1
|
Bäcker LE, Broux K, Weckx L, Khanal S, Aertsen A. Tuning and functionalization of logic gates for time resolved programming of bacterial populations. Nucleic Acids Res 2025; 53:gkae1158. [PMID: 39657755 PMCID: PMC11724278 DOI: 10.1093/nar/gkae1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
In order to increase our command over genetically engineered bacterial populations in bioprocessing and therapy, synthetic regulatory circuitry needs to enable the temporal programming of a number of consecutive functional tasks without external interventions. In this context, we have engineered a genetic circuit encoding an autonomous but chemically tunable timer in Escherichia coli, based on the concept of a transcription factor cascade mediated by the cytoplasmic dilution of repressors. As proof-of-concept, we used this circuit to impose a time-resolved two-staged synthetic pathway composed of a production-followed-by-lysis program, via a single input. Moreover, via a recombinase step, this synchronous timer was further engineered into an asynchronous timer in which the generational distance of differentiating daughter cells spawning off from a stem-cell like mother cell becomes a predictable driver and proxy for timer dynamics. Using this asynchronous timer circuit, a temporally defined population heterogeneity can be programmed in bacterial populations.
Collapse
Affiliation(s)
- Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23—bus 2457, 3001 Leuven, Belgium
| | - Kevin Broux
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23—bus 2457, 3001 Leuven, Belgium
| | - Louise Weckx
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23—bus 2457, 3001 Leuven, Belgium
| | - Sadhana Khanal
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23—bus 2457, 3001 Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23—bus 2457, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Jafarbeglou F, Dunlop MJ. Red Light Responsive Cre Recombinase for Bacterial Optogenetics. ACS Synth Biol 2024; 13:3991-4001. [PMID: 39558834 DOI: 10.1021/acssynbio.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Optogenetic tools have been used in a wide range of microbial engineering applications that benefit from the tunable, spatiotemporal control that light affords. However, the majority of current optogenetic constructs for bacteria respond to blue light, limiting the potential for multichromatic control. In addition, other wavelengths offer potential benefits over blue light, including improved penetration of dense cultures and reduced potential for toxicity. In this study, we introduce OptoCre-REDMAP, a red light inducible Cre recombinase system in Escherichia coli. This system harnesses the plant photoreceptors PhyA and FHY1 and a split version of Cre recombinase to achieve precise control over gene expression and DNA excision. We optimized the design by modifying the start codon of Cre and characterized the impact of different levels of induction to find conditions that produced minimal basal expression in the dark and induced full activation within 4 h of red light exposure. We characterized the system's sensitivity to ambient light, red light intensity, and exposure time, finding OptoCre-REDMAP to be reliable and flexible across a range of conditions. In coculture experiments with OptoCre-REDMAP and the blue light responsive OptoCre-VVD, we found that the systems responded orthogonally to red and blue light inputs. Direct comparisons between red and blue light induction with OptoCre-REDMAP and OptoCre-VVD demonstrated the superior penetration properties of red light. OptoCre-REDMAP's robust and selective response to red light makes it suitable for advanced synthetic biology applications, particularly those requiring precise multichromatic control.
Collapse
Affiliation(s)
- Fereshteh Jafarbeglou
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Mary J Dunlop
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Rani G, Sengupta A. Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy. BIOPHYSICAL REPORTS 2024; 4:100175. [PMID: 39197679 PMCID: PMC11416667 DOI: 10.1016/j.bpr.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Spatiotemporal organization of individuals within growing bacterial colonies is a key determinant of intraspecific interactions and colony-scale heterogeneities. The evolving cellular distribution, in relation to the genealogical lineage, is thus central to our understanding of bacterial fate across scales. Yet, how bacteria self-organize genealogically as a colony expands has remained unknown. Here, by developing a custom-built label-free algorithm, we track and study the genesis and evolution of emergent self-similar genealogical enclaves, whose dynamics are governed by biological activity. Topological defects at enclave boundaries tune finger-like morphologies of the active interfaces. The Shannon entropy of cell arrangements reduce over time; with faster-dividing cells possessing higher spatial affinity to genealogical relatives, at the cost of a well-mixed, entropically favorable state. Our coarse-grained lattice model demonstrates that genealogical enclaves emerge due to an interplay of division-mediated dispersal, stochasticity of division events, and cell-cell interactions. The study reports so-far hidden emergent self-organizing features arising due to entropic suppression, ultimately modulating intraspecific genealogical distances within bacterial colonies.
Collapse
Affiliation(s)
- Garima Rani
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg City, Grand Duchy of Luxembourg
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg City, Grand Duchy of Luxembourg; Institute for Advanced Studies, University of Luxembourg, 2 Avenue de l'Université, Esch-sur-Alzette, Grand Duchy of Luxembourg.
| |
Collapse
|
5
|
Krikid F, Rositi H, Vacavant A. State-of-the-Art Deep Learning Methods for Microscopic Image Segmentation: Applications to Cells, Nuclei, and Tissues. J Imaging 2024; 10:311. [PMID: 39728208 DOI: 10.3390/jimaging10120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Microscopic image segmentation (MIS) is a fundamental task in medical imaging and biological research, essential for precise analysis of cellular structures and tissues. Despite its importance, the segmentation process encounters significant challenges, including variability in imaging conditions, complex biological structures, and artefacts (e.g., noise), which can compromise the accuracy of traditional methods. The emergence of deep learning (DL) has catalyzed substantial advancements in addressing these issues. This systematic literature review (SLR) provides a comprehensive overview of state-of-the-art DL methods developed over the past six years for the segmentation of microscopic images. We critically analyze key contributions, emphasizing how these methods specifically tackle challenges in cell, nucleus, and tissue segmentation. Additionally, we evaluate the datasets and performance metrics employed in these studies. By synthesizing current advancements and identifying gaps in existing approaches, this review not only highlights the transformative potential of DL in enhancing diagnostic accuracy and research efficiency but also suggests directions for future research. The findings of this study have significant implications for improving methodologies in medical and biological applications, ultimately fostering better patient outcomes and advancing scientific understanding.
