1
|
Selfe JS, Steyn TJS, Shorer EF, Burman RJ, Düsterwald KM, Kraitzick AZ, Abdelfattah AS, Schreiter ER, Newey SE, Akerman CJ, Raimondo JV. All-optical reporting of inhibitory receptor driving force in the nervous system. Nat Commun 2024; 15:8913. [PMID: 39414774 PMCID: PMC11484818 DOI: 10.1038/s41467-024-53074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the nervous system, fast synaptic inhibition is mediated by chloride permeable GABAA and glycine receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DFGABAA). Here we present a tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID's ability to provide accurate, high-throughput measurements of resting and dynamic DFGABAA from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFGABAA, reveals differences in DFGABAA between neurons and astrocytes, and affords the first in vivo measurements of intact DFGABAA. This work extends our understanding of inhibitory synaptic transmission and demonstrates the potential for all-optical methods to assess ionic driving forces.
Collapse
Affiliation(s)
- Joshua S Selfe
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Teresa J S Steyn
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Eran F Shorer
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Neurology, School of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Richard J Burman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kira M Düsterwald
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Ariel Z Kraitzick
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ahmed S Abdelfattah
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Sarah E Newey
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Hansel C, Yuste R. Neural ensembles: role of intrinsic excitability and its plasticity. Front Cell Neurosci 2024; 18:1440588. [PMID: 39144154 PMCID: PMC11322048 DOI: 10.3389/fncel.2024.1440588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Synaptic connectivity defines groups of neurons that engage in correlated activity during specific functional tasks. These co-active groups of neurons form ensembles, the operational units involved in, for example, sensory perception, motor coordination and memory (then called an engram). Traditionally, ensemble formation has been thought to occur via strengthening of synaptic connections via long-term potentiation (LTP) as a plasticity mechanism. This synaptic theory of memory arises from the learning rules formulated by Hebb and is consistent with many experimental observations. Here, we propose, as an alternative, that the intrinsic excitability of neurons and its plasticity constitute a second, non-synaptic mechanism that could be important for the initial formation of ensembles. Indeed, enhanced neural excitability is widely observed in multiple brain areas subsequent to behavioral learning. In cortical structures and the amygdala, excitability changes are often reported as transient, even though they can last tens of minutes to a few days. Perhaps it is for this reason that they have been traditionally considered as modulatory, merely supporting ensemble formation by facilitating LTP induction, without further involvement in memory function (memory allocation hypothesis). We here suggest-based on two lines of evidence-that beyond modulating LTP allocation, enhanced excitability plays a more fundamental role in learning. First, enhanced excitability constitutes a signature of active ensembles and, due to it, subthreshold synaptic connections become suprathreshold in the absence of synaptic plasticity (iceberg model). Second, enhanced excitability promotes the propagation of dendritic potentials toward the soma and allows for enhanced coupling of EPSP amplitude (LTP) to the spike output (and thus ensemble participation). This permissive gate model describes a need for permanently increased excitability, which seems at odds with its traditional consideration as a short-lived mechanism. We propose that longer modifications in excitability are made possible by a low threshold for intrinsic plasticity induction, suggesting that excitability might be on/off-modulated at short intervals. Consistent with this, in cerebellar Purkinje cells, excitability lasts days to weeks, which shows that in some circuits the duration of the phenomenon is not a limiting factor in the first place. In our model, synaptic plasticity defines the information content received by neurons through the connectivity network that they are embedded in. However, the plasticity of cell-autonomous excitability could dynamically regulate the ensemble participation of individual neurons as well as the overall activity state of an ensemble.
Collapse
Affiliation(s)
- Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
3
|
Demori I, Losacco S, Giordano G, Mucci V, Blanchini F, Burlando B. Fibromyalgia pathogenesis explained by a neuroendocrine multistable model. PLoS One 2024; 19:e0303573. [PMID: 38990866 PMCID: PMC11238986 DOI: 10.1371/journal.pone.0303573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/26/2024] [Indexed: 07/13/2024] Open
Abstract
Fibromyalgia (FM) is a central disorder characterized by chronic pain, fatigue, insomnia, depression, and other minor symptoms. Knowledge about pathogenesis is lacking, diagnosis difficult, clinical approach puzzling, and patient management disappointing. We conducted a theoretical study based on literature data and computational analysis, aimed at developing a comprehensive model of FM pathogenesis and addressing suitable therapeutic targets. We started from the evidence that FM must involve a dysregulation of central pain processing, is female prevalent, suggesting a role for the hypothalamus-pituitary-gonadal (HPG) axis, and is stress-related, suggesting a role for the HP-adrenocortical (HPA) axis. Central pathogenesis was supposed to involve a pain processing loop system including the thalamic ventroposterolateral nucleus (VPL), the primary somatosensory cortex (SSC), and the thalamic reticular nucleus (TRN). For decreasing GABAergic and/or increasing glutamatergic transmission, the loop system crosses a bifurcation point, switching from monostable to bistable, and converging on a high-firing-rate steady state supposed to be the pathogenic condition. Thereafter, we showed that GABAergic transmission is positively correlated with gonadal-hormone-derived neurosteroids, notably allopregnanolone, whereas glutamatergic transmission is positively correlated with stress-induced glucocorticoids, notably cortisol. Finally, we built a dynamic model describing a multistable, double-inhibitory loop between HPG and HPA axes. This system has a high-HPA/low-HPG steady state, allegedly reached in females under combined premenstrual/postpartum brain allopregnanolone withdrawal and stress condition, driving the thalamocortical loop to the high-firing-rate steady state, and explaining the connection between endocrine and neural mechanisms in FM pathogenesis. Our model accounts for FM female prevalence and stress correlation, suggesting the use of neurosteroid drugs as a possible solution to currently unsolved problems in the clinical treatment of the disease.
