1
|
Yang J, Daily NJ, Pullinger TK, Wakatsuki T, Sobie EA. Creating cell-specific computational models of stem cell-derived cardiomyocytes using optical experiments. PLoS Comput Biol 2024; 20:e1011806. [PMID: 39259757 PMCID: PMC11460686 DOI: 10.1371/journal.pcbi.1011806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have gained traction as a powerful model in cardiac disease and therapeutics research, since iPSCs are self-renewing and can be derived from healthy and diseased patients without invasive surgery. However, current iPSC-CM differentiation methods produce cardiomyocytes with immature, fetal-like electrophysiological phenotypes, and the variety of maturation protocols in the literature results in phenotypic differences between labs. Heterogeneity of iPSC donor genetic backgrounds contributes to additional phenotypic variability. Several mathematical models of iPSC-CM electrophysiology have been developed to help to predict cell responses, but these models individually do not capture the phenotypic variability observed in iPSC-CMs. Here, we tackle these limitations by developing a computational pipeline to calibrate cell preparation-specific iPSC-CM electrophysiological parameters. We used the genetic algorithm (GA), a heuristic parameter calibration method, to tune ion channel parameters in a mathematical model of iPSC-CM physiology. To systematically optimize an experimental protocol that generates sufficient data for parameter calibration, we created in silico datasets by simulating various protocols applied to a population of models with known conductance variations, and then fitted parameters to those datasets. We found that calibrating to voltage and calcium transient data under 3 varied experimental conditions, including electrical pacing combined with ion channel blockade and changing buffer ion concentrations, improved model parameter estimates and model predictions of unseen channel block responses. This observation also held when the fitted data were normalized, suggesting that normalized fluorescence recordings, which are more accessible and higher throughput than patch clamp recordings, could sufficiently inform conductance parameters. Therefore, this computational pipeline can be applied to different iPSC-CM preparations to determine cell line-specific ion channel properties and understand the mechanisms behind variability in perturbation responses.
Collapse
Affiliation(s)
- Janice Yang
- Department of Pharmacological Sciences & Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Neil J. Daily
- InvivoSciences Inc., Madison, Wisconsin, United States of America
| | - Taylor K. Pullinger
- Department of Pharmacological Sciences & Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | - Eric A. Sobie
- Department of Pharmacological Sciences & Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
2
|
Botti S, Bartolucci C, Altomare C, Paci M, Barile L, Krause R, Pavarino LF, Severi S. A novel ionic model for matured and paced atrial-like human iPSC-CMs integrating I Kur and I KCa currents. Comput Biol Med 2024; 180:108899. [PMID: 39106668 DOI: 10.1016/j.compbiomed.2024.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 08/09/2024]
Abstract
This work introduces the first atrial-specific in-silico human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) model, based on a set of phenotype-specific IKur,IKCa and IK1 membrane currents. This model is built on novel in-vitro experimental data recently published by some of the co-authors to simulate the paced action potential of matured atrial-like hiPSC-CMs. The model consists of a system of stiff ordinary differential equations depending on several parameters, which have been tuned by automatic optimization techniques to closely match selected experimental biomarkers. The new model effectively simulates the electronic in-vitro hiPSC-CMs maturation process, transitioning from an unstable depolarized membrane diastolic potential to a stable hyperpolarized resting potential, and exhibits spontaneous firing activity in unpaced conditions. Moreover, our model accurately reflects the experimental rate dependence data at different cycle length and demonstrates the expected response to a specific current blocker. This atrial-specific in-silico model provides a novel computational tool for electrophysiological studies of cardiac stem cells and their applications to drug evaluation and atrial fibrillation treatment.
Collapse
Affiliation(s)
- Sofia Botti
- Euler Institute, Faculty of Informatics, Università della Svizzera Italiana, Lugano, 6900, Switzerland; Department of Mathematics "Felice Casorati", University of Pavia, Pavia, 27100, Italy.
