1
|
Raab HA, Goldway N, Foord C, Hartley CA. Adolescents flexibly adapt action selection based on controllability inferences. Learn Mem 2024; 31:a053901. [PMID: 38527752 PMCID: PMC11000582 DOI: 10.1101/lm.053901.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
From early in life, we encounter both controllable environments, in which our actions can causally influence the reward outcomes we experience, and uncontrollable environments, in which they cannot. Environmental controllability is theoretically proposed to organize our behavior. In controllable contexts, we can learn to proactively select instrumental actions that bring about desired outcomes. In uncontrollable environments, Pavlovian learning enables hard-wired, reflexive reactions to anticipated, motivationally salient events, providing "default" behavioral responses. Previous studies characterizing the balance between Pavlovian and instrumental learning systems across development have yielded divergent findings, with some studies observing heightened expression of Pavlovian learning during adolescence and others observing a reduced influence of Pavlovian learning during this developmental stage. In this study, we aimed to investigate whether a theoretical model of controllability-dependent arbitration between learning systems might explain these seemingly divergent findings in the developmental literature, with the specific hypothesis that adolescents' action selection might be particularly sensitive to environmental controllability. To test this hypothesis, 90 participants, aged 8-27, performed a probabilistic-learning task that enables estimation of Pavlovian influence on instrumental learning, across both controllable and uncontrollable conditions. We fit participants' data with a reinforcement-learning model in which controllability inferences adaptively modulate the dominance of Pavlovian versus instrumental control. Relative to children and adults, adolescents exhibited greater flexibility in calibrating the expression of Pavlovian bias to the degree of environmental controllability. These findings suggest that sensitivity to environmental reward statistics that organize motivated behavior may be heightened during adolescence.
Collapse
Affiliation(s)
- Hillary A Raab
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Noam Goldway
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Careen Foord
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Catherine A Hartley
- Department of Psychology, New York University, New York, New York 10003, USA
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
2
|
Cohodes EM, Sisk LM, Keding TJ, Mandell JD, Notti ME, Gee DG. Characterizing experiential elements of early-life stress to inform resilience: Buffering effects of controllability and predictability and the importance of their timing. Dev Psychopathol 2023; 35:2288-2301. [PMID: 37496155 DOI: 10.1017/s0954579423000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Key theoretical frameworks have proposed that examining the impact of exposure to specific dimensions of stress at specific developmental periods is likely to yield important insight into processes of risk and resilience. Utilizing a sample of N = 549 young adults who provided a detailed retrospective history of their lifetime exposure to numerous dimensions of traumatic stress and ratings of their current trauma-related symptomatology via completion of an online survey, here we test whether an individual's perception of their lifetime stress as either controllable or predictable buffered the impact of exposure on trauma-related symptomatology assessed in adulthood. Further, we tested whether this moderation effect differed when evaluated in the context of early childhood, middle childhood, adolescence, and young adulthood stress. Consistent with hypotheses, results highlight both stressor controllability and stressor predictability as buffering the impact of traumatic stress exposure on trauma-related symptomatology and suggest that the potency of this buffering effect varies across unique developmental periods. Leveraging dimensional ratings of lifetime stress exposure to probe heterogeneity in outcomes following stress - and, critically, considering interactions between dimensions of exposure and the developmental period when stress occurred - is likely to yield increased understanding of risk and resilience following traumatic stress.
Collapse
Affiliation(s)
- Emily M Cohodes
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Lucinda M Sisk
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Taylor J Keding
- Department of Psychology, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey D Mandell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | | | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Erdman A, Eldar E. The computational psychopathology of emotion. Psychopharmacology (Berl) 2023; 240:2231-2238. [PMID: 36811651 DOI: 10.1007/s00213-023-06335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Mood and anxiety disorders involve recurring, maladaptive patterns of distinct emotions and moods. Here, we argue that understanding these maladaptive patterns first requires understanding how emotions and moods guide adaptive behavior. We thus review recent progress in computational accounts of emotion that aims to explain the adaptive role of distinct emotions and mood. We then highlight how this emerging approach could be used to explain maladaptive emotions in various psychopathologies. In particular, we identify three computational factors that may be responsible for excessive emotions and moods of different types: self-intensifying affective biases, misestimations of predictability, and misestimations of controllability. Finally, we outline how the psychopathological roles of these factors can be tested, and how they may be used to improve psychotherapeutic and psychopharmacological interventions.
Collapse
Affiliation(s)
- Alon Erdman
- Department of Psychology, Hebrew University of Jerusalem, 9190501, Jerusalem, Israel.
| | - Eran Eldar
- Department of Psychology, Hebrew University of Jerusalem, 9190501, Jerusalem, Israel.
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, 9190501, Jerusalem, Israel.
