1
|
Liufu M, Leveroni ZM, Shridhar S, Zhou N, Yu JY. Optimizing real-time phase detection in diverse rhythmic biological signals for phase-specific neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609522. [PMID: 39253473 PMCID: PMC11383035 DOI: 10.1101/2024.08.24.609522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Closed-loop, phase-specific neurostimulation is a powerful method to modulate ongoing brain activity for clinical and research applications. Phase-specific stimulation relies on estimating the phase of an ongoing oscillation in real time and issuing a control command at a target phase. Phase detection algorithms based on Fast Fourier transform (FFT) are widely used due to their computational efficiency and robustness. However, it is unclear how algorithm performance depends on the spectral properties of the input signal and how algorithm parameters can be optimized. We used offline simulation to evaluate the performance of three algorithms (endpoint-corrected Hilbert Transform, Hilbert Transform and phase mapping) on three rhythmic biological signals with distinct spectral properties (rodent hippocampal theta potential, human EEG alpha and human essential tremor). First, we found that algorithm performance was more strongly influenced by signal amplitude and frequency variation compared with signal to noise ratio. Second, our simulations showed that the size of the data window for phase estimation was critical for the performance of FFT-based algorithms, where the optimal data window corresponds to the period of the oscillation. We validated this prediction with real time phase detection of hippocampal theta oscillations in freely behaving rats performing spatial navigation. Our findings define the relationship between signal properties and algorithm performance and provide a convenient method for optimizing FFT-based phase detection algorithms.
Collapse
|
2
|
Lundqvist M, Miller EK, Nordmark J, Liljefors J, Herman P. Beta: bursts of cognition. Trends Cogn Sci 2024; 28:662-676. [PMID: 38658218 DOI: 10.1016/j.tics.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Beta oscillations are linked to the control of goal-directed processing of sensory information and the timing of motor output. Recent evidence demonstrates they are not sustained but organized into intermittent high-power bursts mediating timely functional inhibition. This implies there is a considerable moment-to-moment variation in the neural dynamics supporting cognition. Beta bursts thus offer new opportunities for studying how sensory inputs are selectively processed, reshaped by inhibitory cognitive operations and ultimately result in motor actions. Recent method advances reveal diversity in beta bursts that provide deeper insights into their function and the underlying neural circuit activity motifs. We propose that brain-wide, spatiotemporal patterns of beta bursting reflect various cognitive operations and that their dynamics reveal nonlinear aspects of cortical processing.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden; The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonatan Nordmark
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Johan Liljefors
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden; Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Li Y, Nie Y, Quan Z, Zhang H, Song R, Feng H, Cheng X, Liu W, Geng X, Sun X, Fu Y, Wang S. Brain-machine interactive neuromodulation research tool with edge AI computing. Heliyon 2024; 10:e32609. [PMID: 38975192 PMCID: PMC11225749 DOI: 10.1016/j.heliyon.2024.e32609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Closed-loop neuromodulation with intelligence methods has shown great potentials in providing novel neuro-technology for treating neurological and psychiatric diseases. Development of brain-machine interactive neuromodulation strategies could lead to breakthroughs in precision and personalized electronic medicine. The neuromodulation research tool integrating artificial intelligent computing and performing neural sensing and stimulation in real-time could accelerate the development of closed-loop neuromodulation strategies and translational research into clinical application. In this study, we developed a brain-machine interactive neuromodulation research tool (BMINT), which has capabilities of neurophysiological signals sensing, computing with mainstream machine learning algorithms and delivering electrical stimulation pulse by pulse in real-time. The BMINT research tool achieved system time delay under 3 ms, and computing capabilities in feasible computation cost, efficient deployment of machine learning algorithms and acceleration process. Intelligent computing framework embedded in the BMINT enable real-time closed-loop neuromodulation developed with mainstream AI ecosystem resources. The BMINT could provide timely contribution to accelerate the translational research of intelligent neuromodulation by integrating neural sensing, edge AI computing and stimulation with AI ecosystems.
