1
|
Alonso-Serra J, Cheddadi I, Kiss A, Cerutti G, Lang M, Dieudonné S, Lionnet C, Godin C, Hamant O. Water fluxes pattern growth and identity in shoot meristems. Nat Commun 2024; 15:6944. [PMID: 39138210 PMCID: PMC11322635 DOI: 10.1038/s41467-024-51099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/28/2024] [Indexed: 08/15/2024] Open
Abstract
In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana. We found that, as organs grow, a subpopulation of cells at the organ-meristem boundary shrinks. Growth simulations using a model that integrates hydraulics and mechanics revealed water fluxes and predicted a water deficit for boundary cells. In planta, a water-soluble dye preferentially allocated to fast-growing tissues and failed to enter the boundary domain. Cell shrinkage next to fast-growing domains was also robust to different growth conditions and different topographies. Finally, a molecular signature of water deficit at the boundary confirmed our conclusion. Taken together, we propose that the differential sink strength of emerging organs prescribes the hydraulic patterns that define boundary domains at the shoot apex.
Collapse
Affiliation(s)
- Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Ibrahim Cheddadi
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Annamaria Kiss
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Guillaume Cerutti
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Marianne Lang
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Sana Dieudonné
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Claire Lionnet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Christophe Godin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
| |
Collapse
|
2
|
Hernández-Hernández V, Marchand OC, Kiss A, Boudaoud A. A mechanohydraulic model supports a role for plasmodesmata in cotton fiber elongation. PNAS NEXUS 2024; 3:pgae256. [PMID: 39010940 PMCID: PMC11249074 DOI: 10.1093/pnasnexus/pgae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Plant cell growth depends on turgor pressure, the cell hydrodynamic pressure, which drives expansion of the extracellular matrix (the cell wall). Turgor pressure regulation depends on several physical, chemical, and biological factors, including vacuolar invertases, which modulate osmotic pressure of the cell, aquaporins, which determine the permeability of the plasma membrane to water, cell wall remodeling factors, which determine cell wall extensibility (inverse of effective viscosity), and plasmodesmata, which are membrane-lined channels that allow free movement of water and solutes between cytoplasms of neighboring cells, like gap junctions in animals. Plasmodesmata permeability varies during plant development and experimental studies have correlated changes in the permeability of plasmodesmal channels to turgor pressure variations. Here, we study the role of plasmodesmal permeability in cotton fiber growth, a type of cell that increases in length by at least three orders of magnitude in a few weeks. We incorporated plasmodesma-dependent movement of water and solutes into a classical model of plant cell expansion. We performed a sensitivity analysis to changes in values of model parameters and found that plasmodesmal permeability is among the most important factors for building up turgor pressure and expanding cotton fibers. Moreover, we found that nonmonotonic behaviors of turgor pressure that have been reported previously in cotton fibers cannot be recovered without accounting for dynamic changes of the parameters used in the model. Altogether, our results suggest an important role for plasmodesmal permeability in the regulation of turgor pressure.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
| | - Olivier C Marchand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
- LadHyX, NRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau F- 91120, France
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
- LadHyX, NRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau F- 91120, France
| |
Collapse
|
3
|
Bou Daher F, Serra L, Carter R, Jönsson H, Robinson S, Meyerowitz EM, Gray WM. Xyloglucan deficiency leads to a reduction in turgor pressure and changes in cell wall properties, affecting early seedling establishment. Curr Biol 2024; 34:2094-2106.e6. [PMID: 38677280 PMCID: PMC11111339 DOI: 10.1016/j.cub.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Xyloglucan is believed to play a significant role in cell wall mechanics of dicot plants. Surprisingly, Arabidopsis plants defective in xyloglucan biosynthesis exhibit nearly normal growth and development. We investigated a mutant line, cslc-Δ5, lacking activity in all five Arabidopsis cellulose synthase like-C (CSLC) genes responsible for xyloglucan backbone biosynthesis. We observed that this xyloglucan-deficient line exhibited reduced cellulose crystallinity and increased pectin levels, suggesting the existence of feedback mechanisms that regulate wall composition to compensate for the absence of xyloglucan. These alterations in cell wall composition in the xyloglucan-absent plants were further linked to a decrease in cell wall elastic modulus and rupture stress, as observed through atomic force microscopy (AFM) and extensometer-based techniques. This raised questions about how plants with such modified cell wall properties can maintain normal growth. Our investigation revealed two key factors contributing to this phenomenon. First, measurements of turgor pressure, a primary driver of plant growth, revealed that cslc-Δ5 plants have reduced turgor, preventing the compromised walls from bursting while still allowing growth to occur. Second, we discovered the conservation of elastic asymmetry (ratio of axial to transverse wall elasticity) in the mutant, suggesting an additional mechanism contributing to the maintenance of normal growth. This novel feedback mechanism between cell wall composition and mechanical properties, coupled with turgor pressure regulation, plays a central role in the control of plant growth and is critical for seedling establishment in a mechanically challenging environment by affecting shoot emergence and root penetration.