Collapse
Affiliation(s)
- Fatma Krikid
- Institut Pascal, CNRS, Clermont Auvergne INP, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Hugo Rositi
- LORIA, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Antoine Vacavant
- Institut Pascal, CNRS, Clermont Auvergne INP, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Lo TW, Cutler KJ, Choi HJ, Wiggins PA. OmniSegger: A time-lapse image analysis pipeline for bacterial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625259. [PMID: 39651263 PMCID: PMC11623665 DOI: 10.1101/2024.11.25.625259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Time-lapse microscopy is a powerful tool for studying the cell biology of bacterial cells. The development of pipelines that facilitate the automated analysis of these datasets is a long-standing goal of the field. In this paper, we describe OmniSegger , an updated version of our SuperSegger pipeline, developed as an open-source, modular, and holistic suite of algorithms whose input is raw microscopy images and whose output is a wide range of quantitative cellular analyses, including dynamical cell cytometry data and cellular visualizations. The updated version described in this paper introduces two principal refinements: (i) robustness to cell morphologies and (ii) support for a range of common imaging modalities. To demonstrate robustness to cell morphology, we present an analysis of the proliferation dynamics of Escherichia coli treated with a drug that induces filamentation. To demonstrate extended support for new image modalities, we analyze cells imaged by five distinct modalities: phase-contrast, two brightfield modalities, and cytoplasmic and membrane fluorescence. Together, this pipeline should greatly increase the scope of tractable analyses for bacterial microscopists.
Collapse
|
7
|
Alnahhas RN, Andreani V, Dunlop MJ. Evaluating the predictive power of combined gene expression dynamics from single cells on antibiotic survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624989. [PMID: 39651301 PMCID: PMC11623535 DOI: 10.1101/2024.11.23.624989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Heteroresistance can allow otherwise drug-susceptible bacteria to survive and resume growth after antibiotic exposure. This temporary form of antibiotic tolerance can be caused by the upregulation of stress response genes or a decrease in cell growth rate. However, it is not clear how expression of multiple genes contributes to the tolerance phenotype. By using fluorescent reporters for stress related genes, we conducted real time measurements of expression prior to, during, and after antibiotic exposure. We first identified relationships between growth rate and reporter levels based on auto and cross correlation analysis, revealing consistent patterns where changes in growth rate were anticorrelated with fluorescence following a delay. We then used pairs of stress gene reporters and time lapse fluorescence microcopy to measure the growth rate and reporter levels in cells that survived or died following antibiotic exposure. Using these data, we asked whether combined information about reporter expression and growth rate could improve our ability to predict whether a cell would survive or die following antibiotic exposure. We developed a Bayesian inference model to predict how the combination of dual reporter expression levels and growth rate impact ciprofloxacin survival in Escherichia coli . We found clear evidence of the impact of growth rate and the gadX promoter activity on survival. Unexpectedly, our results also revealed examples where additional information from multiple genes decreased prediction accuracy, highlighting an important and underappreciated effect that can occur when integrating data from multiple simultaneous measurements.
Collapse
|
8
|
Hardo G, Li R, Bakshi S. Quantitative microbiology with widefield microscopy: navigating optical artefacts for accurate interpretations. NPJ IMAGING 2024; 2:26. [PMID: 39234390 PMCID: PMC11368818 DOI: 10.1038/s44303-024-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/21/2024] [Indexed: 09/06/2024]
Abstract
Time-resolved live-cell imaging using widefield microscopy is instrumental in quantitative microbiology research. It allows researchers to track and measure the size, shape, and content of individual microbial cells over time. However, the small size of microbial cells poses a significant challenge in interpreting image data, as their dimensions approache that of the microscope's depth of field, and they begin to experience significant diffraction effects. As a result, 2D widefield images of microbial cells contain projected 3D information, blurred by the 3D point spread function. In this study, we employed simulations and targeted experiments to investigate the impact of diffraction and projection on our ability to quantify the size and content of microbial cells from 2D microscopic images. This study points to some new and often unconsidered artefacts resulting from the interplay of projection and diffraction effects, within the context of quantitative microbiology. These artefacts introduce substantial errors and biases in size, fluorescence quantification, and even single-molecule counting, making the elimination of these errors a complex task. Awareness of these artefacts is crucial for designing strategies to accurately interpret micrographs of microbes. To address this, we present new experimental designs and machine learning-based analysis methods that account for these effects, resulting in accurate quantification of microbiological processes.
