1
|
Tünçok E, Kiorpes L, Carrasco M. Opposite asymmetry in visual perception of humans and macaques. Curr Biol 2025:S0960-9822(24)01692-0. [PMID: 39814028 DOI: 10.1016/j.cub.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
In human adults, visual perception varies throughout the visual field. Performance decreases with eccentricity1,2 and varies around polar angle. At isoeccentric locations, performance is typically higher along the horizontal than vertical meridian (horizontal-vertical asymmetry [HVA]) and along the lower than the upper vertical meridian (vertical meridian asymmetry [VMA]).3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 It is unknown whether the macaque visual system, the leading animal model for understanding human vision,24,25 also exhibits these performance asymmetries. Here, we investigated whether and how visual field asymmetries differ between these two groups. Human adults and adult macaque monkeys (Macaca nemestrina) performed a two-alternative forced choice (2AFC) motion direction discrimination task for a target presented among distractors at isoeccentric locations. Both groups showed heterogeneous visual sensitivity around the visual field, but there were striking differences between them. Human observers showed a large VMA-their sensitivity was poorest at the upper vertical meridian-a weak horizontal-vertical asymmetry, and lower sensitivity at intercardinal locations. Macaque performance revealed an inverted VMA-their sensitivity was poorest in the lower vertical meridian. The opposite pattern of VMA in macaques and humans revealed in this study may reflect adaptive behavior by increasing discriminability at locations with greater relevance for visuomotor integration. This study reveals that performance also varies as a function of polar angle for monkeys, but in a different manner than in humans, and highlights the need to investigate species-specific similarities and differences in brain and behavior to constrain models of vision and brain function.
Collapse
Affiliation(s)
- Ekin Tünçok
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Lynne Kiorpes
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
2
|
Loggia SR, Duffield SJ, Braunlich K, Conway BR. Color and Spatial Frequency Provide Functional Signatures of Retinotopic Visual Areas. J Neurosci 2025; 45:e1673232024. [PMID: 39496489 PMCID: PMC11714348 DOI: 10.1523/jneurosci.1673-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 11/06/2024] Open
Abstract
Primate vision relies on retinotopically organized cortical parcels defined by representations of hemifield (upper vs lower visual field), eccentricity (fovea vs periphery), and area (V1, V2, V3, V4). Here we test for functional signatures of these organizing principles. We used functional magnetic resonance imaging to measure responses to gratings varying in spatial frequency, color, and saturation across retinotopically defined parcels in two macaque monkeys, and we developed a Sparse Supervised Embedding (SSE) analysis to identify stimulus features that best distinguish cortical parcels from each other. Constraining the SSE model to distinguish just eccentricity representations of the voxels revealed the expected variation of spatial frequency and S-cone modulation with eccentricity. Constraining the model according to the dorsal/ventral location and retinotopic area of each voxel provided unexpected functional signatures, which we investigated further with standard univariate analyses. Posterior parcels (V1) were distinguished from anterior parcels (V4) by differential responses to chromatic and luminance contrast, especially of low-spatial-frequency gratings. Meanwhile, ventral parcels were distinguished from dorsal parcels by differential responses to chromatic and luminance contrast, especially of colors that modulate all three cone types. The dorsal/ventral asymmetry not only resembled differences between candidate dorsal and ventral subdivisions of human V4 but also extended to include all retinotopic visual areas, starting in V1 and increasing from V1 to V4. The results provide insight into the functional roles of different retinotopic areas and demonstrate the utility of SSE as a data-driven tool for generating hypotheses about cortical function and behavior.
Collapse
Affiliation(s)
- Spencer R Loggia
- National Eye Institute, Bethesda, Maryland 20892
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | | | - Kurt Braunlich
- National Eye Institute, Bethesda, Maryland 20892
- National Institute of Mental Health, Bethesda, Maryland 20892
| | - Bevil R Conway
- National Eye Institute, Bethesda, Maryland 20892
- National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
3
|
Jenks SK, Carrasco M, Poletti M. Asymmetries in foveal vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629715. [PMID: 39763996 PMCID: PMC11702834 DOI: 10.1101/2024.12.20.629715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Visual perception is characterized by known asymmetries in the visual field; human's visual sensitivity is higher along the horizontal than the vertical meridian, and along the lower than the upper vertical meridian. These asymmetries decrease with decreasing eccentricity from the periphery to the center of gaze, suggesting that they may be absent in the 1-deg foveola, the retinal region used to explore scenes at high-resolution. Using high-precision eyetracking and gaze-contingent display, allowing for accurate control over the stimulated foveolar location despite the continuous eye motion at fixation, we investigated fine visual discrimination at different isoeccentric locations across the foveola and parafovea. Although the tested foveolar locations were only 0.3 deg away from the center of gaze, we show that, similar to more eccentric locations, humans are more sensitive to stimuli presented along the horizontal than the vertical meridian. Whereas the magnitude of this asymmetry is reduced in the foveola, the magnitude of the vertical meridian asymmetry is comparable but, interestingly, reversed: objects presented slightly above the center of gaze are more easily discerned than when presented at the same eccentricity below the center of gaze. Therefore, far from being uniform, as often assumed, foveolar vision is characterized by perceptual asymmetries. Further, these asymmetries differ not only in magnitude but also in direction compared to those present just ~4deg away from the center of gaze, resulting in overall different foveal and extrafoveal perceptual fields.
