1
|
Chakraborty AK, Gao S, Miry R, Ramazi P, Greiner R, Lewis MA, Wang H. An early warning indicator trained on stochastic disease-spreading models with different noises. J R Soc Interface 2024; 21:20240199. [PMID: 39118548 PMCID: PMC11310706 DOI: 10.1098/rsif.2024.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The timely detection of disease outbreaks through reliable early warning signals (EWSs) is indispensable for effective public health mitigation strategies. Nevertheless, the intricate dynamics of real-world disease spread, often influenced by diverse sources of noise and limited data in the early stages of outbreaks, pose a significant challenge in developing reliable EWSs, as the performance of existing indicators varies with extrinsic and intrinsic noises. Here, we address the challenge of modelling disease when the measurements are corrupted by additive white noise, multiplicative environmental noise and demographic noise into a standard epidemic mathematical model. To navigate the complexities introduced by these noise sources, we employ a deep learning algorithm that provides EWS in infectious disease outbreaks by training on noise-induced disease-spreading models. The indicator's effectiveness is demonstrated through its application to real-world COVID-19 cases in Edmonton and simulated time series derived from diverse disease spread models affected by noise. Notably, the indicator captures an impending transition in a time series of disease outbreaks and outperforms existing indicators. This study contributes to advancing early warning capabilities by addressing the intricate dynamics inherent in real-world disease spread, presenting a promising avenue for enhancing public health preparedness and response efforts.
Collapse
Affiliation(s)
- Amit K. Chakraborty
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Shan Gao
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Reza Miry
- Department of Mathematics and Statistics, Brock University, St. Catharines, Ontario, Canada
| | - Pouria Ramazi
- Department of Mathematics and Statistics, Brock University, St. Catharines, Ontario, Canada
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada
| | - Mark A. Lewis
- Department of Mathematics and Statistics and Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Zhang L, Li MY, Zhi C, Zhu M, Ma H. Identification of Early Warning Signals of Infectious Diseases in Hospitals by Integrating Clinical Treatment and Disease Prevention. Curr Med Sci 2024; 44:273-280. [PMID: 38632143 DOI: 10.1007/s11596-024-2850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/19/2024] [Indexed: 04/19/2024]
Abstract
The global incidence of infectious diseases has increased in recent years, posing a significant threat to human health. Hospitals typically serve as frontline institutions for detecting infectious diseases. However, accurately identifying warning signals of infectious diseases in a timely manner, especially emerging infectious diseases, can be challenging. Consequently, there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals. This paper examines the role of medical data in the early identification of infectious diseases, explores early warning technologies for infectious disease recognition, and assesses monitoring and early warning mechanisms for infectious diseases. We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems, in compliance with national strategies to integrate clinical treatment and disease prevention. Furthermore, hospitals should establish institution-specific, clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.
Collapse
Affiliation(s)
- Lei Zhang
- Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Min-Ye Li
- The Nursing Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chen Zhi
- The Nursing Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Min Zhu
- Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Hui Ma
- The Nursing Department, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Nugent A, Southall E, Dyson L. Exploring the role of the potential surface in the behaviour of early warning signals. J Theor Biol 2022; 554:111269. [PMID: 36075455 DOI: 10.1016/j.jtbi.2022.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/14/2023]
Abstract
The theory of critical slowing down states that a system displays increasing relaxation times as it approaches a critical transition. These changes can be seen in statistics generated from timeseries data, which can be used as early warning signals of a transition. Such early warning signals would be of value for emerging infectious diseases or to understand when an endemic disease is close to elimination. However, in applications to a variety of epidemiological models there is frequent disagreement with the general theory of critical slowing down, with some indicators performing well on prevalence data but not when applied to incidence data. Furthermore, the alternative theory of critical speeding up predicts contradictory behaviour of early warning signals prior to some stochastic transitions. To investigate the possibility of observing critical speeding up in epidemiological models we characterise the behaviour of common early warning signals in terms of a system's potential surface and noise around a quasi-steady state. We then describe a method to obtain these key features from timeseries data, taking as a case study a version of the SIS model, adapted to demonstrate either critical slowing down or critical speeding up. We show this method accurately reproduces the analytic potential surface and diffusion function, and that these results can be used to determine the behaviour of early warning signals and correctly identify signs of both critical slowing down and critical speeding up.
