1
|
Goodin MS, Miyagi C, Kuban BD, Flick CR, Polakowski AR, Karimov JH, Fukamachi K. Improving hydraulic performance of the left atrial assist device using computational fluid dynamics. Artif Organs 2025; 49:52-64. [PMID: 39238204 PMCID: PMC11687210 DOI: 10.1111/aor.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND The left atrial assist device (LAAD) is a novel continuous-flow pump designed to treat patients with heart failure with preserved ejection fraction, a growing type of heart failure, but with limited device-treatment options. The LAAD is implanted in the mitral plane and pumps blood from the left atrium into the left ventricle. The purpose of this study was to refine the initial design of the LAAD, using results from computational fluid dynamics (CFD) analyses to inform changes that could improve hydraulic performance and flow patterns within the LAAD. METHODS The initial design and three variations were simulated, exploring changes to the primary impeller blades, the housing shape, and the number, size, and curvature of the diffuser vanes. Several pump rotational speeds and flow rates spanning the intended range of use were modeled. RESULTS Guided by the insight gained from each design iteration, the final design incorporated impeller blades with improved alignment relative to the incoming flow and wider, more curved diffuser vanes that better aligned with the approaching flow from the volute. These design adjustments reduced flow separation within the impeller and diffuser regions. In vitro testing confirmed the CFD predicted improvement in the hydraulic performance of the revised LAAD flow path design. CONCLUSIONS The CFD results from this study provided insight into the key pump design-related parameters that can be adjusted to improve the LAAD's hydraulic performance and internal flow patterns. This work also provided a foundation for future studies assessing the LAAD's biocompatibility under clinical conditions.
Collapse
Affiliation(s)
| | - Chihiro Miyagi
- Department of Biomedical EngineeringLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Barry D. Kuban
- Department of Biomedical EngineeringLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Shared Laboratory ResourcesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - Christine R. Flick
- Department of Biomedical EngineeringLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Anthony R. Polakowski
- Shared Laboratory ResourcesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Jamshid H. Karimov
- Department of Biomedical EngineeringLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - Kiyotaka Fukamachi
- Department of Biomedical EngineeringLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineClevelandOhioUSA
| |
Collapse
|
2
|
Lai A, Omori N, Napolitano JE, Antaki JF, Cook KE. Effect of artificial lung fiber bundle geometric design on micro- and macro-scale clot formation. Bioeng Transl Med 2024; 9:e10699. [PMID: 39545095 PMCID: PMC11558184 DOI: 10.1002/btm2.10699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/12/2024] [Accepted: 06/29/2024] [Indexed: 11/17/2024] Open
Abstract
The hollow fiber membrane bundle is the functional component of artificial lungs, transferring oxygen to and carbon dioxide from the blood. It is also the primary location of blood clot formation and propagation in these devices. The geometric design of fiber bundles is defined by a narrow set of parameters that determine gas exchange efficiency and blood flow resistance, principally: fiber packing density, path length, and frontal area. These same parameters also affect thrombosis. This study investigated the effect of these parameters on clot formation using 3D printed flow chambers that mimic the geometry and blood flow patterns of fiber bundles. Hollow fibers were represented by an array of vertical micro-rods (380 μm diameter) arranged with three packing densities (40%, 50%, and 60%) and two path lengths (2 and 4 cm). Blood was pumped through these devices corresponding to three mean blood flow velocities (16, 20, and 25 cm/min). Results showed that (1) clot formation decreases dramatically with decreasing packing density and increasing blood flow velocity, (2) clot formation at the outlet of the fiber bundle enhances deposition upstream, and consequently (3) greater path length provides greater clot-free fiber surface area for gas exchange than a shorter path length. These results can help guide the design of less thrombogenic, more efficient artificial lung designs.