Collapse
Affiliation(s)
- Georgeos Hardo
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Ruizhe Li
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Somenath Bakshi
- Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Ahmadi A, Courtney M, Ren C, Ingalls B. A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics. Microbiol Spectr 2024; 12:e0003224. [PMID: 38980028 PMCID: PMC11302142 DOI: 10.1128/spectrum.00032-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/26/2024] [Indexed: 07/10/2024] Open
Abstract
Time-lapse microscopy offers a powerful approach for analyzing cellular activity. In particular, this technique is valuable for assessing the behavior of bacterial populations, which can exhibit growth and intercellular interactions in a monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several image-processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support the analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of Escherichia coli populations. Performance varies across the packages, with each of the four outperforming the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep learning-based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight into usability, computational efficiency, and feature availability, as a guide to researchers seeking image-processing solutions. IMPORTANCE Time-lapse microscopy provides a detailed window into the world of bacterial behavior. However, the vast amount of data produced by these techniques is difficult to analyze manually. We have analyzed four software tools designed to process such data and compared their performance, using populations of commonly studied bacterial species as our test subjects. Our findings offer a roadmap to scientists, helping them choose the right tool for their research. This comparison bridges a gap between microbiology and computational analysis, streamlining research efforts.
Collapse
Affiliation(s)
- Atiyeh Ahmadi
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Matthew Courtney
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Carolyn Ren
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Brian Ingalls
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Shabestary K, Klemm C, Carling B, Marshall J, Savigny J, Storch M, Ledesma-Amaro R. Phenotypic heterogeneity follows a growth-viability tradeoff in response to amino acid identity. Nat Commun 2024; 15:6515. [PMID: 39095345 PMCID: PMC11297284 DOI: 10.1038/s41467-024-50602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
In their natural environments, microorganisms mainly operate at suboptimal growth conditions with fluctuations in nutrient abundance. The resulting cellular adaptation is subject to conflicting tasks: growth or survival maximisation. Here, we study this adaptation by systematically measuring the impact of a nitrogen downshift to 24 nitrogen sources on cellular metabolism at the single-cell level. Saccharomyces lineages grown in rich media and exposed to a nitrogen downshift gradually differentiate to form two subpopulations of different cell sizes where one favours growth while the other favours viability with an extended chronological lifespan. This differentiation is asymmetrical with daughter cells representing the new differentiated state with increased viability. We characterise the metabolic response of the subpopulations using RNA sequencing, metabolic biosensors and a transcription factor-tagged GFP library coupled to high-throughput microscopy, imaging more than 800,000 cells. We find that the subpopulation with increased viability is associated with a dormant quiescent state displaying differences in MAPK signalling. Depending on the identity of the nitrogen source present, differentiation into the quiescent state can be actively maintained, attenuated, or aborted. These results establish amino acids as important signalling molecules for the formation of genetically identical subpopulations, involved in chronological lifespan and growth rate determination.
Collapse
Affiliation(s)
- Kiyan Shabestary
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Cinzia Klemm
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Benedict Carling
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- London Biofoundry, Imperial College Translation & Innovation Hub, London, UK
| | - James Marshall
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- London Biofoundry, Imperial College Translation & Innovation Hub, London, UK
| | - Juline Savigny
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Marko Storch
- London Biofoundry, Imperial College Translation & Innovation Hub, London, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Kaczmarczyk A, van Vliet S, Jakob RP, Teixeira RD, Scheidat I, Reinders A, Klotz A, Maier T, Jenal U. A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution. Nat Commun 2024; 15:3920. [PMID: 38724508 PMCID: PMC11082216 DOI: 10.1038/s41467-024-48295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Monitoring changes of signaling molecules and metabolites with high temporal resolution is key to understanding dynamic biological systems. Here, we use directed evolution to develop a genetically encoded ratiometric biosensor for c-di-GMP, a ubiquitous bacterial second messenger regulating important biological processes like motility, surface attachment, virulence and persistence. The resulting biosensor, cdGreen2, faithfully tracks c-di-GMP in single cells and with high temporal resolution over extended imaging times, making it possible to resolve regulatory networks driving bimodal developmental programs in different bacterial model organisms. We further adopt cdGreen2 as a simple tool for in vitro studies, facilitating high-throughput screens for compounds interfering with c-di-GMP signaling and biofilm formation. The sensitivity and versatility of cdGreen2 could help reveal c-di-GMP dynamics in a broad range of microorganisms with high temporal resolution. Its design principles could also serve as a blueprint for the development of similar, orthogonal biosensors for other signaling molecules, metabolites and antibiotics.
Collapse
Affiliation(s)
- Andreas Kaczmarczyk
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Roman Peter Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | | | - Inga Scheidat
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Alberto Reinders
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Alexander Klotz
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
12
|
Thiermann R, Sandler M, Ahir G, Sauls JT, Schroeder J, Brown S, Le Treut G, Si F, Li D, Wang JD, Jun S. Tools and methods for high-throughput single-cell imaging with the mother machine. eLife 2024; 12:RP88463. [PMID: 38634855 PMCID: PMC11026091 DOI: 10.7554/elife.88463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, 'what you put is what you get' (WYPIWYG) - that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.
Collapse
Affiliation(s)
- Ryan Thiermann
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Michael Sandler
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Gursharan Ahir
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - John T Sauls
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn ArborUnited States
| | - Steven Brown
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | | | - Fangwei Si
- Department of Physics, Carnegie Mellon UniversityPittsburghUnited States
| | - Dongyang Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| | - Suckjoon Jun
- Department of Physics, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
13
|
Steemans B, Govers SK. Protocol to train a support vector machine for the automatic curation of bacterial cell detections in microscopy images. STAR Protoc 2024; 5:102868. [PMID: 38308840 PMCID: PMC10850855 DOI: 10.1016/j.xpro.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Manual curation of bacterial cell detections in microscopy images remains a time-consuming and laborious task. This work offers a comprehensive, step-by-step tutorial on training a support vector machine to autonomously distinguish between good and bad cell detections. Jupyter notebooks are included to perform feature extraction, labeling, and training of the machine learning model. This method can readily be incorporated into profiling pipelines aimed at extracting a multitude of features across large collections of individual cells, strains, and species. For complete details on the use and execution of this protocol, please refer to Govers et al.1.