Collapse
Affiliation(s)
- Ilaria Demori
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| | - Serena Losacco
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, (TN), Italy
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
| | - Viviana Mucci
- School of Science, Western Sydney University, Penrith, Australia
| | - Franco Blanchini
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Bruno Burlando
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| |
Collapse
|
4
|
Burman RJ, Diviney T, Călin A, Gothard G, Jouhanneau JSM, Poulet JFA, Sen A, Akerman CJ. Optogenetic Determination of Dynamic and Cell-Type-Specific Inhibitory Reversal Potentials. J Neurosci 2024; 44:e1392232024. [PMID: 38604778 PMCID: PMC11097265 DOI: 10.1523/jneurosci.1392-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.
Collapse
Affiliation(s)
- Richard J Burman
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Tara Diviney
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Alexandru Călin
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Gemma Gothard
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Jean-Sébastien M Jouhanneau
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - James F A Poulet
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
5
|
Mao F, Yang W. How Merkel cells transduce mechanical stimuli: A biophysical model of Merkel cells. PLoS Comput Biol 2023; 19:e1011720. [PMID: 38117763 PMCID: PMC10732429 DOI: 10.1371/journal.pcbi.1011720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
Merkel cells combine with Aβ afferents, producing slowly adapting type 1(SA1) responses to mechanical stimuli. However, how Merkel cells transduce mechanical stimuli into neural signals to Aβ afferents is still unclear. Here we develop a biophysical model of Merkel cells for mechanical transduction by incorporating main ingredients such as Ca2+ and K+ voltage-gated channels, Piezo2 channels, internal Ca2+ stores, neurotransmitters release, and cell deformation. We first validate our model with several experiments. Then we reveal that Ca2+ and K+ channels on the plasma membrane shape the depolarization of membrane potentials, further regulating the Ca2+ transients in the cells. We also show that Ca2+ channels on the plasma membrane mainly inspire the Ca2+ transients, while internal Ca2+ stores mainly maintain the Ca2+ transients. Moreover, we show that though Piezo2 channels are rapidly adapting mechanical-sensitive channels, they are sufficient to inspire sustained Ca2+ transients in Merkel cells, which further induce the release of neurotransmitters for tens of seconds. Thus our work provides a model that captures the membrane potentials and Ca2+ transients features of Merkel cells and partly explains how Merkel cells transduce the mechanical stimuli by Piezo2 channels.
Collapse
Affiliation(s)
- Fangtao Mao
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wenzhen Yang
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Ledri M, Andersson M, Wickham J, Kokaia M. Optogenetics for controlling seizure circuits for translational approaches. Neurobiol Dis 2023:106234. [PMID: 37479090 DOI: 10.1016/j.nbd.2023.106234] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The advent of optogenetic tools has had a profound impact on modern neuroscience research, revolutionizing our understanding of the brain. These tools offer a remarkable ability to precisely manipulate specific groups of neurons with an unprecedented level of temporal precision, on the order of milliseconds. This breakthrough has significantly advanced our knowledge of various physiological and pathophysiological processes in the brain. Within the realm of epilepsy research, optogenetic tools have played a crucial role in investigating the contributions of different neuronal populations to the generation of seizures and hyperexcitability. By selectively activating or inhibiting specific neurons using optogenetics, researchers have been able to elucidate the underlying mechanisms and identify key players involved in epileptic activity. Moreover, optogenetic techniques have also been explored as innovative therapeutic strategies for treating epilepsy. These strategies aim to halt seizure progression and alleviate symptoms by utilizing the precise control offered by optogenetics. The application of optogenetic tools has provided valuable insights into the intricate workings of the brain during epileptic episodes. For instance, researchers have discovered how distinct interneuron populations contribute to the initiation of seizures (ictogenesis). They have also revealed how remote circuits in regions such as the cerebellum, septum, or raphe nuclei can interact with hyperexcitable networks in the hippocampus. Additionally, studies have demonstrated the potential of closed-loop systems, where optogenetics is combined with real-time monitoring, to enable precise, on-demand control of seizure activity. Despite the immense promise demonstrated by optogenetic approaches, it is important to acknowledge that many of these techniques are still in the early stages of development and have yet to reach potential clinical applications. The transition from experimental research to practical clinical use poses numerous challenges. In this review, we aim to introduce optogenetic tools, provide a comprehensive survey of their application in epilepsy research, and critically discuss their current potential and limitations in achieving successful clinical implementation for the treatment of human epilepsy. By addressing these crucial aspects, we hope to foster a deeper understanding of the current state and future prospects of optogenetics in epilepsy treatment.