Collapse
Affiliation(s)
- Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhaoyu Quan
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Han Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Rui Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hao Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xi Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Liu
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xinwei Sun
- School of Data Science, Fudan University, Shanghai, China
| | - Yanwei Fu
- School of Data Science, Fudan University, Shanghai, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Stroh A, Schweiger S, Ramirez JM, Tüscher O. The selfish network: how the brain preserves behavioral function through shifts in neuronal network state. Trends Neurosci 2024; 47:246-258. [PMID: 38485625 DOI: 10.1016/j.tins.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuronal networks possess the ability to regulate their activity states in response to disruptions. How and when neuronal networks turn from physiological into pathological states, leading to the manifestation of neuropsychiatric disorders, remains largely unknown. Here, we propose that neuronal networks intrinsically maintain network stability even at the cost of neuronal loss. Despite the new stable state being potentially maladaptive, neural networks may not reverse back to states associated with better long-term outcomes. These maladaptive states are often associated with hyperactive neurons, marking the starting point for activity-dependent neurodegeneration. Transitions between network states may occur rapidly, and in discrete steps rather than continuously, particularly in neurodegenerative disorders. The self-stabilizing, metastable, and noncontinuous characteristics of these network states can be mathematically described as attractors. Maladaptive attractors may represent a distinct pathophysiological entity that could serve as a target for new therapies and for fostering resilience.
Collapse
Affiliation(s)
- Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Susann Schweiger
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research at the Seattle Children's Research Institute, University of Washington, Seattle, USA
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany; Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Azizpour Lindi S, Mallet NP, Leblois A. Synaptic Changes in Pallidostriatal Circuits Observed in the Parkinsonian Model Triggers Abnormal Beta Synchrony with Accurate Spatio-temporal Properties across the Basal Ganglia. J Neurosci 2024; 44:e0419232023. [PMID: 38123981 PMCID: PMC10903930 DOI: 10.1523/jneurosci.0419-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive oscillatory activity across basal ganglia (BG) nuclei in the β frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated β oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of β-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal β oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal β oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-β (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-β range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD β oscillations and may thereby guide the future development of therapeutic strategies.
Collapse
Affiliation(s)
- Shiva Azizpour Lindi
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Nicolas P Mallet
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Arthur Leblois
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| |
Collapse
|
6
|
Wang W, Zhao Y, Zhu G. The role of sphingosine-1-phosphate in the development and progression of Parkinson's disease. Front Cell Neurosci 2023; 17:1288437. [PMID: 38179204 PMCID: PMC10764561 DOI: 10.3389/fncel.2023.1288437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Parkinson's disease (PD) could be viewed as a proteinopathy caused by changes in lipids, whereby modifications in lipid metabolism may lead to protein alterations, such as the accumulation of alpha-synuclein (α-syn), ultimately resulting in neurodegeneration. Although the loss of dopaminergic neurons in the substantia nigra is the major clinical manifestation of PD, the etiology of it is largely unknown. Increasing evidence has highlighted the important role of lipids in the pathophysiology of PD. Sphingosine-1-phosphate (S1P), a signaling lipid, has been suggested to have a potential association with the advancement and worsening of PD. Therefore, better understanding the mechanisms and regulatory proteins is of high interest. Most interestingly, S1P appears to be an important target to offers a new strategy for the diagnosis and treatment of PD. In this review, we first introduce the basic situation of S1P structure, function and regulation, with a special focus on the several pathways. We then briefly describe the regulation of S1P signaling pathway on cells and make a special focused on the cell growth, proliferation and apoptosis, etc. Finally, we discuss the function of S1P as potential therapeutic target to improve the clinical symptoms of PD, and even prevent the progression of the PD. In the context of PD, the functions of S1P modulators have been extensively elucidated. In conclusion, S1P modulators represent a novel and promising therapeutic principle and therapeutic method for PD. However, more research is required before these drugs can be considered as a standard treatment option for PD.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Gast R, Knösche TR, Kennedy A. PyRates-A code-generation tool for modeling dynamical systems in biology and beyond. PLoS Comput Biol 2023; 19:e1011761. [PMID: 38150479 PMCID: PMC10775981 DOI: 10.1371/journal.pcbi.1011761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
The mathematical study of real-world dynamical systems relies on models composed of differential equations. Numerical methods for solving and analyzing differential equation systems are essential when complex biological problems have to be studied, such as the spreading of a virus, the evolution of competing species in an ecosystem, or the dynamics of neurons in the brain. Here we present PyRates, a Python-based software for modeling and analyzing differential equation systems via numerical methods. PyRates is specifically designed to account for the inherent complexity of biological systems. It provides a new language for defining models that mirrors the modular organization of real-world dynamical systems and thus simplifies the implementation of complex networks of interacting dynamic entities. Furthermore, PyRates provides extensive support for the various forms of interaction delays that can be observed in biological systems. The core of PyRates is a versatile code-generation system that translates user-defined models into "backend" implementations in various languages, including Python, Fortran, Matlab, and Julia. This allows users to apply a wide range of analysis methods for dynamical systems, eliminating the need for manual translation between code bases. PyRates may also be used as a model definition interface for the creation of custom dynamical systems tools. To demonstrate this, we developed two extensions of PyRates for common analyses of dynamic models of biological systems: PyCoBi for bifurcation analysis and RectiPy for parameter fitting. We demonstrate in a series of example models how PyRates can be used in combination with PyCoBi and RectiPy for model analysis and fitting. Together, these tools offer a versatile framework for applying computational modeling and numerical analysis methods to dynamical systems in biology and beyond.