Collapse
Affiliation(s)
- Bart Steemans
- Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | | |
Collapse
|
14
|
Lugagne JB, Blassick CM, Dunlop MJ. Deep model predictive control of gene expression in thousands of single cells. Nat Commun 2024; 15:2148. [PMID: 38459057 PMCID: PMC10923782 DOI: 10.1038/s41467-024-46361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Gene expression is inherently dynamic, due to complex regulation and stochastic biochemical events. However, the effects of these dynamics on cell phenotypes can be difficult to determine. Researchers have historically been limited to passive observations of natural dynamics, which can preclude studies of elusive and noisy cellular events where large amounts of data are required to reveal statistically significant effects. Here, using recent advances in the fields of machine learning and control theory, we train a deep neural network to accurately predict the response of an optogenetic system in Escherichia coli cells. We then use the network in a deep model predictive control framework to impose arbitrary and cell-specific gene expression dynamics on thousands of single cells in real time, applying the framework to generate complex time-varying patterns. We also showcase the framework's ability to link expression patterns to dynamic functional outcomes by controlling expression of the tetA antibiotic resistance gene. This study highlights how deep learning-enabled feedback control can be used to tailor distributions of gene expression dynamics with high accuracy and throughput without expert knowledge of the biological system.
Collapse
Affiliation(s)
- Jean-Baptiste Lugagne
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA.
| | - Caroline M Blassick
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA.
| |
Collapse
|
15
|
Goshisht MK. Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges. ACS OMEGA 2024; 9:9921-9945. [PMID: 38463314 PMCID: PMC10918679 DOI: 10.1021/acsomega.3c05913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Machine learning (ML), particularly deep learning (DL), has made rapid and substantial progress in synthetic biology in recent years. Biotechnological applications of biosystems, including pathways, enzymes, and whole cells, are being probed frequently with time. The intricacy and interconnectedness of biosystems make it challenging to design them with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic biology can be employed to produce large data sets for training models (for instance, by utilizing DNA synthesis), and ML/DL models can be employed to inform design (for example, by generating new parts or advising unrivaled experiments to perform). This potential has recently been brought to light by research at the intersection of engineering biology and ML/DL through achievements like the design of novel biological components, best experimental design, automated analysis of microscopy data, protein structure prediction, and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this review into three sections. In the first section, I describe predictive potential and basics of ML along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and
Applied Sciences, University of Wisconsin—Green
Bay, Green
Bay, Wisconsin 54311-7001, United States
| |
Collapse
|
16
|
Thiermann R, Sandler M, Ahir G, Sauls JT, Schroeder JW, Brown SD, Le Treut G, Si F, Li D, Wang JD, Jun S. Tools and methods for high-throughput single-cell imaging with the mother machine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.27.534286. [PMID: 37066401 PMCID: PMC10103947 DOI: 10.1101/2023.03.27.534286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely-used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning based segmentation, "what you put is what you get" (WYPIWYG) - i.e., pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother-machine-based high-throughput imaging and analysis methods in their research.
Collapse
Affiliation(s)
- Ryan Thiermann
- Department of Physics, University of California San Diego, La Jolla CA
| | - Michael Sandler
- Department of Physics, University of California San Diego, La Jolla CA
| | - Gursharan Ahir
- Department of Physics, University of California San Diego, La Jolla CA
| | - John T. Sauls
- Department of Physics, University of California San Diego, La Jolla CA
| | - Jeremy W. Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Steven D. Brown
- Department of Physics, University of California San Diego, La Jolla CA
| | | | - Fangwei Si
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA
| | - Dongyang Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Jue D. Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI
| | - Suckjoon Jun
- Department of Physics, University of California San Diego, La Jolla CA
| |
Collapse
|
17
|
Ye F, Wang J, Li J, Mei Y, Guo G. Mapping Cell Atlases at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305449. [PMID: 38145338 PMCID: PMC10885669 DOI: 10.1002/advs.202305449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Recent advancements in single-cell technologies have led to rapid developments in the construction of cell atlases. These atlases have the potential to provide detailed information about every cell type in different organisms, enabling the characterization of cellular diversity at the single-cell level. Global efforts in developing comprehensive cell atlases have profound implications for both basic research and clinical applications. This review provides a broad overview of the cellular diversity and dynamics across various biological systems. In addition, the incorporation of machine learning techniques into cell atlas analyses opens up exciting prospects for the field of integrative biology.
Collapse
Affiliation(s)
- Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiang310058China
- Institute of HematologyZhejiang UniversityHangzhouZhejiang310000China
| |
Collapse
|
18
|
Dengler Haunreiter V, Tarnutzer A, Bär J, von Matt M, Hertegonne S, Andreoni F, Vulin C, Künzi L, Menzi C, Kiefer P, Christen P, Vorholt JA, Zinkernagel AS. C-di-AMP levels modulate Staphylococcus aureus cell wall thickness, response to oxidative stress, and antibiotic resistance and tolerance. Microbiol Spectr 2023; 11:e0278823. [PMID: 37948390 PMCID: PMC10715141 DOI: 10.1128/spectrum.02788-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Antibiotic resistance and tolerance are substantial healthcare-related problems, hampering effective treatment of bacterial infections. Mutations in the phosphodiesterase GdpP, which degrades cyclic di-3', 5'-adenosine monophosphate (c-di-AMP), have recently been associated with resistance to beta-lactam antibiotics in clinical Staphylococcus aureus isolates. In this study, we show that high c-di-AMP levels decreased the cell size and increased the cell wall thickness in S. aureus mutant strains. As a consequence, an increase in resistance to cell wall targeting antibiotics, such as oxacillin and fosfomycin as well as in tolerance to ceftaroline, a cephalosporine used to treat methicillin-resistant S. aureus infections, was observed. These findings underline the importance of investigating the role of c-di-AMP in the development of tolerance and resistance to antibiotics in order to optimize treatment in the clinical setting.