Collapse
Affiliation(s)
- Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA; Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
| | - Leo Serra
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sarah Robinson
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Elliot M Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
4
|
Laplaud V, Muller E, Demidova N, Drevensek S, Boudaoud A. Assessing the hydromechanical control of plant growth. J R Soc Interface 2024; 21:20240008. [PMID: 38715319 PMCID: PMC11077010 DOI: 10.1098/rsif.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
Multicellular organisms grow and acquire their shapes through the differential expansion and deformation of their cells. Recent research has addressed the role of cell and tissue mechanical properties in these processes. In plants, it is believed that growth rate is a function of the mechanical stress exerted on the cell wall, the thin polymeric layer surrounding cells, involving an effective viscosity. Nevertheless, recent studies have questioned this view, suggesting that cell wall elasticity sets the growth rate or that uptake of water is limiting for plant growth. To assess these issues, we developed a microfluidic device to quantify the growth rates, elastic properties and hydraulic conductivity of individual Marchantia polymorpha plants in a controlled environment with a high throughput. We characterized the effect of osmotic treatment and abscisic acid on growth and hydromechanical properties. Overall, the instantaneous growth rate of individuals is correlated with both bulk elastic modulus and hydraulic conductivity. Our results are consistent with a framework in which the growth rate is determined primarily by the elasticity of the wall and its remodelling, and secondarily by hydraulic conductivity. Accordingly, the coupling between the chemistry of the cell wall and the hydromechanics of the cell appears as key to set growth patterns during morphogenesis.
Collapse
Affiliation(s)
- Valentin Laplaud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Elise Muller
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Natalia Demidova
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, Ontario, L5L1C6, Canada
| | - Stéphanie Drevensek
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| |
Collapse
|
5
|
Kannivadi Ramakanth K, Long Y. In preprints: shrinking boundary cells reveal fluid flux in organogenesis. Development 2023; 150:dev202450. [PMID: 37922124 DOI: 10.1242/dev.202450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Affiliation(s)
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore 117543, Singapore
- Mechanobiology Institute, The National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
6
|
Kirchhelle C, Hamant O. Discretizing the cellular bases of plant morphogenesis: Emerging properties from subcellular and noisy patterning. Curr Opin Cell Biol 2023; 81:102159. [PMID: 36966612 DOI: 10.1016/j.ceb.2023.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/12/2023]
Abstract
A fundamental question in biology is how multicellular organisms robustly shape their organs. In the past decade, much progress has been made not just in identifying biochemical and biophysical factors underpinning morphogenesis, but also in analyzing their spatio-temporal dynamics. A remarkable outcome of such analyses is that morphogenesis involves high levels of heterogeneity and fluctuations at local scales. Although this could be considered as white noise to be averaged over time, there is increasing evidence that these heterogeneities and fluctuations are instructive cues for development. In this review, we highlight some of the new questions that such heterogeneities raise for plant morphogenesis. We also investigate their effects across scales, focusing on how subcellular heterogeneities contribute to organ shape robustness and evolvability.