Collapse
Affiliation(s)
- Angela Lai
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Natsuha Omori
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Julia E. Napolitano
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - James F. Antaki
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNew YorkUSA
| | - Keith E. Cook
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Blauvelt D, Roy S. What is the feasibility of a clinical-scale and anticoagulation-free artificial placenta device? Expert Rev Med Devices 2024; 21:983-986. [PMID: 39607047 DOI: 10.1080/17434440.2024.2419963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Affiliation(s)
- David Blauvelt
- Division of Critical Care Medicine, Nemours Children's Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shuvo Roy
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Wagner MS, Kranz M, Krenkel L, Pointner D, Foltan M, Lubnow M, Lehle K. Computer based visualization of clot structures in extracorporeal membrane oxygenation and histological clot investigations for understanding thrombosis in membrane lungs. Front Med (Lausanne) 2024; 11:1416319. [PMID: 38962744 PMCID: PMC11219572 DOI: 10.3389/fmed.2024.1416319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) was established as a treatment for severe cardiac or respiratory disease. Intra-device clot formation is a common risk. This is based on complex coagulation phenomena which are not yet sufficiently understood. The objective was the development and validation of a methodology to capture the key properties of clots deposed in membrane lungs (MLs), such as clot size, distribution, burden, and composition. One end-of-therapy PLS ML was examined. Clot detection was performed using multidetector computed tomography (MDCT), microcomputed tomography (μCT), and photography of fiber mats (fiber mat imaging, FMI). Histological staining was conducted for von Willebrand factor (vWF), platelets (CD42b, CD62P), fibrin, and nucleated cells (4', 6-diamidino-2-phenylindole, DAPI). The three imaging methods showed similar clot distribution inside the ML. Independent of the imaging method, clot loading was detected predominantly in the inlet chamber of the ML. The μCT had the highest accuracy. However, it was more expensive and time consuming than MDCT or FMI. The MDCT detected the clots with low scanning time. Due to its lower resolution, it only showed clotted areas but not the exact shape of clot structures. FMI represented the simplest variant, requiring little effort and resources. FMI allowed clot localization and calculation of clot volume. Histological evaluation indicated omnipresent immunological deposits throughout the ML. Visually clot-free areas were covered with leukocytes and platelets forming platelet-leukocyte aggregates (PLAs). Cells were embedded in vWF cobwebs, while vWF fibers were negligible. In conclusion, the presented methodology allowed adequate clot identification and histological classification of possible thrombosis markers such as PLAs.
Collapse
Affiliation(s)
- Maria S. Wagner
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Kranz
- Department of Biofluid Mechanics, Faculty of Mechanical Engineering, Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
- Regensburg Center of Biomedical Engineering, Facility of University Regensburg and Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
| | - Lars Krenkel
- Department of Biofluid Mechanics, Faculty of Mechanical Engineering, Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
- Regensburg Center of Biomedical Engineering, Facility of University Regensburg and Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
| | - Daniel Pointner
- Department of Biofluid Mechanics, Faculty of Mechanical Engineering, Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
- Regensburg Center of Biomedical Engineering, Facility of University Regensburg and Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
| | - Maik Foltan
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Su B, Palahnuk H, Harbaugh T, Rizk E, Hazard W, Chan A, Bernstein J, Weinsaft JW, Manning KB. Numerical Study on the Impact of Central Venous Catheter Placement on Blood Flow in the Cavo-Atrial Junction. Ann Biomed Eng 2024; 52:1378-1392. [PMID: 38407724 DOI: 10.1007/s10439-024-03463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
An in silico study is performed to investigate fluid dynamic effects of central venous catheter (CVC) placement within patient-specific cavo-atrial junctions. Prior studies show the CVC infusing a liquid, but this study focuses on the placement without any liquid emerging from the CVC. A 7 or 15-French double-lumen CVC is placed virtually in two patient-specific models; the CVC tip location is altered to understand its effect on the venous flow field. Results show that the CVC impact is trivial on flow in the superior vena cava when the catheter-to-vein ratio ranges from 0.15 to 0.33. Results further demonstrate that when the CVC tip is directly in the right atrium, flow vortices in the right atrium result in elevated wall shear stress near the tip hole. A recirculation region characterizes a spatially variable flow field inside the CVC side hole. Furthermore, flow stagnation is present near the internal side hole corners but an elevated wall shear stress near the curvature of the side hole's exit. These results suggest that optimal CVC tip location is within the superior vena cava, so as to lower the potential for platelet activation due to elevated shear stresses and that CVC geometry and location depth in the central vein significantly influences the local CVC fluid dynamics. A thrombosis model also shows thrombus formation at the side hole and tip hole. After modifying the catheter design, the hemodynamics change, which alter thrombus formation. Future studies are warranted to study CVC design and placement location in an effort to minimize CVC-induced thrombosis incidence.