Collapse
Affiliation(s)
- Samantha K. Jenks
- Department of Brain and Cognitive Sciences, University of Rochester
- Center for Visual Science, University of Rochester
| | - Marisa Carrasco
- Department of Psychology, New York University
- Center for Neural Science, New York University
| | - Martina Poletti
- Department of Brain and Cognitive Sciences, University of Rochester
- Department of Neuroscience, University of Rochester
- Center for Visual Science, University of Rochester
| |
Collapse
|
4
|
Scott MTW, Yakovleva A, Norcia AM. Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli. Vis Neurosci 2024; 41:E007. [PMID: 39698978 PMCID: PMC11730990 DOI: 10.1017/s095252382400004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 12/20/2024]
Abstract
Recent reports suggest the ON and OFF pathways are differentially susceptible to selective vision loss in glaucoma. Thus, perimetric assessment of ON- and OFF-pathway function may serve as a useful diagnostic. However, this necessitates a developed understanding of normal ON/OFF pathway function around the visual field and as a function of input intensity. Here, using electroencephalography, we measured ON- and OFF-pathway biased contrast response functions in the upper and lower visual fields. Using the steady-state visually evoked potential paradigm, we flickered achromatic luminance probes according to a saw-tooth waveform, the fast phase of which biased responses towards the ON or OFF pathways. Neural responses from the upper and lower visual fields were simultaneously measured using frequency tagging - probes in the upper visual field modulated at 3.75 Hz, while those in the lower visual field modulated at 3 Hz. We find that responses to OFF/decrements are larger than ON/increments, especially in the lower visual field. In the lower visual field, both ON and OFF responses were well described by a sigmoidal non-linearity. In the upper visual field, the ON pathway function was very similar to that of the lower, but the OFF pathway function showed reduced saturation and more cross-subject variability. Overall, this demonstrates that the relationship between the ON and OFF pathways depends on the visual field location and contrast level, potentially reflective of natural scene statistics.
Collapse
|
5
|
Sárközy A, Robinson JE, Kovács G. Motion-induced blindness shows spatial anisotropies in conscious perception. Sci Rep 2024; 14:27718. [PMID: 39532989 PMCID: PMC11557702 DOI: 10.1038/s41598-024-78939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Polar angle asymmetries (PAAs), the differences in perceptual experiences and performance across different regions of the visual field are present in various paradigms and tasks of visual perception. Currently, research in this area is sparse, particularly regarding the influence of PAAs during perceptual illusions, highlighting a gap in visual cognition studies. We aim to fill this gap by measuring PAAs across the visual field during an illusion applied to test conscious vision widely. Motion-induced blindness (MIB) is an illusion when a peripheral target disappears from consciousness as the result of a continuously moving background pattern. During MIB we separately measured the average disappearance time of peripheral targets in eight equidistant visual field positions. Our results indicate a significant variation in MIB disappearance times and frequencies as a function of target location. Specifically, we found shorter and fewer disappearances along the cardinal compared to oblique directions, and along the horizontal compared to the vertical meridian. Our results suggest specific consistencies between visual field asymmetries and conscious visual perception.
Collapse
Affiliation(s)
| | - Jonathan E Robinson
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Clayton, 3168, Australia
| | - Gyula Kovács
- Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
6
|
Kwak Y, Lu ZL, Carrasco M. How the window of visibility varies around polar angle. J Vis 2024; 24:4. [PMID: 39499527 PMCID: PMC11542588 DOI: 10.1167/jov.24.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Contrast sensitivity, the amount of contrast required to discriminate an object, depends on spatial frequency (SF). The contrast sensitivity function (CSF) peaks at intermediate SFs and drops at other SFs. The CSF varies from foveal to peripheral vision, but only a couple of studies have assessed how the CSF changes with polar angle of the visual field. For many visual dimensions, sensitivity is better along the horizontal than the vertical meridian and at the lower than the upper vertical meridian, yielding polar angle asymmetries. Here, for the first time, to our knowledge, we investigate CSF attributes around polar angle at both group and individual levels and examine the relations in CSFs across locations and individual observers. To do so, we used hierarchical Bayesian modeling, which enables precise estimation of CSF parameters. At the group level, maximum contrast sensitivity and the SF at which the sensitivity peaks are higher at the horizontal than vertical meridian and at the lower than the upper vertical meridian. By analyzing the covariance across observers (n = 28), we found that, at the individual level, CSF attributes (e.g., maximum sensitivity) across locations are highly correlated. This correlation indicates that, although the CSFs differ across locations, the CSF at one location is predictive of that at another location. Within each location, the CSF attributes covary, indicating that CSFs across individuals vary in a consistent manner (e.g., as maximum sensitivity increases, so does the corresponding SF), but more so at the horizontal than the vertical meridian locations. These results show similarities and uncover some critical polar angle differences across locations and individuals, suggesting that the CSF should not be generalized across isoeccentric locations around the visual field.