Collapse
Affiliation(s)
- Charlotte Kirchhelle
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
7
|
Ali O, Cheddadi I, Landrein B, Long Y. Revisiting the relationship between turgor pressure and plant cell growth. THE NEW PHYTOLOGIST 2023; 238:62-69. [PMID: 36527246 DOI: 10.1111/nph.18683] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Growth is central to plant morphogenesis. Plant cells are encased in rigid cell walls, and they must overcome physical confinement to grow to specific sizes and shapes. Cell wall tension and turgor pressure are the main mechanical components impacting plant cell growth. Cell wall mechanics has been the focus of most plant biomechanical studies, and turgor pressure was often considered as a constant and largely passive component. Nevertheless, it is increasingly accepted that turgor pressure plays a significant role in plant growth. Numerous theoretical and experimental studies suggest that turgor pressure can be both spatially inhomogeneous and actively modulated during morphogenesis. Here, we revisit the pressure-growth relationship by reviewing recent advances in investigating the interactions between cellular/tissular pressure and growth.
Collapse
Affiliation(s)
- Olivier Ali
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon Cedex 07, 69364, France
| | - Ibrahim Cheddadi
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon Cedex 07, 69364, France
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon Cedex 07, 69364, France
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore, 117543, Singapore
- Mechanobiology Institute, The National University of Singapore, Singapore, 117411, Singapore
| |
Collapse
|
8
|
Erlich A, Étienne J, Fouchard J, Wyatt T. How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale. Interface Focus 2022; 12:20220038. [PMID: 36330322 PMCID: PMC9560792 DOI: 10.1098/rsfs.2022.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 10/16/2023] Open
Abstract
Cells and tissues change shape both to carry out their function and during pathology. In most cases, these deformations are driven from within the systems themselves. This is permitted by a range of molecular actors, such as active crosslinkers and ion pumps, whose activity is biologically controlled in space and time. The resulting stresses are propagated within complex and dynamical architectures like networks or cell aggregates. From a mechanical point of view, these effects can be seen as the generation of prestress or prestrain, resulting from either a contractile or growth activity. In this review, we present this concept of prestress and the theoretical tools available to conceptualize the statics and dynamics of living systems. We then describe a range of phenomena where prestress controls shape changes in biopolymer networks (especially the actomyosin cytoskeleton and fibrous tissues) and cellularized tissues. Despite the diversity of scale and organization, we demonstrate that these phenomena stem from a limited number of spatial distributions of prestress, which can be categorized as heterogeneous, anisotropic or differential. We suggest that in addition to growth and contraction, a third type of prestress-topological prestress-can result from active processes altering the microstructure of tissue.
Collapse
Affiliation(s)
| | - Jocelyn Étienne
- Université Grenoble Alpes, CNRS, LIPHY, 38000 Grenoble, France
| | - Jonathan Fouchard
- Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS (UMR 7622), INSERM (URL 1156), 7 quai Saint Bernard, 75005 Paris, France
| | - Tom Wyatt
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Affortit P, Effa-Effa B, Ndoye MS, Moukouanga D, Luchaire N, Cabrera-Bosquet L, Perálvarez M, Pilloni R, Welcker C, Champion A, Gantet P, Diedhiou AG, Manneh B, Aroca R, Vadez V, Laplaze L, Cubry P, Grondin A. Physiological and genetic control of transpiration efficiency in African rice, Oryza glaberrima Steud. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5279-5293. [PMID: 35429274 DOI: 10.1093/jxb/erac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly contrasted genotypes in terms of biomass accumulation and transpiration confirmed these associations and suggested that root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency, and its residuals, with links to genes involved in water transport and cell wall patterning. Our data suggest that root-shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.