Collapse
Affiliation(s)
- Vanina Dengler Haunreiter
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuela von Matt
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sanne Hertegonne
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clément Vulin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lisa Künzi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen Menzi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Meacock OJ, Durham WM. Tracking bacteria at high density with FAST, the Feature-Assisted Segmenter/Tracker. PLoS Comput Biol 2023; 19:e1011524. [PMID: 37812642 PMCID: PMC10586697 DOI: 10.1371/journal.pcbi.1011524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/19/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023] Open
Abstract
Most bacteria live attached to surfaces in densely-packed communities. While new experimental and imaging techniques are beginning to provide a window on the complex processes that play out in these communities, resolving the behaviour of individual cells through time and space remains a major challenge. Although a number of different software solutions have been developed to track microorganisms, these typically require users either to tune a large number of parameters or to groundtruth a large volume of imaging data to train a deep learning model-both manual processes which can be very time consuming for novel experiments. To overcome these limitations, we have developed FAST, the Feature-Assisted Segmenter/Tracker, which uses unsupervised machine learning to optimise tracking while maintaining ease of use. Our approach, rooted in information theory, largely eliminates the need for users to iteratively adjust parameters manually and make qualitative assessments of the resulting cell trajectories. Instead, FAST measures multiple distinguishing 'features' for each cell and then autonomously quantifies the amount of unique information each feature provides. We then use these measurements to determine how data from different features should be combined to minimize tracking errors. Comparing our algorithm with a naïve approach that uses cell position alone revealed that FAST produced 4 to 10 fold fewer tracking errors. The modular design of FAST combines our novel tracking method with tools for segmentation, extensive data visualisation, lineage assignment, and manual track correction. It is also highly extensible, allowing users to extract custom information from images and seamlessly integrate it into downstream analyses. FAST therefore enables high-throughput, data-rich analyses with minimal user input. It has been released for use either in Matlab or as a compiled stand-alone application, and is available at https://bit.ly/3vovDHn, along with extensive tutorials and detailed documentation.
Collapse
Affiliation(s)
- Oliver J. Meacock
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - William M. Durham
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
20
|
Petkidis A, Andriasyan V, Greber UF. Machine learning for cross-scale microscopy of viruses. CELL REPORTS METHODS 2023; 3:100557. [PMID: 37751685 PMCID: PMC10545915 DOI: 10.1016/j.crmeth.2023.100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 09/28/2023]
Abstract
Despite advances in virological sciences and antiviral research, viruses continue to emerge, circulate, and threaten public health. We still lack a comprehensive understanding of how cells and individuals remain susceptible to infectious agents. This deficiency is in part due to the complexity of viruses, including the cell states controlling virus-host interactions. Microscopy samples distinct cellular infection stages in a multi-parametric, time-resolved manner at molecular resolution and is increasingly enhanced by machine learning and deep learning. Here we discuss how state-of-the-art artificial intelligence (AI) augments light and electron microscopy and advances virological research of cells. We describe current procedures for image denoising, object segmentation, tracking, classification, and super-resolution and showcase examples of how AI has improved the acquisition and analyses of microscopy data. The power of AI-enhanced microscopy will continue to help unravel virus infection mechanisms, develop antiviral agents, and improve viral vectors.
Collapse
Affiliation(s)
- Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
21
|
Blöbaum L, Täuber S, Grünberger A. Protocol to perform dynamic microfluidic single-cell cultivation of C. glutamicum. STAR Protoc 2023; 4:102436. [PMID: 37543944 PMCID: PMC10425941 DOI: 10.1016/j.xpro.2023.102436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
Here, we present a protocol for the design, fabrication, and usage of a polydimethylsiloxane (PDMS)-based chip for dynamic microfluidic single-cell cultivation of Corynebacterium glutamicum. We describe steps for flow profile establishment and biological preparation. We then detail time-lapse imaging to observe reactions of C. glutamicum to repeated environmental changes in the range of seconds. This system can be adapted to other organisms with a cell wall and soluble non-gaseous environmental factors like nutrients. For complete details on the use and execution of this protocol, please refer to Täuber et al..1.