Collapse
Affiliation(s)
- Yuna Kwak
- Department of Psychology, New York University, New York, NY, USA
| | - Zhong-Lin Lu
- Division of Arts & Sciences, New York University Shanghai, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, Shanghai, China
- Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
7
|
Kerzel D, Constant M. Effects of spatial location on distractor interference. J Vis 2024; 24:4. [PMID: 39240585 PMCID: PMC11382967 DOI: 10.1167/jov.24.9.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
When target and distractor stimuli are close together, they activate the same neurons and there is ambiguity as to what the neural activity represents. It has been suggested that the ambiguity is resolved by spatial competition between target and nontarget stimuli. A competitive advantage is conveyed by bottom-up biases (e.g., stimulus saliency) and top-down biases (e.g., the match to a stored representation of the target stimulus). Here, we tested the hypothesis that regions with high perceptual performance may provide a bottom-up bias, resulting in increased distractor interference. Initially, we focused on two known anisotropies. At equal distance from central fixation, perceptual performance is better along the horizontal than the vertical meridian, and in the lower than in the upper visual hemifield. Consistently, interference from distractors on the horizontal meridian was greater than interference from distractors on the vertical meridian. However, distractors in the lower hemifield interfered less than distractors in the upper visual hemifield, which is contrary to the known anisotropy. These results were obtained with targets and distractors on opposite meridians. Further, we observed greater interference from distractors on the meridians compared with distractors on the diagonals, possibly reflecting anisotropies in attentional scanning. Overall, the results are only partially consistent with the hypothesis that distractor interference is larger for distractors on regions with high perceptual performance.
Collapse
Affiliation(s)
- Dirk Kerzel
- Faculté de Psychologie et des Sciences de l'Education, Université de Genève, Genève, Switzerland
- https://orcid.org/0000-0002-2466-5221
| | - Martin Constant
- Faculté de Psychologie et des Sciences de l'Education, Université de Genève, Genève, Switzerland
- https://orcid.org/0000-0001-9574-0674
| |
Collapse
|
8
|
Kwak Y, Lu ZL, Carrasco M. How the window of visibility varies around polar angle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603257. [PMID: 39071431 PMCID: PMC11275830 DOI: 10.1101/2024.07.12.603257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Contrast sensitivity, the amount of contrast required to detect or discriminate an object, depends on spatial frequency (SF): The Contrast Sensitivity Function (CSF) peaks at intermediate SFs and drops at lower and higher SFs and is the basis of computational models of visual object recognition. The CSF varies from foveal to peripheral vision, but only a couple studies have assessed changes around polar angle of the visual field. Sensitivity is generally better along the horizontal than the vertical meridian, and better at the lower vertical than the upper vertical meridian, yielding polar angle asymmetries. Here, we investigate CSF attributes at polar angle locations at both group and individual levels, using Hierarchical Bayesian Modeling. This method enables precise estimation of CSF parameters by decomposing the variability of the dataset into multiple levels and analyzing covariance across observers. At the group level, peak contrast sensitivity and corresponding spatial frequency with the highest sensitivity are higher at the horizontal than vertical meridian, and at the lower than upper vertical meridian. At an individual level, CSF attributes (e.g., maximum sensitivity, the most preferred SF) across locations are highly correlated, indicating that although the CSFs differ across locations, the CSF at one location is predictive of the CSF at another location. Within each location, the CSF attributes co-vary, indicating that CSFs across individuals vary in a consistent manner (e.g., as maximum sensitivity increases, so does the SF at which sensitivity peaks), but more so at the horizontal than the vertical meridian locations. These results show similarities and uncover some critical polar angle differences across locations and individuals, suggesting that the CSF should not be generalized across iso-eccentric locations around the visual field. Our window of visibility varies with polar angle: It is enhanced and more consistent at the horizontal meridian.
Collapse
Affiliation(s)
- Yuna Kwak
- Department of Psychology, New York University, New York, United States
| | - Zhong-Lin Lu
- Department of Arts & Sciences, New York University Shanghai, Shanghai, China
- Center for Neural Science, New York University, New York, United States
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, United States
- Center for Neural Science, New York University, New York, United States
| |
Collapse
|
9
|
Tünçok E, Carrasco M, Winawer J. Spatial attention alters visual cortical representation during target anticipation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583127. [PMID: 38496524 PMCID: PMC10942396 DOI: 10.1101/2024.03.02.583127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Attention enables us to efficiently and flexibly interact with the environment by prioritizing some image features in preparation for responding to a stimulus. Using a concurrent psychophysics- fMRI experiment, we investigated how covert spatial attention affects responses in human visual cortex prior to target onset, and how it affects subsequent behavioral performance. Performance improved at cued locations and worsened at uncued locations, relative to distributed attention, demonstrating a selective tradeoff in processing. Pre-target BOLD responses in cortical visual field maps changed in two ways: First, there was a stimulus-independent baseline shift, positive in map locations near the cued location and negative elsewhere, paralleling the behavioral results. Second, population receptive field centers shifted toward the attended location. Both effects increased in higher visual areas. Together, the results show that spatial attention has large effects on visual cortex prior to target appearance, altering neural response properties throughout and across multiple visual field maps.