Collapse
Affiliation(s)
- Andrew Nugent
- Mathematics Institute, University of Warwick, Coventry, UK
| | - Emma Southall
- Mathematics Institute, University of Warwick, Coventry, UK; EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, UK
| | - Louise Dyson
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematics Institute and School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
4
|
Jaya IGNM, Folmer H, Lundberg J. A joint Bayesian spatiotemporal risk prediction model of COVID-19 incidence, IC admission, and death with application to Sweden. THE ANNALS OF REGIONAL SCIENCE 2022; 72:1-34. [PMID: 36465998 PMCID: PMC9707215 DOI: 10.1007/s00168-022-01191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The three closely related COVID-19 outcomes of incidence, intensive care (IC) admission and death, are commonly modelled separately leading to biased estimation of the parameters and relatively poor forecasts. This paper presents a joint spatiotemporal model of the three outcomes based on weekly data that is used for risk prediction and identification of hotspots. The paper applies a pure spatiotemporal model consisting of structured and unstructured spatial and temporal effects and their interaction capturing the effects of the unobserved covariates. The pure spatiotemporal model limits the data requirements to the three outcomes and the population at risk per spatiotemporal unit. The empirical study for the 21 Swedish regions for the period 1 January 2020-4 May 2021 confirms that the joint model predictions outperform the separate model predictions. The fifteen-week-ahead spatiotemporal forecasts (5 May-11 August 2021) show a significant decline in the relative risk of COVID-19 incidence, IC admission, death and number of hotspots. Supplementary Information The online version contains supplementary material available at 10.1007/s00168-022-01191-1.
Collapse
Affiliation(s)
- I Gede Nyoman Mindra Jaya
- Faculty of Spatial Sciences, University of Groningen, Groningen, The Netherlands
- Statistics Department, Padjadjaran University, Bandung, Indonesia
| | - Henk Folmer
- Faculty of Spatial Sciences, University of Groningen, Groningen, The Netherlands
- Statistics Department, Padjadjaran University, Bandung, Indonesia
| | - Johan Lundberg
- Department of Economics and Centre for Regional Science (CERUM), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
5
|
Descary MH, Froda S. Estimating the basic reproduction number from noisy daily data. J Theor Biol 2022; 549:111210. [PMID: 35788342 PMCID: PMC9250830 DOI: 10.1016/j.jtbi.2022.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
In this paper, we propose an easy to implement generalized linear models (GLM) methodology for estimating the basic reproduction number, R0, a major epidemic parameter for assessing the transmissibility of an infection. Our approach rests on well known qualitative properties of the classical SIR and SEIR systems for large populations. Moreover, we assume that information at the individual network level is not available. In inference we consider non homogeneous Poisson observation processes and mainly concentrate on epidemics that spread through a completely susceptible population. Further, we examine the performance of the estimator under various scenarios of relevance in practice, like partially observed data. We perform a detailed simulation study and illustrate our approach on Covid-19 Canadian data sets. Finally, we present extensions of our methodology and discuss its merits and practical limitations, in particular the challenges in estimating R0 when mitigation measures are applied.