Collapse
Affiliation(s)
- Luisa Blöbaum
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, 33615 Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany.
| | - Sarah Täuber
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, 33615 Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, 33615 Bielefeld, Germany; Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
22
|
Erfanian N, Heydari AA, Feriz AM, Iañez P, Derakhshani A, Ghasemigol M, Farahpour M, Razavi SM, Nasseri S, Safarpour H, Sahebkar A. Deep learning applications in single-cell genomics and transcriptomics data analysis. Biomed Pharmacother 2023; 165:115077. [PMID: 37393865 DOI: 10.1016/j.biopha.2023.115077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023] Open
Abstract
Traditional bulk sequencing methods are limited to measuring the average signal in a group of cells, potentially masking heterogeneity, and rare populations. The single-cell resolution, however, enhances our understanding of complex biological systems and diseases, such as cancer, the immune system, and chronic diseases. However, the single-cell technologies generate massive amounts of data that are often high-dimensional, sparse, and complex, thus making analysis with traditional computational approaches difficult and unfeasible. To tackle these challenges, many are turning to deep learning (DL) methods as potential alternatives to the conventional machine learning (ML) algorithms for single-cell studies. DL is a branch of ML capable of extracting high-level features from raw inputs in multiple stages. Compared to traditional ML, DL models have provided significant improvements across many domains and applications. In this work, we examine DL applications in genomics, transcriptomics, spatial transcriptomics, and multi-omics integration, and address whether DL techniques will prove to be advantageous or if the single-cell omics domain poses unique challenges. Through a systematic literature review, we have found that DL has not yet revolutionized the most pressing challenges of the single-cell omics field. However, using DL models for single-cell omics has shown promising results (in many cases outperforming the previous state-of-the-art models) in data preprocessing and downstream analysis. Although developments of DL algorithms for single-cell omics have generally been gradual, recent advances reveal that DL can offer valuable resources in fast-tracking and advancing research in single-cell.
Collapse
Affiliation(s)
- Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - A Ali Heydari
- Department of Applied Mathematics, University of California, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Pablo Iañez
- Cellular Systems Genomics Group, Josep Carreras Research Institute, Barcelona, Spain
| | - Afshin Derakhshani
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Mohsen Farahpour
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
| | - Seyyed Mohammad Razavi
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Helleckes LM, Hemmerich J, Wiechert W, von Lieres E, Grünberger A. Machine learning in bioprocess development: from promise to practice. Trends Biotechnol 2023; 41:817-835. [PMID: 36456404 DOI: 10.1016/j.tibtech.2022.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Fostered by novel analytical techniques, digitalization, and automation, modern bioprocess development provides large amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have great potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. Herein we demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring, and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges, and point out domains that can potentially benefit from technology transfer and further progress in the field of ML.
Collapse
Affiliation(s)
- Laura M Helleckes
- Institute for Bio- and Geosciences (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Johannes Hemmerich
- Institute for Bio- and Geosciences (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Wolfgang Wiechert
- Institute for Bio- and Geosciences (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Eric von Lieres
- Institute for Bio- and Geosciences (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; Institute of Process Engineering in Life Sciences, Section III: Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
| |
Collapse
|
24
|
Malik H, Idris AS, Toha SF, Mohd Idris I, Daud MF, Azmi NL. A review of open-source image analysis tools for mammalian cell culture: algorithms, features and implementations. PeerJ Comput Sci 2023; 9:e1364. [PMID: 37346656 PMCID: PMC10280419 DOI: 10.7717/peerj-cs.1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/04/2023] [Indexed: 06/23/2023]
Abstract
Cell culture is undeniably important for multiple scientific applications, including pharmaceuticals, transplants, and cosmetics. However, cell culture involves multiple manual steps, such as regularly analyzing cell images for their health and morphology. Computer scientists have developed algorithms to automate cell imaging analysis, but they are not widely adopted by biologists, especially those lacking an interactive platform. To address the issue, we compile and review existing open-source cell image processing tools that provide interactive interfaces for management and prediction tasks. We highlight the prediction tools that can detect, segment, and track different mammalian cell morphologies across various image modalities and present a comparison of algorithms and unique features of these tools, whether they work locally or in the cloud. This would guide non-experts to determine which is best suited for their purposes and, developers to acknowledge what is worth further expansion. In addition, we provide a general discussion on potential implementations of the tools for a more extensive scope, which guides the reader to not restrict them to prediction tasks only. Finally, we conclude the article by stating new considerations for the development of interactive cell imaging tools and suggesting new directions for future research.
Collapse
Affiliation(s)
- Hafizi Malik
- Healthcare Engineering and Rehabilitation Research, Department of Mechatronics Engineering, International Islamic University Malaysia, Gombak, Selangor, Malaysia
| | - Ahmad Syahrin Idris
- Department of Electrical and Electronic Engineering, University of Southampton Malaysia, Iskandar Puteri, Johor, Malaysia
| | - Siti Fauziah Toha
- Healthcare Engineering and Rehabilitation Research, Department of Mechatronics Engineering, International Islamic University Malaysia, Gombak, Selangor, Malaysia
| | - Izyan Mohd Idris
- Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia
| | - Nur Liyana Azmi
- Healthcare Engineering and Rehabilitation Research, Department of Mechatronics Engineering, International Islamic University Malaysia, Gombak, Selangor, Malaysia
| |
Collapse
|
25
|
Tsai HF, Podder S, Chen PY. Microsystem Advances through Integration with Artificial Intelligence. MICROMACHINES 2023; 14:826. [PMID: 37421059 PMCID: PMC10141994 DOI: 10.3390/mi14040826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 07/09/2023]
Abstract
Microfluidics is a rapidly growing discipline that involves studying and manipulating fluids at reduced length scale and volume, typically on the scale of micro- or nanoliters. Under the reduced length scale and larger surface-to-volume ratio, advantages of low reagent consumption, faster reaction kinetics, and more compact systems are evident in microfluidics. However, miniaturization of microfluidic chips and systems introduces challenges of stricter tolerances in designing and controlling them for interdisciplinary applications. Recent advances in artificial intelligence (AI) have brought innovation to microfluidics from design, simulation, automation, and optimization to bioanalysis and data analytics. In microfluidics, the Navier-Stokes equations, which are partial differential equations describing viscous fluid motion that in complete form are known to not have a general analytical solution, can be simplified and have fair performance through numerical approximation due to low inertia and laminar flow. Approximation using neural networks trained by rules of physical knowledge introduces a new possibility to predict the physicochemical nature. The combination of microfluidics and automation can produce large amounts of data, where features and patterns that are difficult to discern by a human can be extracted by machine learning. Therefore, integration with AI introduces the potential to revolutionize the microfluidic workflow by enabling the precision control and automation of data analysis. Deployment of smart microfluidics may be tremendously beneficial in various applications in the future, including high-throughput drug discovery, rapid point-of-care-testing (POCT), and personalized medicine. In this review, we summarize key microfluidic advances integrated with AI and discuss the outlook and possibilities of combining AI and microfluidics.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
- Center for Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Soumyajit Podder
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
| | - Pin-Yuan Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
| |
Collapse
|
26
|
Naseri G. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nat Commun 2023; 14:1916. [PMID: 37024483 PMCID: PMC10079933 DOI: 10.1038/s41467-023-37627-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Secondary natural products (NPs) are a rich source for drug discovery. However, the low abundance of NPs makes their extraction from nature inefficient, while chemical synthesis is challenging and unsustainable. Saccharomyces cerevisiae and Pichia pastoris are excellent manufacturing systems for the production of NPs. This Perspective discusses a comprehensive platform for sustainable production of NPs in the two yeasts through system-associated optimization at four levels: genetics, temporal controllers, productivity screening, and scalability. Additionally, it is pointed out critical metabolic building blocks in NP bioengineering can be identified through connecting multilevel data of the optimized system using deep learning.
