1
|
Ahmad M, Wu S, Luo S, Shi W, Guo X, Cao Y, Perrimon N, He L. Dietary amino acids promote glucagon-like hormone release to generate global calcium waves in adipose tissues in Drosophila. Nat Commun 2025; 16:247. [PMID: 39747032 PMCID: PMC11696257 DOI: 10.1038/s41467-024-55371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Propagation of intercellular calcium waves through tissues has been found to coordinate different multicellular responses. Nevertheless, our understanding of how calcium waves operate remains limited. In this study, we explore the real-time dynamics of intercellular calcium waves in Drosophila adipose tissues. We identify Adipokinetic Hormone (AKH), the fly functional homolog of glucagon, as the key factor driving Ca2+ activities in adipose tissue. We find that AKH, which is released into the hemolymph from the AKH-producing neurosecretory cells, stimulates calcium waves in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent intercellular calcium waves are triggered by a presumably uniformly diffused AKH. Additionally, we discover that amino acids activate the AKH-producing neurosecretory cells, leading to increased intracellular Ca2+ and AKH secretion. Altogether, we show that dietary amino acids regulate the AKH release from the AKH-producing neurosecretory cells in the brain, which subsequently stimulates gap-junction-independent intercellular calcium waves in adipose tissue, enhancing lipid metabolism.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shang Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shengyao Luo
- Yuanpei College, Peking University, Beijing, China
| | - Wenjia Shi
- Department of Applied Physics, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuansheng Cao
- Department of Physics, Tsinghua University, Beijing, China.
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Mim MS, Kumar N, Levis M, Unger MF, Miranda G, Gazzo D, Robinett T, Zartman JJ. Piezo regulates epithelial topology and promotes precision in organ size control. Cell Rep 2024; 43:114398. [PMID: 38935502 PMCID: PMC11606527 DOI: 10.1016/j.celrep.2024.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanosensitive Piezo channels regulate cell division, cell extrusion, and cell death. However, systems-level functions of Piezo in regulating organogenesis remain poorly understood. Here, we demonstrate that Piezo controls epithelial cell topology to ensure precise organ growth by integrating live-imaging experiments with pharmacological and genetic perturbations and computational modeling. Notably, the knockout or knockdown of Piezo increases bilateral asymmetry in wing size. Piezo's multifaceted functions can be deconstructed as either autonomous or non-autonomous based on a comparison between tissue-compartment-level perturbations or between genetic perturbation populations at the whole-tissue level. A computational model that posits cell proliferation and apoptosis regulation through modulation of the cutoff tension required for Piezo channel activation explains key cell and tissue phenotypes arising from perturbations of Piezo expression levels. Our findings demonstrate that Piezo promotes robustness in regulating epithelial topology and is necessary for precise organ size control.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria F Unger
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gabriel Miranda
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Trent Robinett
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
3
|
He L, Ahmad M, Wu S, Luo S, Shi W, Guo X, Cao Y, Perrimon N. Dietary Amino Acids Promote Glucagon-like Hormone Release to Generate Novel Calcium Waves in Adipose Tissues. RESEARCH SQUARE 2024:rs.3.rs-4493132. [PMID: 38947048 PMCID: PMC11213180 DOI: 10.21203/rs.3.rs-4493132/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related morbidities. Among different metabolic regulatory signals, cytosolic Ca2+ plays pivotal roles in metabolic regulation, including glycolysis, gluconeogenesis, and lipolysis. Recently, intercellular calcium waves (ICWs), the propagation of Ca2+ signaling through tissues, have been found in different systems to coordinate multicellular responses. Nevertheless, our understanding of how ICWs are modulated and operate within living organisms remains limited. In this study, we explore the real-time dynamics, both in organ culture and free-behaving animals, of ICWs in Drosophila larval and adult adipose tissues. We identified Adipokinetic hormone (AKH), the fly functional homolog of mammalian glucagon, as the key factor driving Ca2+ activities in adipose tissue. Interestingly, we found that AKH, which is released in a pulsatile manner into the circulating hemolymph from the AKH-producing neurosecretory cells (APCs) in the brain, stimulates ICWs in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent random ICWs are triggered by a presumably uniformly diffused AKH. This highlights the stage-specific interplay of hormone secretion, extracellular diffusion, and intercellular communication in the regulation of Ca2+ dynamics. Additionally, we discovered that specific dietary amino acids activate the APCs, leading to increased intracellular Ca2+ and subsequent AKH secretion. Altogether, our findings identify that dietary amino acids regulate the release of AKH peptides from the APCs, which subsequently stimulates novel gap-junction-independent ICWs in adipose tissues, thereby enhancing lipid metabolism.