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, 47521, Italy
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland; Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, 6900, Switzerland
| | - Michelangelo Paci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, 47521, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland; Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, 6900, Switzerland
| | - Rolf Krause
- Euler Institute, Faculty of Informatics, Università della Svizzera Italiana, Lugano, 6900, Switzerland; Faculty of Mathematics and Informatics, UniDistance, Brig, 3900, Switzerland
| | - Luca Franco Pavarino
- Department of Mathematics "Felice Casorati", University of Pavia, Pavia, 27100, Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, 47521, Italy
| |
Collapse
|
3
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
4
|
Zhao Z, Zang X, Niu K, Song W, Wang X, Mügge A, Aweimer A, Hamdani N, Zhou X, Zhao Y, Akin I, El-Battrawy I. Impacts of gene variants on drug effects-the foundation of genotype-guided pharmacologic therapy for long QT syndrome and short QT syndrome. EBioMedicine 2024; 103:105108. [PMID: 38653189 PMCID: PMC11041837 DOI: 10.1016/j.ebiom.2024.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
The clinical significance of optimal pharmacotherapy for inherited arrhythmias such as short QT syndrome (SQTS) and long QT syndrome (LQTS) has been increasingly recognised. The advancement of gene technology has opened up new possibilities for identifying genetic variations and investigating the pathophysiological roles and mechanisms of genetic arrhythmias. Numerous variants in various genes have been proven to be causative in genetic arrhythmias. Studies have demonstrated that the effectiveness of certain drugs is specific to the patient or genotype, indicating the important role of gene-variants in drug response. This review aims to summarize the reported data on the impact of different gene-variants on drug response in SQTS and LQTS, as well as discuss the potential mechanisms by which gene-variants alter drug response. These findings may provide valuable information for future studies on the influence of gene variants on drug efficacy and the development of genotype-guided or precision treatment for these diseases.
Collapse
Affiliation(s)
- Zhihan Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiaobiao Zang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Kerun Niu
- Department of Orthopaedic, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Weifeng Song
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xianqing Wang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Andreas Mügge
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
| | - Assem Aweimer
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghui Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Jæger KH, Tveito A. The simplified Kirchhoff network model (SKNM): a cell-based reaction-diffusion model of excitable tissue. Sci Rep 2023; 13:16434. [PMID: 37777588 PMCID: PMC10542379 DOI: 10.1038/s41598-023-43444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023] Open
Abstract
Cell-based models of excitable tissues offer the advantage of cell-level precision, which cannot be achieved using traditional homogenized electrophysiological models. However, this enhanced accuracy comes at the cost of increased computational demands, necessitating the development of efficient cell-based models. The widely-accepted bidomain model serves as the standard in computational cardiac electrophysiology, and under certain anisotropy ratio conditions, it is well known that it can be reduced to the simpler monodomain model. Recently, the Kirchhoff Network Model (KNM) was developed as a cell-based counterpart to the bidomain model. In this paper, we aim to demonstrate that KNM can be simplified using the same steps employed to derive the monodomain model from the bidomain model. We present the cell-based Simplified Kirchhoff Network Model (SKNM), which produces results closely aligned with those of KNM while requiring significantly less computational resources.
Collapse
|
6
|
Clark AP, Clerx M, Wei S, Lei CL, de Boer TP, Mirams GR, Christini DJ, Krogh-Madsen T. Leak current, even with gigaohm seals, can cause misinterpretation of stem cell-derived cardiomyocyte action potential recordings. Europace 2023; 25:euad243. [PMID: 37552789 PMCID: PMC10445319 DOI: 10.1093/europace/euad243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/18/2023] [Indexed: 08/10/2023] Open
Abstract
AIMS Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have become an essential tool to study arrhythmia mechanisms. Much of the foundational work on these cells, as well as the computational models built from the resultant data, has overlooked the contribution of seal-leak current on the immature and heterogeneous phenotype that has come to define these cells. The aim of this study is to understand the effect of seal-leak current on recordings of action potential (AP) morphology. METHODS AND RESULTS Action potentials were recorded in human iPSC-CMs using patch clamp and simulated using previously published mathematical models. Our in silico and in vitro studies demonstrate how seal-leak current depolarizes APs, substantially affecting their morphology, even with seal resistances (Rseal) above 1 GΩ. We show that compensation of this leak current is difficult due to challenges with obtaining accurate measures of Rseal during an experiment. Using simulation, we show that Rseal measures (i) change during an experiment, invalidating the use of pre-rupture values, and (ii) are polluted by the presence of transmembrane currents at every voltage. Finally, we posit that the background sodium current in baseline iPSC-CM models imitates the effects of seal-leak current and is increased to a level that masks the effects of seal-leak current on iPSC-CMs. CONCLUSION Based on these findings, we make recommendations to improve iPSC-CM AP data acquisition, interpretation, and model-building. Taking these recommendations into account will improve our understanding of iPSC-CM physiology and the descriptive ability of models built from such data.