Collapse
Affiliation(s)
- Marco Ledri
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Jenny Wickham
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden.
| |
Collapse
|
7
|
Burlando B, Mucci V, Browne CJ, Losacco S, Indovina I, Marinelli L, Blanchini F, Giordano G. Mal de Debarquement Syndrome explained by a vestibulo-cerebellar oscillator. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:96-110. [PMID: 36469499 DOI: 10.1093/imammb/dqac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/25/2022] [Indexed: 12/12/2022]
Abstract
Mal de Debarquement Syndrome (MdDS) is a puzzling central vestibular disorder characterized by a long-lasting perception of oscillatory postural instability that may occur after sea travels or flights. We have postulated that MdDS originates from the post-disembarking persistence of an adaptive internal oscillator consisting of a loop system, involving the right and left vestibular nuclei, and the Purkinje cells of the right and left flocculonodular cerebellar cortex, connected by GABAergic and glutamatergic fibers. We have formulated here a mathematical model of the vestibulo-cerebellar loop system and carried out a computational analysis based on a set of differential equations describing the interactions among the loop elements and containing Hill functions that model input-output firing rates relationships among neurons. The analysis indicates that the system acquires a spontaneous and permanent oscillatory behavior for a decrease of threshold and an increase of sensitivity in neuronal input-output responses. These results suggest a role for synaptic plasticity in MdDS pathophysiology, thus reinforcing our previous hypothesis that MdDS may be the result of excessive synaptic plasticity acting on the vestibulo-cerebellar network during its entraining to an oscillatory environment. Hence, our study points to neuroendocrine pathways that lead to increased synaptic response as possible new therapeutic targets for the clinical treatment of the disorder.
Collapse
Affiliation(s)
- Bruno Burlando
- Department of Pharmacy, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Viviana Mucci
- School of Science, Western Sydney University, Penrith NSW 2560, Australia
| | - Cherylea J Browne
- School of Science, Western Sydney University, Penrith NSW 2560, Australia
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Serena Losacco
- Department of Pharmacy, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Neuromotor Physiology Lab, IRCCS Foundation Santa Lucia, via Ardeatina 354, 00179 Rome, Italy
| | - Lucio Marinelli
- DINOGMI University of Genova, Largo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Division of Clinical Neurophysiology, Department of Neuroscience, Largo R. Benzi 10, 16132 Genova, Italy
| | - Franco Blanchini
- Department of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Povo (TN), Italy
| |
Collapse
|
8
|
Trevelyan AJ, Graham RT, Parrish RR, Codadu NK. Synergistic Positive Feedback Mechanisms Underlying Seizure Initiation. Epilepsy Curr 2023; 23:38-43. [PMID: 36923333 PMCID: PMC10009126 DOI: 10.1177/15357597221127163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Investigations into seizure initiation, in recent years, have focused almost entirely upon alterations of interneuronal function, chloride homeostasis, and extracellular potassium levels. In contrast, little attention has been directed toward a possible role of dendritic plateau potentials in the actual ictogenic transition, despite a substantial literature dating back 40 years regarding its importance generally in epilepsy. Here, we argue that an increase in dendritic excitability, coordinated across the population of pyramidal cells, is a key stage in ictogenesis.
Collapse
Affiliation(s)
- Andrew J. Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Robert T. Graham
- Queen Square Institute of Neurology, University College London, United Kingdom
| | - R. Ryley Parrish
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Neela K. Codadu
- Queen Square Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
9
|
Fernandez Lahore RG, Pampaloni NP, Schiewer E, Heim MM, Tillert L, Vierock J, Oppermann J, Walther J, Schmitz D, Owald D, Plested AJR, Rost BR, Hegemann P. Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling. Nat Commun 2022; 13:7844. [PMID: 36543773 PMCID: PMC9772239 DOI: 10.1038/s41467-022-35373-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Channelrhodopsins are light-gated ion channels used to control excitability of designated cells in large networks with high spatiotemporal resolution. While ChRs selective for H+, Na+, K+ and anions have been discovered or engineered, Ca2+-selective ChRs have not been reported to date. Here, we analyse ChRs and mutant derivatives with regard to their Ca2+ permeability and improve their Ca2+ affinity by targeted mutagenesis at the central selectivity filter. The engineered channels, termed CapChR1 and CapChR2 for calcium-permeable channelrhodopsins, exhibit reduced sodium and proton conductance in connection with strongly improved Ca2+ permeation at negative voltage and low extracellular Ca2+ concentrations. In cultured cells and neurons, CapChR2 reliably increases intracellular Ca2+ concentrations. Moreover, CapChR2 can robustly trigger Ca2+ signalling in hippocampal neurons. When expressed together with genetically encoded Ca2+ indicators in Drosophila melanogaster mushroom body output neurons, CapChRs mediate light-evoked Ca2+ entry in brain explants.