Collapse
|
10
|
Hanning NM, Himmelberg MM, Carrasco M. Presaccadic Attention Depends on Eye Movement Direction and Is Related to V1 Cortical Magnification. J Neurosci 2024; 44:e1023232023. [PMID: 38316562 PMCID: PMC10957215 DOI: 10.1523/jneurosci.1023-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 02/07/2024] Open
Abstract
With every saccadic eye movement, humans bring new information into their fovea to be processed with high visual acuity. Notably, perception is enhanced already before a relevant item is foveated: During saccade preparation, presaccadic attention shifts to the upcoming fixation location, which can be measured via behavioral correlates such as enhanced visual performance or modulations of sensory feature tuning. The coupling between saccadic eye movements and attention is assumed to be robust and mandatory and considered a mechanism facilitating the integration of pre- and postsaccadic information. However, until recently it had not been investigated as a function of saccade direction. Here, we measured contrast response functions during fixation and saccade preparation in male and female observers and found that the pronounced response gain benefit typically elicited by presaccadic attention is selectively lacking before upward saccades at the group level-some observers even showed a cost. Individual observer's sensitivity before upward saccades was negatively related to their amount of surface area in primary visual cortex representing the saccade target, suggesting a potential compensatory mechanism that optimizes the use of the limited neural resources processing the upper vertical meridian. Our results raise the question of how perceptual continuity is achieved and how upward saccades can be accurately targeted despite the lack of-theoretically required-presaccadic attention.
Collapse
Affiliation(s)
- Nina M Hanning
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Marc M Himmelberg
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
11
|
Kaul N, Bergamasco L, Song H, Varkevisser T, Amati A, Falciani G, van Rijn CJM, Chiavazzo E, Sen I, Bonnet S, Hammarström L. Realizing Symmetry-Breaking Architectures in Soap Films. PHYSICAL REVIEW LETTERS 2024; 132:028201. [PMID: 38277585 DOI: 10.1103/physrevlett.132.028201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 01/28/2024]
Abstract
We show here that soap films-typically expected to host symmetric molecular arrangements-can be constructed with differing opposite surfaces, breaking their symmetry, and making them reminiscent of functional biological motifs found in nature. Using fluorescent molecular probes as dopants on different sides of the film, resonance energy transfer could be employed to confirm the lack of symmetry, which was found to persist on timescales of several minutes. Further, a theoretical analysis of the main transport phenomena involved yielded good agreement with the experimental observations.
Collapse
Affiliation(s)
- Nidhi Kaul
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Luca Bergamasco
- Department of Energy, Politecnico di Torino, Torino 10129, Italy
| | - Hongwei Song
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Thijs Varkevisser
- Nanotechnology and Microfluidics, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Agnese Amati
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Cees J M van Rijn
- Nanotechnology and Microfluidics, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | | | - Indraneel Sen
- Wasabi Innovations Ltd., Boulevard "Shipchenski Prohod" 18, Block A, Floor 3, Office 9, Slatina, Galaxy Business Center, 1113 Sofia, Bulgaria
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
12
|
Saxena P, Treue S. Effect of attention on human direction-discrimination thresholds at iso-eccentric locations in the visual field: A registered report protocol. PLoS One 2023; 18:e0289411. [PMID: 38032872 PMCID: PMC10688726 DOI: 10.1371/journal.pone.0289411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/17/2023] [Indexed: 12/02/2023] Open
Abstract
Human visual perceptual performance is strongly dependent on a given stimulus' distance from the line of sight, i.e. its eccentricity. In addition, multiple studies have shown a dependence on a stimulus' angular position relative to the fovea. In humans, the resulting spatial profile of perceptual performance (the "performance field") typically shows better performance near the lower vertical meridian, compared to the upper vertical meridian, and better performance near the horizontal meridian compared to the vertical meridian. Predominantly, these variations have been interpreted as sensory inhomogeneities. But it has also been shown that they are modulated by the allocation of spatial attention, either homogeneously elevating performance or compensating for the sensory inhomogeneities. Here, we propose a study protocol for pre-registration to investigate such interactions between sensory and attentional effects. First, we will determine performance fields for time-dependent, dynamic stimuli, namely the direction discrimination of moving random dot patterns. Then, we will establish whether directing focal attention to a particular stimulus location differentially improves thresholds compared to a distributed attention condition.