Collapse
Affiliation(s)
- Alexander P Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Michael Clerx
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Siyu Wei
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - David J Christini
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Trine Krogh-Madsen
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, Box 75, Room C501D, New York, 10065 NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, Box 75, Room C501D, New York, 10065 NY, USA
| |
Collapse
|
7
|
Zhang S, Lu W, Yang F, Li Z, Wang S, Jiang M, Wang X, Wei Z. Computational analysis of arrhythmogenesis in KCNH2 T618I mutation-associated short QT syndrome and the pharmacological effects of quinidine and sotalol. NPJ Syst Biol Appl 2022; 8:43. [PMID: 36333337 PMCID: PMC9636227 DOI: 10.1038/s41540-022-00254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Short QT syndrome (SQTS) is a rare but dangerous genetic disease. In this research, we conducted a comprehensive in silico investigation into the arrhythmogenesis in KCNH2 T618I-associated SQTS using a multi-scale human ventricle model. A Markov chain model of IKr was developed firstly to reproduce the experimental observations. It was then incorporated into cell, tissue, and organ models to explore how the mutation provided substrates for ventricular arrhythmias. Using this T618I Markov model, we explicitly revealed the subcellular level functional alterations by T618I mutation, particularly the changes of ion channel states that are difficult to demonstrate in wet experiments. The following tissue and organ models also successfully reproduced the changed dynamics of reentrant spiral waves and impaired rate adaptions in hearts of T618I mutation. In terms of pharmacotherapy, we replicated the different effects of a drug under various conditions using identical mathematical descriptions for drugs. This study not only simulated the actions of an effective drug (quinidine) at various physiological levels, but also elucidated why the IKr inhibitor sotalol failed in SQT1 patients through profoundly analyzing its mutation-dependent actions.
Collapse
Affiliation(s)
- Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| | - Weigang Lu
- Department of Educational Technology, Ocean University of China, Qingdao, 266100, China.
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| | - Fei Yang
- School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai, 264200, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Shuang Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjian Jiang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | | | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
8
|
Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat Biomed Eng 2022; 6:372-388. [PMID: 35478228 DOI: 10.1038/s41551-022-00884-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
The immature physiology of cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) limits their utility for drug screening and disease modelling. Here we show that suitable combinations of mechanical stimuli and metabolic cues can enhance the maturation of hiPSC-derived cardiomyocytes, and that the maturation-inducing cues have phenotype-dependent effects on the cells' action-potential morphology and calcium handling. By using microfluidic chips that enhanced the alignment and extracellular-matrix production of cardiac microtissues derived from genetically distinct sources of hiPSC-derived cardiomyocytes, we identified fatty-acid-enriched maturation media that improved the cells' mitochondrial structure and calcium handling, and observed divergent cell-source-dependent effects on action-potential duration (APD). Specifically, in the presence of maturation media, tissues with abnormally prolonged APDs exhibited shorter APDs, and tissues with aberrantly short APDs displayed prolonged APDs. Regardless of cell source, tissue maturation reduced variabilities in spontaneous beat rate and in APD, and led to converging cell phenotypes (with APDs within the 300-450 ms range characteristic of human left ventricular cardiomyocytes) that improved the modelling of the effects of pro-arrhythmic drugs on cardiac tissue.
