1
|
Wu D, Xu F, Xu Y, Huang M, Li Z, Chu J. Towards a hybrid model-driven platform based on flux balance analysis and a machine learning pipeline for biosystem design. Synth Syst Biotechnol 2024; 9:33-42. [PMID: 38234412 PMCID: PMC10793177 DOI: 10.1016/j.synbio.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic modeling and machine learning (ML) are crucial components of the evolving next-generation tools in systems and synthetic biology, aiming to unravel the intricate relationship between genotype, phenotype, and the environment. Nonetheless, the comprehensive exploration of integrating these two frameworks, and fully harnessing the potential of fluxomic data, remains an unexplored territory. In this study, we present, rigorously evaluate, and compare ML-based techniques for data integration. The hybrid model revealed that the overexpression of six target genes and the knockout of seven target genes contribute to enhanced ethanol production. Specifically, we investigated the influence of succinate dehydrogenase (SDH) on ethanol biosynthesis in Saccharomyces cerevisiae through shake flask experiments. The findings indicate a noticeable increase in ethanol yield, ranging from 6 % to 10 %, in SDH subunit gene knockout strains compared to the wild-type strain. Moreover, in pursuit of a high-yielding strain for ethanol production, dual-gene deletion experiments were conducted targeting glycerol-3-phosphate dehydrogenase (GPD) and SDH. The results unequivocally demonstrate significant enhancements in ethanol production for the engineered strains Δsdh4Δgpd1, Δsdh5Δgpd1, Δsdh6Δgpd1, Δsdh4Δgpd2, Δsdh5Δgpd2, and Δsdh6Δgpd2, with improvements of 21.6 %, 27.9 %, and 22.7 %, respectively. Overall, the results highlighted that integrating mechanistic flux features substantially improves the prediction of gene knockout strains not accounted for in metabolic reconstructions. In addition, the finding in this study delivers valuable tools for comprehending and manipulating intricate phenotypes, thereby enhancing prediction accuracy and facilitating deeper insights into mechanistic aspects within the field of synthetic biology.
Collapse
Affiliation(s)
| | | | - Yaying Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mingzhi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
2
|
Xie W, Zhu X, Wang L, Li J, Zhou Y. Direct-acting antiviral agent use and gastrointestinal safety in patients with chronic hepatitis C: a pharmacovigilance study based on FDA Adverse Event Reporting System. Int J Clin Pharm 2023; 45:154-162. [PMID: 36371585 DOI: 10.1007/s11096-022-01510-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Gastrointestinal adverse drug reactions (GADRs) of direct-acting antiviral agents (DAAs) in patients with chronic hepatitis C are underestimated. AIM This study aimed to comprehensively evaluate the gastrointestinal safety of DAAs in patients with chronic hepatitis C. METHOD The US FDA Adverse Event Reporting System database was searched for GADR cases reported from 01 to 2012 to 30 September 2021. Twelve DAA types used for hepatitis C virus were included. The top 30 GADRs were assessed based on the use of DAAs, number of cases, and clinical features. A case-non-case disproportionality approach was used to confirm pharmacovigilance signals, whereby reporting odds ratios (ROR) with 95% CI were calculated. RESULTS Nausea (70.01/1000), diarrhoea (39.10/1000), and vomiting (31.68/1000) accounted for the highest number of cases. The pooled median time-to-onset of the top 30 GADRs was 13 days (Q1-Q3: 2-38) and the proportion of drug discontinuation was 19.17%. The highest number of DAA-related cases involved ledipasvir/sofosbuvir (21.86%), sofosbuvir/velpatasvir (21.77%), and sofosbuvir (13.41%). When DAAs were considered as a class drug, after adjusting for age, sex, concomitant diseases and drugs that potentially induced GADRs, significant RORs for specific GADRs were noted, including abdominal discomfort (1.62, 95% CI 1.32-1.99), constipation (1.54, 95% CI 1.26-1.89), dyspepsia (1.25, 95% CI 1.01-1.55), abdominal distension (1.36, 95% CI 1.05-1.75), faeces discoloured (1.77, 95% CI 1.15-2.73), and gastric ulcer (2.37, 95% CI 1.28-4.41). CONCLUSION Clinicians should have a deeper understanding of GADRs to improve the gastrointestinal tolerance of patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinyan Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Linyao Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianbin Li
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Pilarczyk M, Fazel-Najafabadi M, Kouril M, Shamsaei B, Vasiliauskas J, Niu W, Mahi N, Zhang L, Clark NA, Ren Y, White S, Karim R, Xu H, Biesiada J, Bennett MF, Davidson SE, Reichard JF, Roberts K, Stathias V, Koleti A, Vidovic D, Clarke DJB, Schürer SC, Ma'ayan A, Meller J, Medvedovic M. Connecting omics signatures and revealing biological mechanisms with iLINCS. Nat Commun 2022; 13:4678. [PMID: 35945222 PMCID: PMC9362980 DOI: 10.1038/s41467-022-32205-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling.