Collapse
Affiliation(s)
- Pankhuri Saxena
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
- Leibniz-Science Campus Primate Cognition, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| |
Collapse
|
13
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
14
|
Fracasso A, Buonocore A, Hafed ZM. Peri-Saccadic Orientation Identification Performance and Visual Neural Sensitivity Are Higher in the Upper Visual Field. J Neurosci 2023; 43:6884-6897. [PMID: 37640553 PMCID: PMC10573757 DOI: 10.1523/jneurosci.1740-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Visual neural processing is distributed among a multitude of sensory and sensory-motor brain areas exhibiting varying degrees of functional specializations and spatial representational anisotropies. Such diversity raises the question of how perceptual performance is determined, at any one moment in time, during natural active visual behavior. Here, exploiting a known dichotomy between the primary visual cortex (V1) and superior colliculus (SC) in representing either the upper or lower visual fields, we asked whether peri-saccadic orientation identification performance is dominated by one or the other spatial anisotropy. Humans (48 participants, 29 females) reported the orientation of peri-saccadic upper visual field stimuli significantly better than lower visual field stimuli, unlike their performance during steady-state gaze fixation, and contrary to expected perceptual superiority in the lower visual field in the absence of saccades. Consistent with this, peri-saccadic superior colliculus visual neural responses in two male rhesus macaque monkeys were also significantly stronger in the upper visual field than in the lower visual field. Thus, peri-saccadic orientation identification performance is more in line with oculomotor, rather than visual, map spatial anisotropies.SIGNIFICANCE STATEMENT Different brain areas respond to visual stimulation, but they differ in the degrees of functional specializations and spatial anisotropies that they exhibit. For example, the superior colliculus (SC) both responds to visual stimulation, like the primary visual cortex (V1), and controls oculomotor behavior. Compared with the primary visual cortex, the superior colliculus exhibits an opposite pattern of upper/lower visual field anisotropy, being more sensitive to the upper visual field. Here, we show that human peri-saccadic orientation identification performance is better in the upper compared with the lower visual field. Consistent with this, monkey superior colliculus visual neural responses to peri-saccadic stimuli follow a similar pattern. Our results indicate that peri-saccadic perceptual performance reflects oculomotor, rather than visual, map spatial anisotropies.
Collapse
Affiliation(s)
- Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QE, Scotland, United Kingdom
| | - Antimo Buonocore
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples 80135, Italy
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen 72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen 72076, Germany
| |
Collapse
|
15
|
Kurzawski JW, Burchell A, Thapa D, Winawer J, Majaj NJ, Pelli DG. The Bouma law accounts for crowding in 50 observers. J Vis 2023; 23:6. [PMID: 37540179 PMCID: PMC10408772 DOI: 10.1167/jov.23.8.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/16/2023] [Indexed: 08/05/2023] Open
Abstract
Crowding is the failure to recognize an object due to surrounding clutter. Our visual crowding survey measured 13 crowding distances (or "critical spacings") twice in each of 50 observers. The survey includes three eccentricities (0, 5, and 10 deg), four cardinal meridians, two orientations (radial and tangential), and two fonts (Sloan and Pelli). The survey also tested foveal acuity, twice. Remarkably, fitting a two-parameter model-the well-known Bouma law, where crowding distance grows linearly with eccentricity-explains 82% of the variance for all 13 × 50 measured log crowding distances, cross-validated. An enhanced Bouma law, with factors for meridian, crowding orientation, target kind, and observer, explains 94% of the variance, again cross-validated. These additional factors reveal several asymmetries, consistent with previous reports, which can be expressed as crowding-distance ratios: 0.62 horizontal:vertical, 0.79 lower:upper, 0.78 right:left, 0.55 tangential:radial, and 0.78 Sloan-font:Pelli-font. Across our observers, peripheral crowding is independent of foveal crowding and acuity. Evaluation of the Bouma factor, b (the slope of the Bouma law), as a biomarker of visual health would be easier if there were a way to compare results across crowding studies that use different methods. We define a standardized Bouma factor b' that corrects for differences from Bouma's 25 choice alternatives, 75% threshold criterion, and linearly symmetric flanker placement. For radial crowding on the right meridian, the standardized Bouma factor b' is 0.24 for this study, 0.35 for Bouma (1970), and 0.30 for the geometric mean across five representative modern studies, including this one, showing good agreement across labs, including Bouma's. Simulations, confirmed by data, show that peeking can skew estimates of crowding (e.g., greatly decreasing the mean or doubling the SD of log b). Using gaze tracking to prevent peeking, individual differences are robust, as evidenced by the much larger 0.08 SD of log b across observers than the mere 0.03 test-retest SD of log b measured in half an hour. The ease of measurement of crowding enhances its promise as a biomarker for dyslexia and visual health.