Collapse
Affiliation(s)
| | - Niccolò P Pampaloni
- Molecular Neuroscience and Biophysics, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Enrico Schiewer
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - M-Marcel Heim
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Linda Tillert
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Vierock
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Oppermann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Walther
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew J R Plested
- Molecular Neuroscience and Biophysics, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Mao F, Yang Y, Jiang H. Electromechanical model for object roughness perception during finger sliding. Biophys J 2022; 121:4740-4747. [PMID: 36116008 PMCID: PMC9748192 DOI: 10.1016/j.bpj.2022.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Touch allows us to gather abundant information in the world around us. However, how sensory cells embedded in the fingers convey texture information into their firing patterns is still poorly understood. Here, we develop an electromechanical model for roughness perception by incorporating main ingredients such as voltage-gated ion channels, active ion pumps, mechanosensitive channels, and cell deformation. The model reveals that sensory cells can convey texture wavelengths into the period of their firing patterns as the finger slides across object surfaces, but they can only convey a limited range of texture wavelengths. We also show that an increase in sliding speed broadens the decoding wavelength range at the cost of reduction of lower perception limits. Thus, a smaller sliding speed and a bigger contact force may be needed to successfully discern a smooth surface, consistent with previous psychophysical observations. Moreover, we show that cells with slowly adapting mechanosensitive channels can still fire action potentials under static loadings, indicating that slowly adapting mechanosensitive channels may contribute to the perception of coarse textures under static touch. Our work thus provides a new theoretical framework to study roughness perception and may have important implications for the design of electronic skin, artificial touch, and haptic interfaces.
Collapse
Affiliation(s)
- Fangtao Mao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
11
|
Currin CB, Raimondo JV. Computational models reveal how chloride dynamics determine the optimal distribution of inhibitory synapses to minimise dendritic excitability. PLoS Comput Biol 2022; 18:e1010534. [PMID: 36149893 PMCID: PMC9534446 DOI: 10.1371/journal.pcbi.1010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/05/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
Many neurons in the mammalian central nervous system have complex dendritic arborisations and active dendritic conductances that enable these cells to perform sophisticated computations. How dendritically targeted inhibition affects local dendritic excitability is not fully understood. Here we use computational models of branched dendrites to investigate where GABAergic synapses should be placed to minimise dendritic excitability over time. To do so, we formulate a metric we term the “Inhibitory Level” (IL), which quantifies the effectiveness of synaptic inhibition for reducing the depolarising effect of nearby excitatory input. GABAergic synaptic inhibition is dependent on the reversal potential for GABAA receptors (EGABA), which is primarily set by the transmembrane chloride ion (Cl-) concentration gradient. We, therefore, investigated how variable EGABA and dynamic chloride affects dendritic inhibition. We found that the inhibitory effectiveness of dendritic GABAergic synapses combines at an encircled branch junction. The extent of this inhibitory accumulation is dependent on the number of branches and location of synapses but is independent of EGABA. This inhibitory accumulation occurs even for very distally placed inhibitory synapses when they are hyperpolarising–but not when they are shunting. When accounting for Cl- fluxes and dynamics in Cl- concentration, we observed that Cl- loading is detrimental to inhibitory effectiveness. This enabled us to determine the most inhibitory distribution of GABAergic synapses which is close to–but not at–a shared branch junction. This distribution balances a trade-off between a stronger combined inhibitory influence when synapses closely encircle a branch junction with the deleterious effects of increased Cl- by loading that occurs when inhibitory synapses are co-located. Dendritic branches allow for a rich repertoire of computational capabilities for neurons within the brain. Inhibitory synaptic inputs, which utilise the neurotransmitter GABA, refine and enhance dendritic computations. They are traditionally viewed with regards to their inhibitory effect on action potential generation at the neuronal cell body. Here, we studied the local effects of inhibitory synapses on excitability in dendrites. We also considered the dynamic nature of inhibition that deteriorates the longer it is active due to intracellular chloride ion loading. The central goal of our investigation was to find the best locations for multiple inhibitory synapses to maximise their combined inhibitory effectiveness on nearby excitation in the dendritic tree. We found that the optimal distribution is when inhibitory synapses closely encircle a branch junction, without being co-located at the junction itself. This maximises how their inhibitory influence combines whilst minimising the deleterious effects of chloride loading.
Collapse
Affiliation(s)
- Christopher Brian Currin
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Hartmann AM, Nothwang HG. NKCC1 and KCC2: Structural insights into phospho-regulation. Front Mol Neurosci 2022; 15:964488. [PMID: 35935337 PMCID: PMC9355526 DOI: 10.3389/fnmol.2022.964488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory neurotransmission plays a fundamental role in the central nervous system, with about 30–50% of synaptic connections being inhibitory. The action of both inhibitory neurotransmitter, gamma-aminobutyric-acid (GABA) and glycine, mainly relies on the intracellular Cl– concentration in neurons. This is set by the interplay of the cation chloride cotransporters NKCC1 (Na+, K+, Cl– cotransporter), a main Cl– uptake transporter, and KCC2 (K+, Cl– cotransporter), the principle Cl– extruder in neurons. Accordingly, their dysfunction is associated with severe neurological, psychiatric, and neurodegenerative disorders. This has triggered great interest in understanding their regulation, with a strong focus on phosphorylation. Recent structural data by cryogenic electron microscopy provide the unique possibility to gain insight into the action of these phosphorylations. Interestingly, in KCC2, six out of ten (60%) known regulatory phospho-sites reside within a region of 134 amino acid residues (12% of the total residues) between helices α8 and α9 that lacks fixed or ordered three-dimensional structures. It thus represents a so-called intrinsically disordered region. Two further phospho-sites, Tyr903 and Thr906, are also located in a disordered region between the ß8 strand and the α8 helix. We make the case that especially the disordered region between helices α8 and α9 acts as a platform to integrate different signaling pathways and simultaneously constitute a flexible, highly dynamic linker that can survey a wide variety of distinct conformations. As each conformation can have distinct binding affinities and specificity properties, this enables regulation of [Cl–]i and thus the ionic driving force in a history-dependent way. This region might thus act as a molecular processor underlying the well described phenomenon of ionic plasticity that has been ascribed to inhibitory neurotransmission. Finally, it might explain the stunning long-range effects of mutations on phospho-sites in KCC2.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- *Correspondence: Anna-Maria Hartmann,