Collapse
Affiliation(s)
- Gita Naseri
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| |
Collapse
|
27
|
Siu DMD, Lee KCM, Chung BMF, Wong JSJ, Zheng G, Tsia KK. Optofluidic imaging meets deep learning: from merging to emerging. LAB ON A CHIP 2023; 23:1011-1033. [PMID: 36601812 DOI: 10.1039/d2lc00813k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Propelled by the striking advances in optical microscopy and deep learning (DL), the role of imaging in lab-on-a-chip has dramatically been transformed from a silo inspection tool to a quantitative "smart" engine. A suite of advanced optical microscopes now enables imaging over a range of spatial scales (from molecules to organisms) and temporal window (from microseconds to hours). On the other hand, the staggering diversity of DL algorithms has revolutionized image processing and analysis at the scale and complexity that were once inconceivable. Recognizing these exciting but overwhelming developments, we provide a timely review of their latest trends in the context of lab-on-a-chip imaging, or coined optofluidic imaging. More importantly, here we discuss the strengths and caveats of how to adopt, reinvent, and integrate these imaging techniques and DL algorithms in order to tailor different lab-on-a-chip applications. In particular, we highlight three areas where the latest advances in lab-on-a-chip imaging and DL can form unique synergisms: image formation, image analytics and intelligent image-guided autonomous lab-on-a-chip. Despite the on-going challenges, we anticipate that they will represent the next frontiers in lab-on-a-chip imaging that will spearhead new capabilities in advancing analytical chemistry research, accelerating biological discovery, and empowering new intelligent clinical applications.
Collapse
Affiliation(s)
- Dickson M D Siu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Kelvin C M Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Bob M F Chung
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Justin S J Wong
- Conzeb Limited, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
28
|
Sheets MB, Tague N, Dunlop MJ. An optogenetic toolkit for light-inducible antibiotic resistance. Nat Commun 2023; 14:1034. [PMID: 36823420 PMCID: PMC9950086 DOI: 10.1038/s41467-023-36670-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Antibiotics are a key control mechanism for synthetic biology and microbiology. Resistance genes are used to select desired cells and regulate bacterial populations, however their use to-date has been largely static. Precise spatiotemporal control of antibiotic resistance could enable a wide variety of applications that require dynamic control of susceptibility and survival. Here, we use light-inducible Cre recombinase to activate expression of drug resistance genes in Escherichia coli. We demonstrate light-activated resistance to four antibiotics: carbenicillin, kanamycin, chloramphenicol, and tetracycline. Cells exposed to blue light survive in the presence of lethal antibiotic concentrations, while those kept in the dark do not. To optimize resistance induction, we vary promoter, ribosome binding site, and enzyme variant strength using chromosome and plasmid-based constructs. We then link inducible resistance to expression of a heterologous fatty acid enzyme to increase production of octanoic acid. These optogenetic resistance tools pave the way for spatiotemporal control of cell survival.
Collapse
Affiliation(s)
- Michael B Sheets
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Nathan Tague
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
29
|
Dubay MM, Acres J, Riekeles M, Nadeau JL. Recent advances in experimental design and data analysis to characterize prokaryotic motility. J Microbiol Methods 2023; 204:106658. [PMID: 36529156 DOI: 10.1016/j.mimet.2022.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bacterial motility plays a key role in important cell processes such as chemotaxis and biofilm formation, but is challenging to quantify due to the small size of the individual microorganisms and the complex interplay of biological and physical factors that influence motility phenotypes. Swimming, the first type of motility described in bacteria, still remains largely unquantified. Light microscopy has enabled qualitative characterization of swimming patterns seen in different strains, such as run and tumble, run-reverse-flick, run and slow, stop and coil, and push and pull, which has allowed for elucidation of the underlying physics. However, quantifying these behaviors (e.g., identifying run distances and speeds, turn angles and behavior by surfaces or cell-cell interactions) remains a challenging task. A qualitative and quantitative understanding of bacterial motility is needed to bridge the gap between experimentation, omics analysis, and bacterial motility theory. In this review, we discuss the strengths and limitations of how phase contrast microscopy, fluorescence microscopy, and digital holographic microscopy have been used to quantify bacterial motility. Approaches to automated software analysis, including cell recognition, tracking, and track analysis, are also discussed with a view to providing a guide for experimenters to setting up the appropriate imaging and analysis system for their needs.