Collapse
Affiliation(s)
- Jan W Kurzawski
- Department of Psychology, New York University, New York, NY, USA
| | - Augustin Burchell
- Cognitive Science & Computer Science, Swarthmore College, Swarthmore, PA, USA
| | - Darshan Thapa
- Center for Neural Science, New York University, New York, NY, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Najib J Majaj
- Center for Neural Science, New York University, New York, NY, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
16
|
Himmelberg MM, Winawer J, Carrasco M. Polar angle asymmetries in visual perception and neural architecture. Trends Neurosci 2023; 46:445-458. [PMID: 37031051 PMCID: PMC10192146 DOI: 10.1016/j.tins.2023.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Human visual performance changes with visual field location. It is best at the center of gaze and declines with eccentricity, and also varies markedly with polar angle. These perceptual polar angle asymmetries are linked to asymmetries in the organization of the visual system. We review and integrate research quantifying how performance changes with visual field location and how this relates to neural organization at multiple stages of the visual system. We first briefly review how performance varies with eccentricity and the neural foundations of this effect. We then focus on perceptual polar angle asymmetries and their neural foundations. Characterizing perceptual and neural variations across and around the visual field contributes to our understanding of how the brain translates visual signals into neural representations which form the basis of visual perception.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
17
|
Palmieri H, Fernández A, Carrasco M. Microsaccades and temporal attention at different locations of the visual field. J Vis 2023; 23:6. [PMID: 37145653 PMCID: PMC10168009 DOI: 10.1167/jov.23.5.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Temporal attention, the prioritization of information at specific points in time, improves performance in behavioral tasks but cannot ameliorate the perceptual asymmetries that exist across the visual field. That is, even after attentional deployment, performance is better along the horizontal than vertical meridian and worse at the upper than lower vertical meridian. Here we asked whether and how microsaccades-tiny fixational eye-movements-could mirror or alternatively attempt to compensate for these performance asymmetries by assessing temporal profiles and direction of microsaccades as a function of visual field location. Observers were asked to report the orientation of one of two targets presented at different time points, in one of three blocked locations (fovea, right horizontal meridian, upper vertical meridian). We found the following: (1) Microsaccade occurrence did not affect either task performance or the magnitude of the temporal attention effect. (2) Temporal attention modulated the microsaccade temporal profiles, and this modulation varied with polar angle location. At all locations, microsaccade rates were significantly more suppressed in anticipation of the target when temporally cued than in the neutral condition. Moreover, microsaccade rates were more suppressed during target presentation in the fovea than in the right horizontal meridian. (3) Across locations and attention conditions, there was a pronounced bias toward the upper hemifield. Overall, these results reveal that temporal attention benefits performance similarly around the visual field, microsaccade suppression is more pronounced for attention than expectation (neutral trials) across locations, and the directional bias toward the upper hemifield could reflect an attempt to compensate for typical poor performance at the upper vertical meridian.
Collapse
Affiliation(s)
- Helena Palmieri
- Department of Psychology, New York University, New York, NY, USA
| | - Antonio Fernández
- Department of Psychology, New York University, New York, NY, USA
- Department of Psychology, University of Texas in Austin, Austin, TX, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
18
|
Jigo M, Tavdy D, Himmelberg MM, Carrasco M. Cortical magnification eliminates differences in contrast sensitivity across but not around the visual field. eLife 2023; 12:e84205. [PMID: 36961485 PMCID: PMC10089656 DOI: 10.7554/elife.84205] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Human visual performance changes dramatically both across (eccentricity) and around (polar angle) the visual field. Performance is better at the fovea, decreases with eccentricity, and is better along the horizontal than vertical meridian and along the lower than the upper vertical meridian. However, all neurophysiological and virtually all behavioral studies of cortical magnification have investigated eccentricity effects without considering polar angle. Most performance differences due to eccentricity are eliminated when stimulus size is cortically magnified (M-scaled) to equate the size of its cortical representation in primary visual cortex (V1). But does cortical magnification underlie performance differences around the visual field? Here, to assess contrast sensitivity, human adult observers performed an orientation discrimination task with constant stimulus size at different locations as well as when stimulus size was M-scaled according to stimulus eccentricity and polar angle location. We found that although M-scaling stimulus size eliminates differences across eccentricity, it does not eliminate differences around the polar angle. This finding indicates that limits in contrast sensitivity across eccentricity and around polar angle of the visual field are mediated by different anatomical and computational constraints.
Collapse
Affiliation(s)
- Michael Jigo
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Daniel Tavdy
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Marc M Himmelberg
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Marisa Carrasco
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
19
|
Carrasco M, Myers C, Roberts M. Visual field asymmetries vary between adolescents and adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.531124. [PMID: 36945488 PMCID: PMC10028823 DOI: 10.1101/2023.03.04.531124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
For human adults, visual perception varies around isoeccentric locations (with polar angle at a constant distance from the center of gaze). The same visual information yields better performance along the horizontal than vertical meridian (horizontal vertical anisotropy, HVA) and along the lower than upper vertical meridian (vertical meridian asymmetry, VMA). For children, performance is better along the horizontal than vertical meridian (HVA) but does not differ between the lower and the upper vertical meridian. Here, we investigated whether the extent of the HVA varies and the VMA emerges and fully develops during adolescence, or whether the VMA only emerges in adulthood. We found that for adolescents, performance yields both HVA and VMA, but both are less pronounced than those for adults.