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Thalamocortical bistable switch as a theoretical model of fibromyalgia pathogenesis inferred from a literature survey. J Comput Neurosci 2022; 50:471-484. [PMID: 35816263 PMCID: PMC9666334 DOI: 10.1007/s10827-022-00826-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Fibromyalgia (FM) is an unsolved central pain processing disturbance. We aim to provide a unifying model for FM pathogenesis based on a loop network involving thalamocortical regions, i.e., the ventroposterior lateral thalamus (VPL), the somatosensory cortex (SC), and the thalamic reticular nucleus (TRN). The dynamics of the loop have been described by three differential equations having neuron mean firing rates as variables and containing Hill functions to model mutual interactions among the loop elements. A computational analysis conducted with MATLAB has shown a transition from monostability to bistability of the loop behavior for a weakening of GABAergic transmission between TRN and VPL. This involves the appearance of a high-firing-rate steady state, which becomes dominant and is assumed to represent pathogenic pain processing giving rise to chronic pain. Our model is consistent with a bulk of literature evidence, such as neuroimaging and pharmacological data collected on FM patients, and with correlations between FM and immunoendocrine conditions, such as stress, perimenopause, chronic inflammation, obesity, and chronic dizziness. The model suggests that critical targets for FM treatment are to be found among immunoendocrine pathways leading to GABA/glutamate imbalance having an impact on the thalamocortical system.
Collapse
|
14
|
Abed Zadeh A, Turner BD, Calakos N, Brunel N. Non-monotonic effects of GABAergic synaptic inputs on neuronal firing. PLoS Comput Biol 2022; 18:e1010226. [PMID: 35666719 PMCID: PMC9203025 DOI: 10.1371/journal.pcbi.1010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/16/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.
Collapse
Affiliation(s)
- Aghil Abed Zadeh
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brandon D. Turner
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| | - Nicolas Brunel
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
- Department of Physics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
15
|
Yarotskyy V, Lark ARS, Nass SR, Hahn YK, Marone MG, McQuiston AR, Knapp PE, Hauser KF. Chloride channels with ClC-1-like properties differentially regulate the excitability of dopamine receptor D1- and D2-expressing striatal medium spiny neurons. Am J Physiol Cell Physiol 2022; 322:C395-C409. [PMID: 35080921 PMCID: PMC8917939 DOI: 10.1152/ajpcell.00397.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic chloride (Cl-) regulation is critical for synaptic inhibition. In mature neurons, Cl- influx and extrusion are primarily controlled by ligand-gated anion channels (GABAA and glycine receptors) and the potassium chloride cotransporter K+-Cl- cotransporter 2 (KCC2), respectively. Here, we report for the first time, to our knowledge, a presence of a new source of Cl- influx in striatal neurons with properties similar to chloride voltage-gated channel 1 (ClC-1). Using whole cell patch-clamp recordings, we detected an outwardly rectifying voltage-dependent current that was impermeable to the large anion methanesulfonate (MsO-). The anionic current was sensitive to the ClC-1 inhibitor 9-anthracenecarboxylic acid (9-AC) and the nonspecific blocker phloretin. The mean fractions of anionic current inhibition by MsO-, 9-AC, and phloretin were not significantly different, indicating that anionic current was caused by active ClC-1-like channels. In addition, we found that Cl- current was not sensitive to the transmembrane protein 16A (TMEM16A; Ano1) inhibitor Ani9 and that the outward Cl- rectification was preserved even at a very high intracellular Ca2+ concentration (2 mM), indicating that TMEM16B (Ano2) did not contribute to the total current. Western blotting and immunohistochemical analyses confirmed the presence of ClC-1 channels in the striatum mainly localized to the somata of striatal neurons. Finally, we found that 9-AC decreased action potential firing frequencies and increased excitability in medium spiny neurons (MSNs) expressing dopamine type 1 (D1) and type 2 (D2) receptors in the brain slices, respectively. We conclude that ClC-1-like channels are preferentially located at the somata of MSNs, are functional, and can modulate neuronal excitability.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Arianna R. S. Lark
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sara R. Nass
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Yun K. Hahn
- 2Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Michael G. Marone
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - A. Rory McQuiston
- 2Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Pamela E. Knapp
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia,2Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia,3Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Kurt F. Hauser
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia,2Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia,3Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
16
|
Lodovichi C, Ratto GM, Trevelyan AJ, Arosio D. Genetically encoded sensors for Chloride concentration. J Neurosci Methods 2022; 368:109455. [PMID: 34952088 DOI: 10.1016/j.jneumeth.2021.109455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Insights into chloride regulation in neurons have come slowly, but they are likely to be critical for our understanding of how the brain works. The reason is that the intracellular Cl- level ([Cl-]i) is the key determinant of synaptic inhibitory function, and this in turn dictates all manner of neuronal network function. The true impact on the network will only be apparent, however, if Cl- is measured at many locations at once (multiple neurons, and also across the subcellular compartments of single neurons), which realistically, can only be achieved using imaging. The development of genetically-encoded anion biosensors (GABs) brings the additional benefit that Cl- imaging may be done in identified cell-classes and hopefully in subcellular compartments. Here, we describe the historical background and motivation behind the development of these sensors and how they have been used so far. There are, however, still major limitations for their use, the most important being the fact that all GABs are sensitive to both pH and Cl-. Disambiguating the two signals has proved a major challenge, but there are potential solutions; notable among these is ClopHensor, which has now been developed for in vivo measurements of both ion species. We also speculate on how these biosensors may yet be improved, and how this could advance our understanding of Cl- regulation and its impact on brain function.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute-CNR, Depart. Biomedical Sciences, Unipd, Padova, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| | - Gian Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniele Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biofisica, 38123 Trento, Italy.