Collapse
Affiliation(s)
- Pablo Affortit
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Branly Effa-Effa
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CENAREST, Libreville, Gabon
| | - Mame Sokhatil Ndoye
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CERAAS, Thiès, Senegal
| | | | - Nathalie Luchaire
- LEPSE, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | | | - Raphaël Pilloni
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Claude Welcker
- LEPSE, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Antony Champion
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Pascal Gantet
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | | | | | | | - Vincent Vadez
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CERAAS, Thiès, Senegal
- LMI LAPSE, Dakar, Senegal
- ICRISAT, Patancheru, India
| | - Laurent Laplaze
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LMI LAPSE, Dakar, Senegal
| | - Philippe Cubry
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Alexandre Grondin
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CERAAS, Thiès, Senegal
- LMI LAPSE, Dakar, Senegal
| |
Collapse
|
10
|
Nakayama H, Koga H, Long Y, Hamant O, Ferjani A. Looking beyond the gene network - metabolic and mechanical cell drivers of leaf morphogenesis. J Cell Sci 2022; 135:275072. [PMID: 35438169 DOI: 10.1242/jcs.259611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The above-ground organs in plants display a rich diversity, yet they grow to characteristic sizes and shapes. Organ morphogenesis progresses through a sequence of key events, which are robustly executed spatiotemporally as an emerging property of intrinsic molecular networks while adapting to various environmental cues. This Review focuses on the multiscale control of leaf morphogenesis. Beyond the list of known genetic determinants underlying leaf growth and shape, we focus instead on the emerging novel mechanisms of metabolic and biomechanical regulations that coordinate plant cell growth non-cell-autonomously. This reveals how metabolism and mechanics are not solely passive outcomes of genetic regulation but play instructive roles in leaf morphogenesis. Such an integrative view also extends to fluctuating environmental cues and evolutionary adaptation. This synthesis calls for a more balanced view on morphogenesis, where shapes are considered from the standpoints of geometry, genetics, energy and mechanics, and as emerging properties of the cellular expression of these different properties.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore 117543, Singapore
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, 184-8501 Tokyo, Japan
| |
Collapse
|
11
|
Antonovici CC, Peerdeman GY, Wolff HB, Merks RMH. Modeling Plant Tissue Development Using VirtualLeaf. Methods Mol Biol 2022; 2395:165-198. [PMID: 34822154 DOI: 10.1007/978-1-0716-1816-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-based computational modeling and simulation are becoming invaluable tools in analyzing plant development. In a cell-based simulation model, the inputs are behaviors and dynamics of individual cells and the rules describing responses to signals from adjacent cells. The outputs are the growing tissues, shapes, and cell-differentiation patterns that emerge from the local, chemical, and biomechanical cell-cell interactions. In this updated and extended version of our previous chapter on VirtualLeaf (Merks and Guravage, Methods in Molecular Biology 959, 333-352), we present a step-by-step, practical tutorial for building cell-based simulations of plant development and for analyzing the influence of parameters on simulation outcomes by systematically changing the values of the parameters and analyzing each outcome. We show how to build a model of a growing tissue, a reaction-diffusion system on a growing domain, and an auxin transport model. Moreover, in addition to the previous publication, we demonstrate how to run a Turing system on a regular, rectangular lattice, and how to run parameter sweeps. The aim of VirtualLeaf is to make computational modeling more accessible to experimental plant biologists with relatively little computational background.
Collapse
Affiliation(s)
- Claudiu-Cristi Antonovici
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Guacimo Y Peerdeman
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Harold B Wolff
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands.
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
12
|
Le Verge-Serandour M, Turlier H. A hydro-osmotic coarsening theory of biological cavity formation. PLoS Comput Biol 2021; 17:e1009333. [PMID: 34478457 PMCID: PMC8445475 DOI: 10.1371/journal.pcbi.1009333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/16/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Fluid-filled biological cavities are ubiquitous, but their collective dynamics has remained largely unexplored from a physical perspective. Based on experimental observations in early embryos, we propose a model where a cavity forms through the coarsening of myriad of pressurized micrometric lumens, that interact by ion and fluid exchanges through the intercellular space. Performing extensive numerical simulations, we find that hydraulic fluxes lead to a self-similar coarsening of lumens in time, characterized by a robust dynamic scaling exponent. The collective dynamics is primarily controlled by hydraulic fluxes, which stem from lumen pressures differences and are dampened by water permeation through the membrane. Passive osmotic heterogeneities play, on the contrary, a minor role on cavity formation but active ion pumping can largely modify the coarsening dynamics: it prevents the lumen network from a collective collapse and gives rise to a novel coalescence-dominated regime exhibiting a distinct scaling law. Interestingly, we prove numerically that spatially biasing ion pumping may be sufficient to position the cavity, suggesting a novel mode of symmetry breaking to control tissue patterning. Providing generic testable predictions, our model forms a comprehensive theoretical basis for hydro-osmotic interaction between biological cavities, that shall find wide applications in embryo and tissue morphogenesis.