Collapse
Affiliation(s)
- Richard Gast
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, United States of America
| | - Thomas R. Knösche
- Brain Networks Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ann Kennedy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, United States of America
| |
Collapse
|
8
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
9
|
Ortone A, Vergani AA, Ahmadipour M, Mannella R, Mazzoni A. Dopamine depletion leads to pathological synchronization of distinct basal ganglia loops in the beta band. PLoS Comput Biol 2023; 19:e1010645. [PMID: 37104542 PMCID: PMC10168586 DOI: 10.1371/journal.pcbi.1010645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/09/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Motor symptoms of Parkinson's Disease (PD) are associated with dopamine deficits and pathological oscillation of basal ganglia (BG) neurons in the β range ([12-30] Hz). However, how dopamine depletion affects the oscillation dynamics of BG nuclei is still unclear. With a spiking neurons model, we here capture the features of BG nuclei interactions leading to oscillations in dopamine-depleted condition. We highlight that both the loop between subthalamic nucleus (STN) and Globus Pallidus pars externa (GPe) and the loop between striatal fast spiking and medium spiny neurons and GPe display resonances in the β range, and synchronize to a common β frequency through interaction. Crucially, the synchronization depends on dopamine depletion: the two loops are largely independent for high levels of dopamine, but progressively synchronize as dopamine is depleted due to the increased strength of the striatal loop. The model is validated against recent experimental reports on the role of cortical inputs, STN and GPe activity in the generation of β oscillations. Our results highlight the role of the interplay between the GPe-STN and the GPe-striatum loop in generating sustained β oscillations in PD subjects, and explain how this interplay depends on the level of dopamine. This paves the way to the design of therapies specifically addressing the onset of pathological β oscillations.
Collapse
Affiliation(s)
- Andrea Ortone
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Alberto Arturo Vergani
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Mahboubeh Ahmadipour
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
10
|
West TO, Duchet B, Farmer SF, Friston KJ, Cagnan H. When do bursts matter in the primary motor cortex? Investigating changes in the intermittencies of beta rhythms associated with movement states. Prog Neurobiol 2023; 221:102397. [PMID: 36565984 PMCID: PMC7614511 DOI: 10.1016/j.pneurobio.2022.102397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Brain activity exhibits significant temporal structure that is not well captured in the power spectrum. Recently, attention has shifted to characterising the properties of intermittencies in rhythmic neural activity (i.e. bursts), yet the mechanisms that regulate them are unknown. Here, we present evidence from electrocorticography recordings made over the motor cortex to show that the statistics of bursts, such as duration or amplitude, in the beta frequency (14-30 Hz) band, significantly aid the classification of motor states such as rest, movement preparation, execution, and imagery. These features reflect nonlinearities not detectable in the power spectrum, with states increasing in nonlinearity from movement execution to preparation to rest. Further, we show using a computational model of the cortical microcircuit, constrained to account for burst features, that modulations of laminar specific inhibitory interneurons are responsible for the temporal organisation of activity. Finally, we show that the temporal characteristics of spontaneous activity can be used to infer the balance of cortical integration between incoming sensory information and endogenous activity. Critically, we contribute to the understanding of how transient brain rhythms may underwrite cortical processing, which in turn, could inform novel approaches for brain state classification, and modulation with novel brain-computer interfaces.
Collapse
Affiliation(s)
- Timothy O West
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Benoit Duchet
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Hayriye Cagnan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|