| |
Collapse
|
17
|
Kilb W. When Are Depolarizing GABAergic Responses Excitatory? Front Mol Neurosci 2021; 14:747835. [PMID: 34899178 PMCID: PMC8651619 DOI: 10.3389/fnmol.2021.747835] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The membrane responses upon activation of GABA(A) receptors critically depend on the intracellular Cl− concentration ([Cl−]i), which is maintained by a set of transmembrane transporters for Cl−. During neuronal development, but also under several pathophysiological conditions, the prevailing expression of the Cl− loader NKCC1 and the low expression of the Cl− extruder KCC2 causes elevated [Cl−]i, which result in depolarizing GABAergic membrane responses. However, depolarizing GABAergic responses are not necessarily excitatory, as GABA(A) receptors also reduces the input resistance of neurons and thereby shunt excitatory inputs. To summarize our knowledge on the effect of depolarizing GABA responses on neuronal excitability, this review discusses theoretical considerations and experimental studies illustrating the relation between GABA conductances, GABA reversal potential and neuronal excitability. In addition, evidences for the complex spatiotemporal interaction between depolarizing GABAergic and glutamatergic inputs are described. Moreover, mechanisms that influence [Cl−]i beyond the expression of Cl− transporters are presented. And finally, several in vitro and in vivo studies that directly investigated whether GABA mediates excitation or inhibition during early developmental stages are summarized. In summary, these theoretical considerations and experimental evidences suggest that GABA can act as inhibitory neurotransmitter even under conditions that maintain substantial depolarizing membrane responses.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Yurinskaya VE, Vereninov AA. Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease. Front Cell Dev Biol 2021; 9:736488. [PMID: 34869320 PMCID: PMC8635019 DOI: 10.3389/fcell.2021.736488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cation-coupled chloride cotransporters play a key role in generating the Cl- electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaining cell ionic homeostasis is still undeveloped. Here, we demonstrate a recently developed approach on how to predict cell ionic homeostasis dynamics when stopping the sodium pump in human lymphoid cells U937. The results demonstrate the reliability of the approach and provide the first quantitative description of unidirectional monovalent ion fluxes through the plasma membrane of an animal cell, considering all the main types of cation-coupled chloride cotransporters operating in a system with the sodium pump and electroconductive K+, Na+, and Cl- channels. The same approach was used to study ionic and water balance changes associated with regulatory volume decrease (RVD), a well-known cellular response underlying the adaptation of animal cells to a hypoosmolar environment. A computational analysis of cell as an electrochemical system demonstrates that RVD may happen without any changes in the properties of membrane transporters and channels due to time-dependent changes in electrochemical ion gradients. The proposed approach is applicable when studying truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.
Collapse
Affiliation(s)
- Valentina E Yurinskaya
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey A Vereninov
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
19
|
Lombardi A, Luhmann HJ, Kilb W. Modelling the spatial and temporal constrains of the GABAergic influence on neuronal excitability. PLoS Comput Biol 2021; 17:e1009199. [PMID: 34767548 PMCID: PMC8612559 DOI: 10.1371/journal.pcbi.1009199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/24/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022] Open
Abstract
GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs. These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr. The neurotransmitter GABA mediates an inhibitory action in the mature brain, while it was found that GABA provokes depolarizations in the immature brain or after neurological insults. It is, however, not clear to which extend these GABAergic depolarizations can contribute to an excitatory effect. In the present manuscript we approached this question with a computational model of a simplified neurons to determine what amount of a GABAergic depolarizing effect, which we quantified by the so called GABA reversal potential (EGABA), was required to turn GABAergic inhibition to excitation. The results of our simulations revealed that if GABA was applied alone a GABAergic excitation was induced when EGABA was around the action potential threshold. When GABA was applied together with additional excitatory inputs, which is the physiological situation in the brain, only for spatially and temporally correlated inputs EGABA was close to the action potential threshold. For situations in which the additional excitatory inputs appear after the GABA input or are distant to the GABA input, an excitatory effect of GABA could be observed already at EGABA substantially negative to the action potential threshold. This results indicate that even slightly depolarizing GABA responses, which may be induced during or after neurological insults, can potentially turn GABAergic inhibition into GABAergic excitation.