Collapse
Affiliation(s)
- Marcin Pilarczyk
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Mehdi Fazel-Najafabadi
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Michal Kouril
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Behrouz Shamsaei
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Juozas Vasiliauskas
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Wen Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Naim Mahi
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Lixia Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Nicholas A Clark
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Yan Ren
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Shana White
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Rashid Karim
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Huan Xu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Mark F Bennett
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Sarah E Davidson
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - John F Reichard
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Kurt Roberts
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Vasileios Stathias
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Amar Koleti
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Dusica Vidovic
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Daniel J B Clarke
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephan C Schürer
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Avi Ma'ayan
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jarek Meller
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA.
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA.
- LINCS Data Coordination and Integration Center (DCIC), New York, USA.
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA.
| |
Collapse
|
5
|
Pio G, Mignone P, Magazzù G, Zampieri G, Ceci M, Angione C. Integrating genome-scale metabolic modelling and transfer learning for human gene regulatory network reconstruction. Bioinformatics 2022; 38:487-493. [PMID: 34499112 DOI: 10.1093/bioinformatics/btab647] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Gene regulation is responsible for controlling numerous physiological functions and dynamically responding to environmental fluctuations. Reconstructing the human network of gene regulatory interactions is thus paramount to understanding the cell functional organization across cell types, as well as to elucidating pathogenic processes and identifying molecular drug targets. Although significant effort has been devoted towards this direction, existing computational methods mainly rely on gene expression levels, possibly ignoring the information conveyed by mechanistic biochemical knowledge. Moreover, except for a few recent attempts, most of the existing approaches only consider the information of the organism under analysis, without exploiting the information of related model organisms. RESULTS We propose a novel method for the reconstruction of the human gene regulatory network, based on a transfer learning strategy that synergically exploits information from human and mouse, conveyed by gene-related metabolic features generated in silico from gene expression data. Specifically, we learn a predictive model from metabolic activity inferred via tissue-specific metabolic modelling of artificial gene knockouts. Our experiments show that the combination of our transfer learning approach with the constructed metabolic features provides a significant advantage in terms of reconstruction accuracy, as well as additional clues on the contribution of each constructed metabolic feature. AVAILABILITY AND IMPLEMENTATION The method, the datasets and all the results obtained in this study are available at: https://doi.org/10.6084/m9.figshare.c.5237687. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gianvito Pio
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Rome 00185, Italy
| | - Paolo Mignone
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Rome 00185, Italy
| | - Giuseppe Magazzù
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley TS1 3BA, UK
| | - Guido Zampieri
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley TS1 3BA, UK.,Department of Biology, University of Padova, Padova 35121, Italy
| | - Michelangelo Ceci
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Rome 00185, Italy.,Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley TS1 3BA, UK.,Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley TS1 3BX, UK.,Healthcare Innovation Centre, Teesside University, Campus Heart, Tees Valley TS1 3BX, UK
| |
Collapse
|