Collapse
Affiliation(s)
- Li He
- University of Science and Technology of China
| | | | - Shang Wu
- University of Science and Technology of China
| | | | | | | | | | | |
Collapse
|
4
|
Ahmad M, Wu S, Guo X, Perrimon N, He L. Sensing of dietary amino acids and regulation of calcium dynamics in adipose tissues through Adipokinetic hormone in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583442. [PMID: 38496667 PMCID: PMC10942355 DOI: 10.1101/2024.03.04.583442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related diseases. Drosophila melanogaster has emerged as an excellent model for investigating metabolism and its associated disorders. In this study, we used live-cell imaging to demonstrate that the fly functional homolog of mammalian glucagon, Adipokinetic hormone (AKH), secreted from AKH hormone-producing cells (APCs) in the corpora cardiaca, stimulates intracellular Ca 2+ waves in the larval fat body/adipose tissue to promote lipid metabolism. Further, we show that specific dietary amino acids activate the APCs, leading to increased intracellular Ca 2+ and subsequent AKH secretion. Finally, a comparison of Ca 2+ dynamics in larval and adult fat bodies revealed different mechanisms of regulation, highlighting the interplay of pulses of AKH secretion, extracellular diffusion of the hormone, and intercellular communication through gap junctions. Our study underscores the suitability of Drosophila as a powerful model for exploring real-time nutrient sensing and inter-organ communication dynamics.
Collapse
|
5
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
6
|
Mim MS, Knight C, Zartman JJ. Quantitative insights in tissue growth and morphogenesis with optogenetics. Phys Biol 2023; 20:061001. [PMID: 37678266 PMCID: PMC10594237 DOI: 10.1088/1478-3975/acf7a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through the spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Caroline Knight
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jeremiah J Zartman
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| |
Collapse
|
7
|
Velagala V, Soundarrajan DK, Unger MF, Gazzo D, Kumar N, Li J, Zartman J. The multimodal action of G alpha q in coordinating growth and homeostasis in the Drosophila wing imaginal disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523049. [PMID: 36711848 PMCID: PMC9881979 DOI: 10.1101/2023.01.08.523049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background G proteins mediate cell responses to various ligands and play key roles in organ development. Dysregulation of G-proteins or Ca 2+ signaling impacts many human diseases and results in birth defects. However, the downstream effectors of specific G proteins in developmental regulatory networks are still poorly understood. Methods We employed the Gal4/UAS binary system to inhibit or overexpress Gαq in the wing disc, followed by phenotypic analysis. Immunohistochemistry and next-gen RNA sequencing identified the downstream effectors and the signaling cascades affected by the disruption of Gαq homeostasis. Results Here, we characterized how the G protein subunit Gαq tunes the size and shape of the wing in the larval and adult stages of development. Downregulation of Gαq in the wing disc reduced wing growth and delayed larval development. Gαq overexpression is sufficient to promote global Ca 2+ waves in the wing disc with a concomitant reduction in the Drosophila final wing size and a delay in pupariation. The reduced wing size phenotype is further enhanced when downregulating downstream components of the core Ca 2+ signaling toolkit, suggesting that downstream Ca 2+ signaling partially ameliorates the reduction in wing size. In contrast, Gαq -mediated pupariation delay is rescued by inhibition of IP 3 R, a key regulator of Ca 2+ signaling. This suggests that Gαq regulates developmental phenotypes through both Ca 2+ -dependent and Ca 2+ -independent mechanisms. RNA seq analysis shows that disruption of Gαq homeostasis affects nuclear hormone receptors, JAK/STAT pathway, and immune response genes. Notably, disruption of Gαq homeostasis increases expression levels of Dilp8, a key regulator of growth and pupariation timing. Conclusion Gαq activity contributes to cell size regulation and wing metamorphosis. Disruption to Gαq homeostasis in the peripheral wing disc organ delays larval development through ecdysone signaling inhibition. Overall, Gαq signaling mediates key modules of organ size regulation and epithelial homeostasis through the dual action of Ca 2+ -dependent and independent mechanisms.