Collapse
Affiliation(s)
- Aniello Lombardi
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
20
|
Dynamics of ramping bursts in a respiratory neuron model. J Comput Neurosci 2021; 50:161-180. [PMID: 34704174 DOI: 10.1007/s10827-021-00800-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Intensive computational and theoretical work has led to the development of multiple mathematical models for bursting in respiratory neurons in the pre-Bötzinger Complex (pre-BötC) of the mammalian brainstem. Nonetheless, these previous models have not captured the pre-inspiratory ramping aspects of these neurons' activity patterns, in which relatively slow tonic spiking gradually progresses to faster spiking and a full-blown burst, with a corresponding gradual development of an underlying plateau potential. In this work, we show that the incorporation of the dynamics of the extracellular potassium ion concentration into an existing model for pre-BötC neuron bursting, along with some parameter adjustments, suffices to induce this ramping behavior. Using fast-slow decomposition, we show that this activity can be considered as a form of parabolic bursting, but with burst termination at a homoclinic bifurcation rather than as a SNIC bifurcation. We also investigate the parameter-dependence of these solutions and show that the proposed model yields a greater dynamic range of burst frequencies, durations, and duty cycles than those produced by other models in the literature.
Collapse
|
21
|
Neff R, Kambara K, Bertrand D. Ligand gated receptor interactions: A key to the power of neuronal networks. Biochem Pharmacol 2021; 190:114653. [PMID: 34129858 DOI: 10.1016/j.bcp.2021.114653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The discovery of the chemical synapse was a seminal finding in Neurobiology but the large body of microscopic interactions involved in synaptic transmission could hardly have been foreseen at the time of these first discoveries. Characterization of the molecular players at work at synapses and the increased granularity at which we can now analyze electrical and chemical signal processing that occur in even the simplest neuronal system are shining a new light on receptor interactions. The aim of this review is to discuss the complexity of some representative interactions between excitatory and inhibitory ligand-gated ion channels and/or G protein coupled receptors, as well as other key machinery that can impact neurotransmission and to explain how such mechanisms can be an important determinant of nervous system function.
Collapse
Affiliation(s)
- R Neff
- Janssen R&D, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - K Kambara
- HiQScreen Sàrl, 6 rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - D Bertrand
- HiQScreen Sàrl, 6 rte de Compois, 1222 Vésenaz, Geneva, Switzerland.
| |
Collapse
|
22
|
Intricacies of GABA A Receptor Function: The Critical Role of the β3 Subunit in Norm and Pathology. Int J Mol Sci 2021; 22:ijms22031457. [PMID: 33535681 PMCID: PMC7867123 DOI: 10.3390/ijms22031457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Neuronal intracellular chloride ([Cl−]i) is a key determinant in γ-aminobutyric acid type A (GABA)ergic signaling. γ-Aminobutyric acid type A receptors (GABAARs) mediate both inhibitory and excitatory neurotransmission, as the passive fluxes of Cl− and HCO3− via pores can be reversed by changes in the transmembrane concentration gradient of Cl−. The cation–chloride co-transporters (CCCs) are the primary systems for maintaining [Cl−]i homeostasis. However, despite extensive electrophysiological data obtained in vitro that are supported by a wide range of molecular biological studies on the expression patterns and properties of CCCs, the presence of ontogenetic changes in [Cl−]i—along with the consequent shift in GABA reversal potential—remain a subject of debate. Recent studies showed that the β3 subunit possesses properties of the P-type ATPase that participates in the ATP-consuming movement of Cl− via the receptor. Moreover, row studies have demonstrated that the β3 subunit is a key player in GABAAR performance and in the appearance of serious neurological disorders. In this review, we discuss the properties and driving forces of CCCs and Cl−, HCO3−ATPase in the maintenance of [Cl−]i homeostasis after changes in upcoming GABAAR function. Moreover, we discuss the contribution of the β3 subunit in the manifestation of epilepsy, autism, and other syndromes.
Collapse
|
23
|
Lombardi A, Jedlicka P, Luhmann HJ, Kilb W. Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons. PLoS Comput Biol 2021; 17:e1008573. [PMID: 33465082 PMCID: PMC7845986 DOI: 10.1371/journal.pcbi.1008573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 11/19/2022] Open
Abstract
The impact of GABAergic transmission on neuronal excitability depends on the Cl--gradient across membranes. However, the Cl--fluxes through GABAA receptors alter the intracellular Cl- concentration ([Cl-]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl-]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval. In agreement with experimental data, simulations in a reconstructed CA3 pyramidal neuron with physiological patterns of correlated activity revealed that coincident glutamatergic synaptic inputs contribute significantly to the activity-dependent [Cl-]i changes. Whereas the influence of spatial correlation between distributed glutamatergic and GABAergic inputs was negligible, their temporal correlation played a significant role. In summary, our results demonstrate that glutamatergic co-stimulation had a substantial impact on ionic plasticity of GABAergic responses, enhancing the attenuation of GABAergic inhibition in the mature nervous systems, but suppressing GABAergic [Cl-]i changes in the immature brain. Therefore, glutamatergic shift in GABAergic Cl--fluxes should be considered as a relevant factor of short-term plasticity. Information processing in the brain requires that excitation and inhibition are balanced. The main inhibitory neurotransmitter in the brain is gamma-amino-butyric acid (GABA). GABA actions depend on the Cl--gradient, but activation of ionotropic GABA receptors causes Cl--fluxes and thus reduces GABAergic inhibition. Here, we investigated how a coincident membrane depolarization by excitatory glutamatergic synapses influences GABA-induced Cl--fluxes using a biophysical compartmental model of Cl- dynamics, simulating either simple or realistic neuron topologies. We demonstrate that glutamatergic co-stimulation directly affects GABA-induced Cl--fluxes, with the size of glutamatergic effects depending on the conductance, the decay kinetics, and localization of glutamatergic inputs. We also show that the glutamatergic shift in GABAergic Cl--fluxes is surprisingly stable over a substantial range of latencies between glutamatergic and GABAergic inputs. We conclude from these results that glutamatergic co-stimulation alters GABAergic Cl--fluxes and in turn affects the strength of GABAergic inhibition. These coincidence-dependent ionic changes should be considered as a relevant factor of short-term plasticity in the CNS.