Collapse
Affiliation(s)
- Mathieu Le Verge-Serandour
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS UMR7241, INSERM U1050, Paris, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS UMR7241, INSERM U1050, Paris, France
| |
Collapse
|
13
|
Vernoux T, Besnard F, Godin C. What shoots can teach about theories of plant form. NATURE PLANTS 2021; 7:716-724. [PMID: 34099903 DOI: 10.1038/s41477-021-00930-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Plants generate a large variety of shoot forms with regular geometries. These forms emerge primarily from the activity of a stem cell niche at the shoot tip. Recent efforts have established a theoretical framework of form emergence at the shoot tip, which has empowered the use of modelling in conjunction with biological approaches to begin to disentangle the biochemical and physical mechanisms controlling form development at the shoot tip. Here, we discuss how these advances get us closer to identifying the construction principles of plant shoot tips. Considering the current limits of our knowledge, we propose a roadmap for developing a general theory of form development at the shoot tip.
Collapse
Affiliation(s)
- Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France.
| | - Fabrice Besnard
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| |
Collapse
|
14
|
Trinh DC, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, Hamant O. How Mechanical Forces Shape Plant Organs. Curr Biol 2021; 31:R143-R159. [PMID: 33561417 DOI: 10.1016/j.cub.2020.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs - spheres, cylinders and lamina - can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features - folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi, Vietnam
| | - Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariko Asaoka
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
15
|
Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 2021; 371:science.abd0695. [DOI: 10.1126/science.abd0695] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Isai Salas-González
- Curriculum in Bioinformatics and Computational Biology, Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guilhem Reyt
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Paulina Flis
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Valéria Custódio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidad de Nova de Lisboa, Lisboa, Portugal
| | - David Gopaulchan
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Niokhor Bakhoum
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Tristan P. Dew
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Rochus Benni Franke
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Jeffery L. Dangl
- Curriculum in Bioinformatics and Computational Biology, Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E. Salt
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
16
|
Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.100659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Lamiré LA, Milani P, Runel G, Kiss A, Arias L, Vergier B, de Bossoreille S, Das P, Cluet D, Boudaoud A, Grammont M. Gradient in cytoplasmic pressure in germline cells controls overlying epithelial cell morphogenesis. PLoS Biol 2020; 18:e3000940. [PMID: 33253165 PMCID: PMC7703951 DOI: 10.1371/journal.pbio.3000940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
It is unknown how growth in one tissue impacts morphogenesis in a neighboring tissue. To address this, we used the Drosophila ovarian follicle, in which a cluster of 15 nurse cells and a posteriorly located oocyte are surrounded by a layer of epithelial cells. It is known that as the nurse cells grow, the overlying epithelial cells flatten in a wave that begins in the anterior. Here, we demonstrate that an anterior to posterior gradient of decreasing cytoplasmic pressure is present across the nurse cells and that this gradient acts through TGFβ to control both the triggering and the progression of the wave of epithelial cell flattening. Our data indicate that intrinsic nurse cell growth is important to control proper nurse cell pressure. Finally, we reveal that nurse cell pressure and subsequent TGFβ activity in the stretched cells combine to increase follicle elongation in the anterior, which is crucial for allowing nurse cell growth and pressure control. More generally, our results reveal that during development, inner cytoplasmic pressure in individual cells has an important role in shaping their neighbors.