Collapse
Affiliation(s)
- Marie-Hélène Descary
- Université du Québec à Montréal, Département de mathématiques, Montréal H2X 3Y7, Québec, Canada.
| | - Sorana Froda
- Université du Québec à Montréal, Département de mathématiques, Montréal H2X 3Y7, Québec, Canada
| |
Collapse
|
6
|
Proverbio D, Kemp F, Magni S, Gonçalves J. Performance of early warning signals for disease re-emergence: A case study on COVID-19 data. PLoS Comput Biol 2022; 18:e1009958. [PMID: 35353809 PMCID: PMC9000113 DOI: 10.1371/journal.pcbi.1009958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/11/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Developing measures for rapid and early detection of disease re-emergence is important to perform science-based risk assessment of epidemic threats. In the past few years, several early warning signals (EWS) from complex systems theory have been introduced to detect impending critical transitions and extend the set of indicators. However, it is still debated whether they are generically applicable or potentially sensitive to some dynamical characteristics such as system noise and rates of approach to critical parameter values. Moreover, testing on empirical data has, so far, been limited. Hence, verifying EWS performance remains a challenge. In this study, we tackle this question by analyzing the performance of common EWS, such as increasing variance and autocorrelation, in detecting the emergence of COVID-19 outbreaks in various countries. Our work illustrates that these EWS might be successful in detecting disease emergence when some basic assumptions are satisfied: a slow forcing through the transitions and not-fat-tailed noise. In uncertain cases, we observe that noise properties or commensurable time scales may obscure the expected early warning signals. Overall, our results suggest that EWS can be useful for active monitoring of epidemic dynamics, but that their performance is sensitive to certain features of the underlying dynamics. Our findings thus pave a connection between theoretical and empirical studies, constituting a further step towards the application of EWS indicators for informing public health policies.
Collapse
Affiliation(s)
- Daniele Proverbio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Françoise Kemp
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jorge Gonçalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Dablander F, Heesterbeek H, Borsboom D, Drake JM. Overlapping timescales obscure early warning signals of the second COVID-19 wave. Proc Biol Sci 2022; 289:20211809. [PMID: 35135355 PMCID: PMC8825995 DOI: 10.1098/rspb.2021.1809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
Early warning indicators based on critical slowing down have been suggested as a model-independent and low-cost tool to anticipate the (re)emergence of infectious diseases. We studied whether such indicators could reliably have anticipated the second COVID-19 wave in European countries. Contrary to theoretical predictions, we found that characteristic early warning indicators generally decreased rather than increased prior to the second wave. A model explains this unexpected finding as a result of transient dynamics and the multiple timescales of relaxation during a non-stationary epidemic. Particularly, if an epidemic that seems initially contained after a first wave does not fully settle to its new quasi-equilibrium prior to changing circumstances or conditions that force a second wave, then indicators will show a decreasing rather than an increasing trend as a result of the persistent transient trajectory of the first wave. Our simulations show that this lack of timescale separation was to be expected during the second European epidemic wave of COVID-19. Overall, our results emphasize that the theory of critical slowing down applies only when the external forcing of the system across a critical point is slow relative to the internal system dynamics.
Collapse
Affiliation(s)
- Fabian Dablander
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Denny Borsboom
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Convertino M, Reddy A, Liu Y, Munoz-Zanzi C. Eco-epidemiological scaling of Leptospirosis: Vulnerability mapping and early warning forecasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149102. [PMID: 34388889 DOI: 10.1016/j.scitotenv.2021.149102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Infectious disease epidemics are plaguing the world and a lot of research is focused on the development of models to reproduce disease dynamics for eco-environmental and biological investigation, and disease management. Leptospirosis is an example of a neglected zoonosis strongly mediated by ecohydrological dynamics with emerging endemic and epidemic patterns worldwide in both animal and human populations. By accounting for large heterogeneities of affected areas we show how exponential endemics and scale-free epidemics are largely predictable and linked to common socio-environmental features via scaling laws with different exponents that inform about vulnerability factors. This led to the development of a novel pattern-oriented integrated model that can be used as an early-warning signal (EWS) tool for endemic-epidemic regime classification, risk determinant attribution, and near real-time forecast of outbreaks. Forecasts are grounded on expected outbreak recurrence time dependent on exceedance probabilities and statistical EWS that sense outbreak onset. A stochastic spatially-explicit model is shown to comprehensively predict outbreak dynamics (early sensing, timing, magnitude, decay, and eco-environmental determinants) and derive a spreading factor characterizing endemics and epidemics, where average over maximum rainfall is the critical factor characterizing disease transitions. Dynamically, case cross-correlation considering neighboring communities senses 2-weeks in advance outbreaks. Eco-environmental scaling relationships highlight how predicted host suitability and topographic index can be used as epidemiological footprints to effectively distinguish and control Leptospirosis regimes and areas dependent on hydro-climatological dynamics as the main trigger. The spatio-temporal scale-invariance of epidemics - underpinning persistent criticality and neutrality or independence among areas - is emphasized by the high accuracy in reproducing sequence and magnitude of cases via reliable surveillance. Further investigations of robustness and universality of eco-environmental determinants are required; nonetheless a comprehensive and computationally simple EWS method for the full characterization of Leptospirosis is provided. The tool is extendable to other climate-sensitive zoonoses to define vulnerability factors and predict outbreaks useful for optimal disease risk prevention and control.