Collapse
Affiliation(s)
- Megan Marie Dubay
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America
| | - Jacqueline Acres
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America
| | - Max Riekeles
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, Hardenbergstraße 36A, 10623 Berlin, Germany
| | - Jay L Nadeau
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America.
| |
Collapse
|
30
|
Abstract
The ability of bacteria to respond to changes in their environment is critical to their survival, allowing them to withstand stress, form complex communities, and induce virulence responses during host infection. A remarkable feature of many of these bacterial responses is that they are often variable across individual cells, despite occurring in an isogenic population exposed to a homogeneous environmental change, a phenomenon known as phenotypic heterogeneity. Phenotypic heterogeneity can enable bet-hedging or division of labor strategies that allow bacteria to survive fluctuating conditions. Investigating the significance of phenotypic heterogeneity in environmental transitions requires dynamic, single-cell data. Technical advances in quantitative single-cell measurements, imaging, and microfluidics have led to a surge of publications on this topic. Here, we review recent discoveries on single-cell bacterial responses to environmental transitions of various origins and complexities, from simple diauxic shifts to community behaviors in biofilm formation to virulence regulation during infection. We describe how these studies firmly establish that this form of heterogeneity is prevalent and a conserved mechanism by which bacteria cope with fluctuating conditions. We end with an outline of current challenges and future directions for the field. While it remains challenging to predict how an individual bacterium will respond to a given environmental input, we anticipate that capturing the dynamics of the process will begin to resolve this and facilitate rational perturbation of environmental responses for therapeutic and bioengineering purposes.
Collapse
|
31
|
Rapid antibiotic susceptibility testing and species identification for mixed samples. Nat Commun 2022; 13:6215. [PMID: 36266330 PMCID: PMC9584937 DOI: 10.1038/s41467-022-33659-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance is an increasing problem on a global scale. Rapid antibiotic susceptibility testing (AST) is urgently needed in the clinic to enable personalized prescriptions in high-resistance environments and to limit the use of broad-spectrum drugs. Current rapid phenotypic AST methods do not include species identification (ID), leaving time-consuming plating or culturing as the only available option when ID is needed to make the sensitivity call. Here we describe a method to perform phenotypic AST at the single-cell level in a microfluidic chip that allows subsequent genotyping by in situ FISH. By stratifying the phenotypic AST response on the species of individual cells, it is possible to determine the susceptibility profile for each species in a mixed sample in 2 h. In this proof-of-principle study, we demonstrate the operation with four antibiotics and mixed samples with combinations of seven species.
Collapse
|
32
|
Allard P, Papazotos F, Potvin-Trottier L. Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications. Front Bioeng Biotechnol 2022; 10:968342. [PMID: 36312536 PMCID: PMC9597311 DOI: 10.3389/fbioe.2022.968342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are inherently dynamic, whether they are responding to environmental conditions or simply at equilibrium, with biomolecules constantly being made and destroyed. Due to their small volumes, the chemical reactions inside cells are stochastic, such that genetically identical cells display heterogeneous behaviors and gene expression profiles. Studying these dynamic processes is challenging, but the development of microfluidic methods enabling the tracking of individual prokaryotic cells with microscopy over long time periods under controlled growth conditions has led to many discoveries. This review focuses on the recent developments of one such microfluidic device nicknamed the mother machine. We overview the original device design, experimental setup, and challenges associated with this platform. We then describe recent methods for analyzing experiments using automated image segmentation and tracking. We further discuss modifications to the experimental setup that allow for time-varying environmental control, replicating batch culture conditions, cell screening based on their dynamic behaviors, and to accommodate a variety of microbial species. Finally, this review highlights the discoveries enabled by this technology in diverse fields, such as cell-size control, genetic mutations, cellular aging, and synthetic biology.
Collapse
Affiliation(s)
- Paige Allard
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, QC, Canada
- Department of Physics, Concordia University, Montréal, QC, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, Canada
- *Correspondence: Laurent Potvin-Trottier,
| |
Collapse
|
33
|
Beardall WA, Stan GB, Dunlop MJ. Deep Learning Concepts and Applications for Synthetic Biology. GEN BIOTECHNOLOGY 2022; 1:360-371. [PMID: 36061221 PMCID: PMC9428732 DOI: 10.1089/genbio.2022.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Synthetic biology has a natural synergy with deep learning. It can be used to generate large data sets to train models, for example by using DNA synthesis, and deep learning models can be used to inform design, such as by generating novel parts or suggesting optimal experiments to conduct. Recently, research at the interface of engineering biology and deep learning has highlighted this potential through successes including the design of novel biological parts, protein structure prediction, automated analysis of microscopy data, optimal experimental design, and biomolecular implementations of artificial neural networks. In this review, we present an overview of synthetic biology-relevant classes of data and deep learning architectures. We also highlight emerging studies in synthetic biology that capitalize on deep learning to enable novel understanding and design, and discuss challenges and future opportunities in this space.
Collapse
Affiliation(s)
- William A.V. Beardall
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, London, United Kingdom
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, London, United Kingdom
| | - Mary J. Dunlop
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
| |
Collapse
|