Collapse
|
9
|
Jæger KH, Edwards AG, Giles WR, Tveito A. Arrhythmogenic influence of mutations in a myocyte-based computational model of the pulmonary vein sleeve. Sci Rep 2022; 12:7040. [PMID: 35487957 PMCID: PMC9054808 DOI: 10.1038/s41598-022-11110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
In the heart, electrophysiological dysregulation arises from defects at many biological levels (from point mutations in ion channel proteins to gross structural abnormalities). These defects disrupt the normal pattern of electrical activation, producing ectopic activity and reentrant arrhythmia. To interrogate mechanisms that link these primary biological defects to macroscopic electrophysiologic dysregulation most prior computational studies have utilized either (i) detailed models of myocyte ion channel dynamics at limited spatial scales, or (ii) homogenized models of action potential conduction that reproduce arrhythmic activity at tissue and organ levels. Here we apply our recent model (EMI), which integrates electrical activation and propagation across these scales, to study human atrial arrhythmias originating in the pulmonary vein (PV) sleeves. These small structures initiate most supraventricular arrhythmias and include pronounced myocyte-to-myocyte heterogeneities in ion channel expression and intercellular coupling. To test EMI's cell-based architecture in this physiological context we asked whether ion channel mutations known to underlie atrial fibrillation are capable of initiating arrhythmogenic behavior via increased excitability or reentry in a schematic PV sleeve geometry. Our results illustrate that EMI's improved spatial resolution can directly interrogate how electrophysiological changes at the individual myocyte level manifest in tissue and as arrhythmia in the PV sleeve.
Collapse
Affiliation(s)
| | | | - Wayne R Giles
- Simula Research Laboratory, Oslo, Norway.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
10
|
Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges. Cells 2022; 11:cells11071090. [PMID: 35406654 PMCID: PMC8997666 DOI: 10.3390/cells11071090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocyte calcium-handling is the key mediator of cardiac excitation-contraction coupling. In the healthy heart, calcium controls both electrical impulse propagation and myofilament cross-bridge cycling, providing synchronous and adequate contraction of cardiac muscles. However, calcium-handling abnormalities are increasingly implicated as a cause of cardiac arrhythmias. Due to the complex, dynamic and localized interactions between calcium and other molecules within a cardiomyocyte, it remains experimentally challenging to study the exact contributions of calcium-handling abnormalities to arrhythmogenesis. Therefore, multiscale computational modeling is increasingly being used together with laboratory experiments to unravel the exact mechanisms of calcium-mediated arrhythmogenesis. This article describes various examples of how integrative computational modeling makes it possible to unravel the arrhythmogenic consequences of alterations to cardiac calcium handling at subcellular, cellular and tissue levels, and discusses the future challenges on the integration and interpretation of such computational data.
Collapse
|
11
|
Jæger KH, Edwards AG, Giles WR, Tveito A. A computational method for identifying an optimal combination of existing drugs to repair the action potentials of SQT1 ventricular myocytes. PLoS Comput Biol 2021; 17:e1009233. [PMID: 34383746 PMCID: PMC8360568 DOI: 10.1371/journal.pcbi.1009233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 01/26/2023] Open
Abstract
Mutations are known to cause perturbations in essential functional features of integral membrane proteins, including ion channels. Even restricted or point mutations can result in substantially changed properties of ion currents. The additive effect of these alterations for a specific ion channel can result in significantly changed properties of the action potential (AP). Both AP shortening and AP prolongation can result from known mutations, and the consequences can be life-threatening. Here, we present a computational method for identifying new drugs utilizing combinations of existing drugs. Based on the knowledge of theoretical effects of existing drugs on individual ion currents, our aim is to compute optimal combinations that can ‘repair’ the mutant AP waveforms so that the baseline AP-properties are restored. More specifically, we compute optimal, combined, drug concentrations such that the waveforms of the transmembrane potential and the cytosolic calcium concentration of the mutant cardiomyocytes (CMs) becomes as similar as possible to their wild type counterparts after the drug has been applied. In order to demonstrate the utility of this method, we address the question of computing an optimal drug for the short QT syndrome type 1 (SQT1). For the SQT1 mutation N588K, there are available data sets that describe the effect of various drugs on the mutated K+ channel. These published findings are the basis for our computational analysis which can identify optimal compounds in the sense that the AP of the mutant CMs resembles essential biomarkers of the wild type CMs. Using recently developed insights regarding electrophysiological properties among myocytes from different species, we compute optimal drug combinations for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs with the SQT1 mutation. Since the ‘composition’ of ion channels that form the AP is different for the three types of myocytes under consideration, so is the composition of the optimal drug. Poly-pharmacology (using multiple drugs to treat disease) has been proposed for improving cardiac anti-arrhythmic therapy for at least two decades. However, the specific arrhythmia contexts in which polytherapy is likely to be both safe and effective have remained elusive. Type 1 short QT syndrome (SQT1) is a rare form of cardiac arrhythmia that results from mutations to the human Ether-á-go-go Related Gene (hERG) potassium channel. Functionally, these mutations are remarkably consistent in that they permit the channel to open earlier during each heart beat. While hundreds of compounds are known to inhibit hERG channels, the specific effect of SQT1 mutations that allows for early channel opening also limits the ability of most of those compounds to correct SQT1 dysfunction. Here, we have applied a suite of ventricular cardiomyocyte computational models to ask whether polytherapy may offer a more effective therapeutic strategy in SQT1, and if so, what the likely characteristics of that strategy are. Our analyses suggest that simultaneous induction of late sodium current and partial hERG blockade offers a promising strategy. While no activators of late sodium current have been clinically approved, several experimental compounds are available and may provide a basis for interrogating this strategy. The method presented here can be used to compute optimal drug combinations provided that the effect of each drug on every relevant ion channel is known.