| |
Collapse
|
4
|
Zhuang W, Niebaum J, Munakata Y. Changes in adaptation to time horizons across development. Dev Psychol 2023; 59:1532-1542. [PMID: 37166865 PMCID: PMC10524449 DOI: 10.1037/dev0001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
When making decisions, the amount of time remaining matters. When time horizons are long, exploring unknown options can inform later decisions, but when time horizons are short, exploiting known options should be prioritized. While adults and adolescents adapt their exploration in this way, it is unclear when such adaptation emerges and how individuals behave when time horizons are ambiguous, as in many real-life situations. We examined these questions by having 5- to 6-year-olds (N = 43), 11- to 12-year-olds (N = 40), and adult college students (N = 49) in the United States complete a Simplified Horizons Task under short, long, and ambiguous time horizons. Adaptation to time horizons increased with age: older children and adults explored more when horizons were long than when short, and while some younger children adapted to time horizons, younger children overall did not show strong evidence of adapting. Under ambiguous horizons, older children and adults preferred to exploit over explore, while younger children did not show this preference. Thus, adaptation to time horizons is evident by ages 11-12 and may begin to emerge around 5-6 years, and children decrease their tendencies to explore under short and ambiguous time horizons with development. This developmental shift may lead to less learning but more adaptive decision making. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Winnie Zhuang
- Department of Psychology and Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of Colorado Boulder
| | - Jesse Niebaum
- Department of Psychology and Center for Mind and Brain, University of California, Davis
| | - Yuko Munakata
- Department of Psychology and Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of Colorado Boulder
| |
Collapse
|
5
|
Elmlinger SL, Schwade JA, Vollmer L, Goldstein MH. Learning how to learn from social feedback: The origins of early vocal development. Dev Sci 2023; 26:e13296. [PMID: 35737680 DOI: 10.1111/desc.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Infants' prelinguistic vocalizations reliably organize vocal turn-taking with social partners, creating opportunities for learning to produce the sound patterns of the ambient language. This social feedback loop supporting early vocal learning is well-documented, but its developmental origins have yet to be addressed. When do infants learn that their non-cry vocalizations influence others? To test developmental changes in infant vocal learning, we assessed the vocalizations of 2- and 5-month-old infants in a still-face interaction with an unfamiliar adult. During the still-face, infants who have learned the social efficacy of vocalizing increase their babbling rate. In addition, to assess the expectations for social responsiveness that infants build from their everyday experience, we recorded caregiver responsiveness to their infants' vocalizations during unstructured play. During the still-face, only 5-month-old infants showed an increase in vocalizing (a vocal extinction burst) indicating that they had learned to expect adult responses to their vocalizations. Caregiver responsiveness predicted the magnitude of the vocal extinction burst for 5-month-olds. Because 5-month-olds show a vocal extinction burst with unfamiliar adults, they must have generalized the social efficacy of their vocalizations beyond their familiar caregiver. Caregiver responsiveness to infant vocalizations during unstructured play was similar for 2- and 5-month-olds. Infants thus learn the social efficacy of their vocalizations between 2 and 5 months of age. During this time, infants build associations between their own non-cry sounds and the reactions of adults, which allows learning of the instrumental value of vocalizing.
Collapse
Affiliation(s)
| | | | - Laura Vollmer
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
6
|
Burk DC, Averbeck BB. Environmental uncertainty and the advantage of impulsive choice strategies. PLoS Comput Biol 2023; 19:e1010873. [PMID: 36716320 PMCID: PMC9910799 DOI: 10.1371/journal.pcbi.1010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/09/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Choice impulsivity is characterized by the choice of immediate, smaller reward options over future, larger reward options, and is often thought to be associated with negative life outcomes. However, some environments make future rewards more uncertain, and in these environments impulsive choices can be beneficial. Here we examined the conditions under which impulsive vs. non-impulsive decision strategies would be advantageous. We used Markov Decision Processes (MDPs) to model three common decision-making tasks: Temporal Discounting, Information Sampling, and an Explore-Exploit task. We manipulated environmental variables to create circumstances where future outcomes were relatively uncertain. We then manipulated the discount factor of an MDP agent, which affects the value of immediate versus future rewards, to model impulsive and non-impulsive behavior. This allowed us to examine the performance of impulsive and non-impulsive agents in more or less predictable environments. In Temporal Discounting, we manipulated the transition probability to delayed rewards and found that the agent with the lower discount factor (i.e. the impulsive agent) collected more average reward than the agent with a higher discount factor (the non-impulsive agent) by selecting immediate reward options when the probability of receiving the future reward was low. In the Information Sampling task, we manipulated the amount of information obtained with each sample. When sampling led to small information gains, the impulsive MDP agent collected more average reward than the non-impulsive agent. Third, in the Explore-Exploit task, we manipulated the substitution rate for novel options. When the substitution rate was high, the impulsive agent again performed better than the non-impulsive agent, as it explored the novel options less and instead exploited options with known reward values. The results of these analyses show that impulsivity can be advantageous in environments that are unexpectedly uncertain.
Collapse
Affiliation(s)
- Diana C. Burk
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bruno B. Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Cohen AO, Phaneuf CV, Rosenbaum GM, Glover MM, Avallone KN, Shen X, Hartley CA. Reward-motivated memories influence new learning across development. Learn Mem 2022; 29:421-429. [PMID: 36253009 PMCID: PMC9578374 DOI: 10.1101/lm.053595.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Previously rewarding experiences can influence choices in new situations. Past work has demonstrated that existing reward associations can either help or hinder future behaviors and that there is substantial individual variability in the transfer of value across contexts. Developmental changes in reward sensitivity may also modulate the impact of prior reward associations on later goal-directed behavior. The current study aimed to characterize how reward associations formed in the past affected learning in the present from childhood to adulthood. Participants completed a reinforcement learning paradigm using high- and low-reward stimuli from a task completed 24 h earlier, as well as novel stimuli, as choice options. We found that prior high-reward associations impeded learning across all ages. We then assessed how individual differences in the prioritization of high- versus low-reward associations in memory impacted new learning. Greater high-reward memory prioritization was associated with worse learning performance for previously high-reward relative to low-reward stimuli across age. Adolescents also showed impeded early learning regardless of individual differences in high-reward memory prioritization. Detrimental effects of previous reward on choice behavior did not persist beyond learning. These findings indicate that prior reward associations proactively interfere with future learning from childhood to adulthood and that individual differences in reward-related memory prioritization influence new learning across age.
Collapse
Affiliation(s)
- Alexandra O Cohen
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Camille V Phaneuf
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Gail M Rosenbaum
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Morgan M Glover
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Kristen N Avallone
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Xinxu Shen
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Catherine A Hartley
- Department of Psychology, New York University, New York, New York 10003, USA
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|