRussia
- Paleontological Institute of the Russian Academy of SciencesMoscowRussia
| |
Collapse
|
47
|
Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex 2019; 118:292-305. [DOI: 10.1016/j.cortex.2019.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/26/2018] [Accepted: 04/29/2019] [Indexed: 01/16/2023]
|
48
|
Uchiyama R, Muthukrishna M. Archetypes are a Poor Primitive for a Theory of Mental Representations. PSYCHOLOGICAL INQUIRY 2019. [DOI: 10.1080/1047840x.2019.1614806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ryutaro Uchiyama
- Department of Psychological and Behavioural Science, London School of Economics and Political Science, London, United Kingdom
| | - Michael Muthukrishna
- Department of Psychological and Behavioural Science, London School of Economics and Political Science, London, United Kingdom
| |
Collapse
|
49
|
Vaughn Becker D, Neuberg SL. Pushing Archetypal Representational Systems Further. PSYCHOLOGICAL INQUIRY 2019. [DOI: 10.1080/1047840x.2019.1618069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Abstract
Abstract
Play is an important and understudied class of phenomena that likely serves a critical role in the ontogeny and maintenance of fitness-enhancing behaviors. Many species exhibit little or no play. Among those animals that do play, some exhibit only very simple forms, while others engage in complex play both solitarily and socially. Likewise, some animals play only as juveniles, while others continue to play as adults. We propose a general framework to explain interspecies variation in the evolution and emergence of simple vs. complex forms of play, supported by both a review of the empirical evidence and a novel mathematical model. The emergence of play requires that initial investment returns benefits that sufficiently compensate the opportunity costs associated with simple play. The subsequent evolution of complex play depends upon the interplay of several life-history factors related to the benefits, costs, and time course of play investment. We conclude with implications for understanding the evolution of play across the animal kingdom.
Collapse
Affiliation(s)
- Paul E Smaldino
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Elisabetta Palagi
- Department of Biology, University of Pisa. Lungarno Antonio Pacinotti, Pisa PI, Italy
| | - Gordon M Burghardt
- Departments of Psychology and Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|