Collapse
MESH Headings
- Action Potentials/drug effects
- Amino Acid Substitution
- Animals
- Anti-Arrhythmia Agents/administration & dosage
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Computational Biology
- Drug Combinations
- Drug Design
- Drug Therapy, Combination/methods
- ERG1 Potassium Channel/drug effects
- ERG1 Potassium Channel/genetics
- ERG1 Potassium Channel/physiology
- Heart Conduction System/abnormalities
- Heart Conduction System/physiopathology
- Heart Defects, Congenital/drug therapy
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/physiology
- Models, Cardiovascular
- Mutation, Missense
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Rabbits
Collapse
Affiliation(s)
| | - Andrew G. Edwards
- Simula Research Laboratory, Oslo, Norway
- Department of Pharmacology, University of California, Davis, California United States of America
| | - Wayne R. Giles
- Simula Research Laboratory, Oslo, Norway
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
12
|
Huang M, Liao Z, Li X, Yang Z, Fan X, Li Y, Zhao Z, Lang S, Cyganek L, Zhou X, Akin I, Borggrefe M, El-Battrawy I. Effects of Antiarrhythmic Drugs on hERG Gating in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Front Pharmacol 2021; 12:675003. [PMID: 34025432 PMCID: PMC8138577 DOI: 10.3389/fphar.2021.675003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Aims: The short QT syndrome type 1 (SQT1) is linked to hERG channel mutations (e.g., N588K). Drug effects on hERG channel gating kinetics in SQT1-cells have not been investigated. Methods: This study used hiPSC-CMs of a healthy donor and a SQT1-patient carrying the N588K mutation and patch clamp to examine the drug effects on hERG channel gating kinetics. Results: Ajmaline, amiodarone, ivabradine, flecainide, quinidine, mexiletine and ranolazine inhibited the hERG channel current (IKr) less strongly in hiPSC-CMs from the SQTS1-patient (SQT1-hiPSC-CMs) comparing with cells from the healthy donor (donor-hiPSC-CMs). Quinidine and mexiletine reduced, but ajmaline, amiodarone, ivabradine and ranolazine increased the time to peak of IKr similarly in SQT1-hiPSC-CMs and donor-hiPSC-CMs. Although regarding the shift of activation and inactivation curves, tested drugs showed differential effects in donor- and SQT1-hiPSC-CMs, quinidine, ajmaline, ivabradine and mexiletine but not amiodarone, flecainide and ranolazine reduced the window current in SQT1-hiPSC-CMs. Quinidine, ajmaline, ivabradine and mexiletine differentially changed the time constant of recovery from inactivation, but all of them increased the time constant of deactivation in SQT1-hiPSC-CMs. Conclusion: The window current-reducing and deactivation-slowing effects may be important for the antiarrhythmic effect of ajmaline, ivabradine, quinidine and mexiletine in SQT1-cells. This information may be helpful for selecting drugs for treating SQT1-patients with hERG channel mutation.
Collapse
Affiliation(s)
- Mengying Huang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Zhenxing Liao
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,North Sichuan Medical College, Nanchong, China
| | - Xin Li
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Yang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,North Sichuan Medical College, Nanchong, China
| | - Xuehui Fan
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yingrui Li
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Zhihan Zhao
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Siegfried Lang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany.,Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Martin Borggrefe
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| |
Collapse
|