Collapse
Affiliation(s)
- Laurie-Anne Lamiré
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Pascale Milani
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Gaël Runel
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Annamaria Kiss
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Leticia Arias
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Blandine Vergier
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Stève de Bossoreille
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Pradeep Das
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - David Cluet
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Muriel Grammont
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| |
Collapse
|
18
|
Wang Y, Li H. Bio-chemo-electro-mechanical modelling of the rapid movement of Mimosa pudica. Bioelectrochemistry 2020; 134:107533. [PMID: 32380450 DOI: 10.1016/j.bioelechem.2020.107533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
A remarkable feature of Mimosa pudica is its ability to deform in response to certain external stimuli. Here, a two-dimensional transient bio-chemo-electro-mechanical model of the rapid movement of the main pulvinus of Mimosa pudica is developed. Based on the laws of mass and momentum conservation, poroelasticity, and representative volume elements, a novel fluid pressure equation is proposed to characterize the cell elasticity. Experiments were conducted to measure the time and amplitude of the rapid movement. After examinations with the published experiments, it is confirmed that the model can predict well the ionic concentrations, petiole bending angle, and membrane potential. The simulation analysis of the biophysical properties provides insights to biomechanics: the hydrostatic pressure in the lowest extensor decreases from 0.35 to 0.05 MPa at t = 0.00 to 3.00 s; fluid pressure increases from 0.00 to 0.11 MPa at t = 0.00 to 0.14 s; and the peak bending angle increases from 57.0° to 70.9° when the reflection coefficient is assigned as 0.10 to 0.20 in the model. The results highlight the biochemical actuation mechanism of the Mimosa pudica movement, and they confirm the importance of ionic and water transports for causing changes in osmotic and hydrostatic pressures.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
| |
Collapse
|
19
|
Long Y, Cheddadi I, Mosca G, Mirabet V, Dumond M, Kiss A, Traas J, Godin C, Boudaoud A. Cellular Heterogeneity in Pressure and Growth Emerges from Tissue Topology and Geometry. Curr Biol 2020; 30:1504-1516.e8. [PMID: 32169211 DOI: 10.1016/j.cub.2020.02.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 01/22/2023]
Abstract
Cell-to-cell heterogeneity prevails in many systems, as exemplified by cell growth, although the origin and function of such heterogeneity are often unclear. In plants, growth is physically controlled by cell wall mechanics and cell hydrostatic pressure, alias turgor pressure. Whereas cell wall heterogeneity has received extensive attention, the spatial variation of turgor pressure is often overlooked. Here, combining atomic force microscopy and a physical model of pressurized cells, we show that turgor pressure is heterogeneous in the Arabidopsis shoot apical meristem, a population of stem cells that generates all plant aerial organs. In contrast with cell wall mechanical properties that appear to vary stochastically between neighboring cells, turgor pressure anticorrelates with cell size and cell neighbor number (local topology), in agreement with the prediction by our model of tissue expansion, which couples cell wall mechanics and tissue hydraulics. Additionally, our model predicts two types of correlations between pressure and cellular growth rate, where high pressure may lead to faster- or slower-than-average growth, depending on cell wall extensibility, yield threshold, osmotic pressure, and hydraulic conductivity. The meristem exhibits one of these two regimes, depending on conditions, suggesting that, in this tissue, water conductivity may contribute to growth control. Our results unravel cell pressure as a source of patterned heterogeneity and illustrate links between local topology, cell mechanical state, and cell growth, with potential roles in tissue homeostasis.
Collapse
Affiliation(s)
- Yuchen Long
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France.
| | - Ibrahim Cheddadi
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Gabriella Mosca
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Vincent Mirabet
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France; Lycée A. et L. Lumière, 69372 Lyon Cedex 08, France
| | - Mathilde Dumond
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Jan Traas
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France.
| |
Collapse
|
20
|
Erlich A, Jones GW, Tisseur F, Moulton DE, Goriely A. The role of topology and mechanics in uniaxially growing cell networks. Proc Math Phys Eng Sci 2020; 476:20190523. [PMID: 32082058 PMCID: PMC7016545 DOI: 10.1098/rspa.2019.0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023] Open
Abstract
In biological systems, the growth of cells, tissues and organs is influenced by mechanical cues. Locally, cell growth leads to a mechanically heterogeneous environment as cells pull and push their neighbours in a cell network. Despite this local heterogeneity, at the tissue level, the cell network is remarkably robust, as it is not easily perturbed by changes in the mechanical environment or the network connectivity. Through a network model, we relate global tissue structure (i.e. the cell network topology) and local growth mechanisms (growth laws) to the overall tissue response. Within this framework, we investigate the two main mechanical growth laws that have been proposed: stress-driven or strain-driven growth. We show that in order to create a robust and stable tissue environment, networks with predominantly series connections are naturally driven by stress-driven growth, whereas networks with predominantly parallel connections are associated with strain-driven growth.
Collapse
Affiliation(s)
- Alexander Erlich
- Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, Grenoble 38000, France
| | - Gareth W. Jones
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Françoise Tisseur
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Derek E. Moulton
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK
| |
Collapse
|