Collapse
|
20
|
Abstract
A small number of objects can be rapidly and accurately enumerated, whereas a larger number of objects can only be approximately enumerated. These subitizing and estimation abilities, respectively, are both spatial processes relying on extracting information across spatial locations. Nevertheless, whether and how these processes vary across visual field locations remains unknown. Here, we examined if enumeration displays asymmetries around the visual field. Experiment 1 tested small number (1–6) enumeration at cardinal and non-cardinal peripheral locations while manipulating the spacing among the objects. Experiment 2 examined enumeration at cardinal locations in more detail while minimising crowding. Both experiments demonstrated a Horizontal-Vertical Asymmetry (HVA) where performance was better along the horizontal axis relative to the vertical. Experiment 1 found that this effect was modulated by spacing with stronger asymmetry at closer spacing. Experiment 2 revealed further asymmetries: a Vertical Meridian Asymmetry (VMA) with better enumeration on the lower vertical meridian than on the upper and a Horizontal Meridian Asymmetry (HMA) with better enumeration along the left horizontal meridian than along the right. All three asymmetries were evident for both subitizing and estimation. HVA and VMA have been observed in a range of visual tasks, indicating that they might be inherited from early visual constraints. However, HMA is observed primarily in mid-level tasks, often involving attention. These results suggest that while enumeration processes can be argued to inherit low-level visual constraints, the findings are, parsimoniously, consistent with visual attention playing a role in both subitizing and estimation.
Collapse
|
21
|
Miyata T, Benson NC, Winawer J, Takemura H. Structural Covariance and Heritability of the Optic Tract and Primary Visual Cortex in Living Human Brains. J Neurosci 2022; 42:6761-6769. [PMID: 35853720 PMCID: PMC9436011 DOI: 10.1523/jneurosci.0043-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Individual differences among human brains exist at many scales, spanning gene expression, white matter tissue properties, and the size and shape of cortical areas. One notable example is an approximately 3-fold range in the size of human primary visual cortex (V1), a much larger range than is found in overall brain size. A previous study (Andrews et al., 1997) reported a correlation between optic tract (OT) cross-section area and V1 size in postmortem human brains, suggesting that there may be a common developmental mechanism for multiple components of the visual pathways. We evaluated the relationship between properties of the OT and V1 in a much larger sample of living human brains by analyzing the Human Connectome Project (HCP) 7 Tesla Retinotopy Dataset (including 107 females and 71 males). This dataset includes retinotopic maps measured with functional MRI (fMRI) and fiber tract data measured with diffusion MRI (dMRI). We found a negative correlation between OT fractional anisotropy (FA) and V1 surface area (r = -0.19). This correlation, although small, was consistent across multiple dMRI datasets differing in acquisition parameters. Further, we found that both V1 surface area and OT properties were correlated among twins, with higher correlations for monozygotic (MZ) than dizygotic (DZ) twins, indicating a high degree of heritability for both properties. Together, these results demonstrate covariation across individuals in properties of the retina (OT) and cortex (V1) and show that each is influenced by genetic factors.SIGNIFICANCE STATEMENT The size of human primary visual cortex (V1) has large interindividual differences. These differences do not scale with overall brain size. A previous postmortem study reported a correlation between the size of the human optic tract (OT) and V1. In this study, we evaluated the relationship between the OT and V1 in living humans by analyzing a neuroimaging dataset that included functional MRI (fMRI) and diffusion MRI (dMRI) data. We found a small, but robust correlation between OT tissue properties and V1 size, supporting the existence of structural covariance between the OT and V1 in living humans. The results suggest that characteristics of retinal ganglion cells (RGCs), reflected in OT measurements, are correlated with individual differences in human V1.