Collapse
Affiliation(s)
- M Convertino
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School (Tsinghua SIGS), Tsinghua University, Shenzhen, China.
| | - A Reddy
- UnitedHealth Group, Minneapolis, MN, USA
| | - Y Liu
- Centre for the Mathematical Modelling of Infectious Diseases (CMMID), London School of Hygiene and Tropical Medicine, UK
| | - C Munoz-Zanzi
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota Twin-Cities, Minneapolis, MN, USA
| |
Collapse
|
9
|
O'Brien DA, Clements CF. Early warning signal reliability varies with COVID-19 waves. Biol Lett 2021; 17:20210487. [PMID: 34875183 PMCID: PMC8651412 DOI: 10.1098/rsbl.2021.0487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023] Open
Abstract
Early warning signals (EWSs) aim to predict changes in complex systems from phenomenological signals in time series data. These signals have recently been shown to precede the emergence of disease outbreaks, offering hope that policymakers can make predictive rather than reactive management decisions. Here, using a novel, sequential analysis in combination with daily COVID-19 case data across 24 countries, we suggest that composite EWSs consisting of variance, autocorrelation and skewness can predict nonlinear case increases, but that the predictive ability of these tools varies between waves based upon the degree of critical slowing down present. Our work suggests that in highly monitored disease time series such as COVID-19, EWSs offer the opportunity for policymakers to improve the accuracy of urgent intervention decisions but best characterize hypothesized critical transitions.
Collapse
Affiliation(s)
- Duncan A. O'Brien
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | |
Collapse
|
10
|
Southall E, Brett TS, Tildesley MJ, Dyson L. Early warning signals of infectious disease transitions: a review. J R Soc Interface 2021; 18:20210555. [PMID: 34583561 PMCID: PMC8479360 DOI: 10.1098/rsif.2021.0555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Early warning signals (EWSs) are a group of statistical time-series signals which could be used to anticipate a critical transition before it is reached. EWSs are model-independent methods that have grown in popularity to support evidence of disease emergence and disease elimination. Theoretical work has demonstrated their capability of detecting disease transitions in simple epidemic models, where elimination is reached through vaccination, to more complex vector transmission, age-structured and metapopulation models. However, the exact time evolution of EWSs depends on the transition; here we review the literature to provide guidance on what trends to expect and when. Recent advances include methods which detect when an EWS becomes significant; the earlier an upcoming disease transition is detected, the more valuable an EWS will be in practice. We suggest that future work should firstly validate detection methods with synthetic and historical datasets, before addressing their performance with real-time data which is accruing. A major challenge to overcome for the use of EWSs with disease transitions is to maintain the accuracy of EWSs in data-poor settings. We demonstrate how EWSs behave on reported cases for pertussis in the USA, to highlight some limitations when detecting disease transitions with real-world data.
Collapse
Affiliation(s)
- Emma Southall
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- Mathematics for Real World Systems Centre for Doctoral Training, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Tobias S. Brett
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Louise Dyson
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|