Collapse
Affiliation(s)
- Aniello Lombardi
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
24
|
Yurinskaya VE, Vereninov IA, Vereninov AA. Balance of Na +, K +, and Cl - Unidirectional Fluxes in Normal and Apoptotic U937 Cells Computed With All Main Types of Cotransporters. Front Cell Dev Biol 2020; 8:591872. [PMID: 33240889 PMCID: PMC7677585 DOI: 10.3389/fcell.2020.591872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
Fluxes of monovalent ions through the multiple pathways of the plasma membrane are highly interdependent, and their assessment by direct measurement is difficult or even impossible. Computation of the entire flux balance helps to identify partial flows and study the functional expression of individual transporters. Our previous computation of unidirectional fluxes in real cells ignored the ubiquitous cotransporters NKCC and KCC. Here, we present an analysis of the entire balance of unidirectional Na+, K+, and Cl- fluxes through the plasma membrane in human lymphoid U937 cells, taking into account not only the Na/K pump and electroconductive channels but all major types of cotransporters NC, NKCC, and KCC. Our calculations use flux equations based on the fundamental principles of macroscopic electroneutrality of the system, water balance, and the generally accepted thermodynamic dependence of ion fluxes on the driving force, and they do not depend on hypotheses about the molecular structure of the channel and transporters. A complete list of the major inward and outward Na+, K+, and Cl- fluxes is obtained for human lymphoid U937 cells at rest and during changes in the ion and water balance for the first 4 h of staurosporine-induced apoptosis. It is shown how the problem of the inevitable multiplicity of solutions to the flux equations, which arises with an increase in the number of ion pathways, can be solved in real cases by analyzing the ratio of ouabain-sensitive and ouabain-resistant parts of K+ (Rb+) influx (OSOR) and using additional experimental data on the effects of specific inhibitors. It is found that dynamics of changes in the membrane channels and transporters underlying apoptotic changes in the content of ions and water in cells, calculated without taking into account the KCC and NKCC cotransporters, differs only in details from that calculated for cells with KCC and NKCC. The developed approach to the assessment of unidirectional fluxes may be useful for understanding functional expression of ion channels and transporters in other cells under various conditions. Attached software allows reproduction of all calculated data under presented conditions and to study the effects of the condition variation.
Collapse
Affiliation(s)
- Valentina E Yurinskaya
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Igor A Vereninov
- Peter the Great St-Petersburg Polytechnic University, St-Petersburg, Russia
| | - Alexey A Vereninov
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
25
|
Kolbaev SN, Mohapatra N, Chen R, Lombardi A, Staiger JF, Luhmann HJ, Jedlicka P, Kilb W. NKCC-1 mediated Cl - uptake in immature CA3 pyramidal neurons is sufficient to compensate phasic GABAergic inputs. Sci Rep 2020; 10:18399. [PMID: 33110147 PMCID: PMC7591924 DOI: 10.1038/s41598-020-75382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of GABAA receptors causes in immature neurons a functionally relevant decrease in the intracellular Cl- concentration ([Cl-]i), a process termed ionic plasticity. Amount and duration of ionic plasticity depends on kinetic properties of [Cl-]i homeostasis. In order to characterize the capacity of Cl- accumulation and to quantify the effect of persistent GABAergic activity on [Cl-]i, we performed gramicidin-perforated patch-clamp recordings from CA3 pyramidal neurons of immature (postnatal day 4-7) rat hippocampal slices. These experiments revealed that inhibition of NKCC1 decreased [Cl-]i toward passive distribution with a time constant of 381 s. In contrast, active Cl- accumulation occurred with a time constant of 155 s, corresponding to a rate of 15.4 µM/s. Inhibition of phasic GABAergic activity had no significant effect on steady state [Cl-]i. Inhibition of tonic GABAergic currents induced a significant [Cl-]i increase by 1.6 mM, while activation of tonic extrasynaptic GABAA receptors with THIP significantly reduced [Cl-]i.. Simulations of neuronal [Cl-]i homeostasis supported the observation, that basal levels of synaptic GABAergic activation do not affect [Cl-]i. In summary, these results indicate that active Cl--uptake in immature hippocampal neurons is sufficient to maintain stable [Cl-]i at basal levels of phasic and to some extent also to compensate tonic GABAergic activity.
Collapse
Affiliation(s)
- Sergey N Kolbaev
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,Research Center of Neurology, Volokolamskoyeshosse, 80, Moscow, Russia, 125367
| | - Namrata Mohapatra
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Rongqing Chen
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Aniello Lombardi
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Rudolf-Buchheim-Str. 6, 35392, Giessen, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|