Collapse
|
8
|
Kim AA, Nguyen A, Marchetti M, Du X, Montell DJ, Pruitt BL, O'Brien LE. Independently paced Ca2+ oscillations in progenitor and differentiated cells in an ex vivo epithelial organ. J Cell Sci 2022; 135:jcs260249. [PMID: 35722729 PMCID: PMC9450890 DOI: 10.1242/jcs.260249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Cytosolic Ca2+ is a highly dynamic, tightly regulated and broadly conserved cellular signal. Ca2+ dynamics have been studied widely in cellular monocultures, yet organs in vivo comprise heterogeneous populations of stem and differentiated cells. Here, we examine Ca2+ dynamics in the adult Drosophila intestine, a self-renewing epithelial organ in which stem cells continuously produce daughters that differentiate into either enteroendocrine cells or enterocytes. Live imaging of whole organs ex vivo reveals that stem-cell daughters adopt strikingly distinct patterns of Ca2+ oscillations after differentiation: enteroendocrine cells exhibit single-cell Ca2+ oscillations, whereas enterocytes exhibit rhythmic, long-range Ca2+ waves. These multicellular waves do not propagate through immature progenitors (stem cells and enteroblasts), of which the oscillation frequency is approximately half that of enteroendocrine cells. Organ-scale inhibition of gap junctions eliminates Ca2+ oscillations in all cell types - even, intriguingly, in progenitor and enteroendocrine cells that are surrounded only by enterocytes. Our findings establish that cells adopt fate-specific modes of Ca2+ dynamics as they terminally differentiate and reveal that the oscillatory dynamics of different cell types in a single, coherent epithelium are paced independently.
Collapse
Affiliation(s)
- Anna A Kim
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden
| | - Amanda Nguyen
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - XinXin Du
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Denise J Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Sun L, Gao D, Chen J, Hou S, Li Y, Huang Y, Mammano F, Chen J, Yang J. Failure Of Hearing Acquisition in Mice With Reduced Expression of Connexin 26 Correlates With the Abnormal Phasing of Apoptosis Relative to Autophagy and Defective ATP-Dependent Ca2+ Signaling in Kölliker’s Organ. Front Cell Neurosci 2022; 16:816079. [PMID: 35308122 PMCID: PMC8928193 DOI: 10.3389/fncel.2022.816079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mutations in the GJB2 gene that encodes connexin 26 (Cx26) are the predominant cause of prelingual hereditary deafness, and the most frequently encountered variants cause complete loss of protein function. To investigate how Cx26 deficiency induces deafness, we examined the levels of apoptosis and autophagy in Gjb2loxP/loxP; ROSA26CreER mice injected with tamoxifen on the day of birth. After weaning, these mice exhibited severe hearing impairment and reduced Cx26 expression in the cochlear duct. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells were observed in apical, middle, and basal turns of Kölliker’s organ at postnatal (P) day 1 (P1), associated with increased expression levels of cleaved caspase 3, but decreased levels of autophagy-related proteins LC3-II, P62, and Beclin1. In Kölliker’s organ cells with decreased Cx26 expression, we also found significantly reduced levels of intracellular ATP and hampered Ca2+ responses evoked by extracellular ATP application. These results offer novel insight into the mechanisms that prevent hearing acquisition in mouse models of non-syndromic hearing impairment due to Cx26 loss of function.
Collapse
Affiliation(s)
- Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuyu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
- Department of Biomedical Sciences, Institute of Biochemistry and Cell Biology, Italian National Research Council, Monterotondo, Italy
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| | - Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| |
Collapse
|