Collapse
Affiliation(s)
- Toshikazu Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Institute, National Institute of Information and Communications Technology (NICT), Suita-shi 565-0871, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki-shi 444-8585, Japan
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle, 98195, Washington
| | - Jonathan Winawer
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10003
| | - Hiromasa Takemura
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Institute, National Institute of Information and Communications Technology (NICT), Suita-shi 565-0871, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki-shi 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama-cho 240-0193, Japan
| |
Collapse
|
22
|
Taskin HO, Qiao Y, Sydnor VJ, Cieslak M, Haggerty EB, Satterthwaite TD, Morgan JI, Shi Y, Aguirre GK. Retinal ganglion cell endowment is correlated with optic tract fiber cross section, not density. Neuroimage 2022; 260:119495. [PMID: 35868617 PMCID: PMC10362491 DOI: 10.1016/j.neuroimage.2022.119495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
There is substantial variation between healthy individuals in the number of retinal ganglion cells (RGC) in the eye, with commensurate variation in the number of axons in the optic tracts. Fixel-based analysis of diffusion MR produces estimates of fiber density (FD) and cross section (FC). Using these fixel measurements along with retinal imaging, we asked if individual differences in RGC tissue volume are correlated with individual differences in FD and FC measurements obtained from the optic tracts, and subsequent structures along the cortical visual pathway. We find that RGC endowment is correlated with optic tract FC, but not with FD. RGC volume had a decreasing relationship with measurements from subsequent regions of the visual system (LGN volume, optic radiation FC/FD, and V1 surface area). However, we also found that the variations in each visual area were correlated with the variations in its immediately adjacent visual structure. We only observed these serial correlations when FC is used as the measure of interest for the optic tract and radiations, but no significant relationship was found when FD represented these white matter structures. From these results, we conclude that the variations in RGC endowment, LGN volume, and V1 surface area are better predicted by the overall cross section of the optic tract and optic radiations as compared to the intra-axonal restricted signal component of these white matter pathways. Additionally, the presence of significant correlations between adjacent, but not distant, anatomical structures suggests that there are multiple, local sources of anatomical variation along the visual pathway.
Collapse
Affiliation(s)
- Huseyin O Taskin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yuchuan Qiao
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Valerie J Sydnor
- Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew Cieslak
- Department of Neuropsychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Edda B Haggerty
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Theodore D Satterthwaite
- Department of Psychiatry, Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jessica Iw Morgan
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yonggang Shi
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
| |
Collapse
|
23
|
Himmelberg MM, Winawer J, Carrasco M. Linking individual differences in human primary visual cortex to contrast sensitivity around the visual field. Nat Commun 2022; 13:3309. [PMID: 35697680 PMCID: PMC9192713 DOI: 10.1038/s41467-022-31041-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
A central question in neuroscience is how the organization of cortical maps relates to perception, for which human primary visual cortex (V1) is an ideal model system. V1 nonuniformly samples the retinal image, with greater cortical magnification (surface area per degree of visual field) at the fovea than periphery and at the horizontal than vertical meridian. Moreover, the size and cortical magnification of V1 varies greatly across individuals. Here, we used fMRI and psychophysics in the same observers to quantify individual differences in V1 cortical magnification and contrast sensitivity at the four polar angle meridians. Across observers, the overall size of V1 and localized cortical magnification positively correlated with contrast sensitivity. Moreover, greater cortical magnification and higher contrast sensitivity at the horizontal than the vertical meridian were strongly correlated. These data reveal a link between cortical anatomy and visual perception at the level of individual observer and stimulus location.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
24
|
Abstract
Visual perception in human adults varies throughout the visual field, both across eccentricity - decreasing with distance from the center of gaze - and around isoeccentric locations - that is, with polar angle at a constant distance from the center of gaze. At isoeccentric locations, the same visual information yields better performance along the horizontal than vertical meridian (horizontal-vertical anisotropy, HVA) and along the lower than upper vertical meridian (vertical-meridian asymmetry, VMA). These perceptual polar angle asymmetries in adults have been well characterized. Poor perception at upper visual field locations would be particularly detrimental to children: in their perceptual world, given their height, many important events occur above eye level. Developmental aspects of visual perception have been well characterized1, and some basic dimensions, such as contrast sensitivity, continue to develop through childhood2, but there is no research on polar angle asymmetries before adulthood. Here, we investigated whether these asymmetries are present in children, and if so, whether they differ from those of adults. We found clear differences between children and adults in performance around the visual field: the HVA is less pronounced and the VMA is not present for children.
Collapse
|
25
|
Hanning NM, Himmelberg MM, Carrasco M. Presaccadic attention enhances contrast sensitivity, but not at the upper vertical meridian. iScience 2022; 25:103851. [PMID: 35198902 PMCID: PMC8850791 DOI: 10.1016/j.isci.2022.103851] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Visual performance has striking polar performance asymmetries: At a fixed eccentricity, it is better along the horizontal than vertical meridian and the lower than upper vertical meridian. These asymmetries are not alleviated by covert exogenous or endogenous attention, but have been studied exclusively during eye fixation. However, a major driver of everyday attentional orienting is saccade preparation, during which attention automatically shifts to the future eye fixation. This presaccadic attention shift is considered strong and compulsory, and relies on different neural computations and substrates than covert attention. Thus, we asked: Can presaccadic attention compensate for the ubiquitous performance asymmetries observed during eye fixation? Our data replicate polar performance asymmetries during fixation and document the same asymmetries during saccade preparation. Crucially, however, presaccadic attention enhanced contrast sensitivity at the horizontal and lower vertical meridian, but not at the upper vertical meridian. Thus, instead of attenuating performance asymmetries, presaccadic attention exacerbates them.
Collapse
Affiliation(s)
- Nina M. Hanning
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| | - Marc M. Himmelberg
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| |
Collapse
|