Collapse
Affiliation(s)
- Boyang Su
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA
| | - Hannah Palahnuk
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA
| | - Thaddeus Harbaugh
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Will Hazard
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Angel Chan
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
- Department of Medicine (Cardiology), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan Bernstein
- Division of Pediatric Hematology/Oncology, Penn State Hershey Children's Hospital, Hershey, PA, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
- Department of Medicine (Cardiology), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology (Cardiothoracic Imaging), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA.
- Department of Surgery, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
6
|
Menallo G, Miraglia R, Gerasia R, Cosentino F, Terranova P, Barbuto M, Wagner WR, D'Amore A. Open-Source Image-Based Tool to Experimentally Evaluate Blood Residence Time in Clinical Devices. ASAIO J 2024; 70:451-455. [PMID: 38237575 DOI: 10.1097/mat.0000000000002138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
This article introduces an open-source tool to experimentally compare blood residence time in biomedical devices using an image-based method. The experimental setup and the postprocessing workflow are comprehensively elucidated in a detailed report that conducts a thorough comparison of the residence times of a blood analog within three distinct blood oxygenator prototypes. To enable widespread accessibility and ease of use, the user-friendly MATLAB App developed for the analysis is available on the Mathworks repository: https://www.mathworks.com/matlabcentral/fileexchange/135156 .
Collapse
Affiliation(s)
- Giorgio Menallo
- From the Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roberto Miraglia
- Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Roberta Gerasia
- Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | | | - Pietro Terranova
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Marianna Barbuto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Ri.MED Foundation, Palermo, Italy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Wickramarachchi A, Gregory SD, Burrell AJC, Khamooshi M. Flow characterization of Maquet and Bio-Medicus multi-stage drainage cannulae during venoarterial extracorporeal membrane oxygenation. Comput Biol Med 2024; 171:108135. [PMID: 38373368 DOI: 10.1016/j.compbiomed.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Drainage cannulae extract blood from a patient during venoarterial extracorporeal membrane oxygenation (VA ECMO), a treatment that temporarily supports patients undergoing severe heart and/or lung dysfunction. Currently, the two most commonly used multi-stage drainage cannulae are manufactured by Maquet and Bio-Medicus, but their designs vary in many aspects which impacts the generated flow dynamics. Therefore, this study aimed to use computational fluid dynamics (CFD) to explore the flow characteristics of the aforementioned cannulae and their impact on complications such as thrombosis. METHODS The Maquet and Bio-Medicus cannulae were 3D modelled within a patient-specific geometry of the venous vasculature taken from a computed tomography scan of a patient undergoing VA ECMO. A drainage flow rate of 4 L/min was assigned to each cannula. Lastly, a stress blended eddy simulation turbulence model was employed to resolve bulk flow turbulence. RESULTS The proximal row of side holes in both cannulae generated high intensity counter-rotating vortices, thus generating supraphysiological shear. These proximal rows were also responsible for the majority of flow extraction in both cannulae (>1.6 L/min). Despite identical simulation settings, each cannulae had differing impacts on global flow dynamics. For instance, the Bio-Medicus model produced a total stagnant blood volume of 25.6 ml, compared to 17.8 ml the Maquet cannula, thereby increasing the risk of thrombosis. CONCLUSIONS Overall, our results demonstrate that differences in design clearly impact flow dynamics and risk of complications. Therefore, further work in optimizing cannula design may be beneficial to prevent harmful flow characteristics.
Collapse
Affiliation(s)
- Avishka Wickramarachchi
- Cardio-Respiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, 631 Blackburn Road, Clayton, VIC, Australia.
| | - Shaun D Gregory
- Cardio-Respiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, 631 Blackburn Road, Clayton, VIC, Australia
| | - Aidan J C Burrell
- Department of Intensive Care, Alfred Hospital, 55 Commercial Road, Melbourne, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Mehrdad Khamooshi
- Cardio-Respiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, 631 Blackburn Road, Clayton, VIC, Australia
| |
Collapse
|
8
|
Al Bannoud M, Martins TD, de Lima Montalvão SA, Annichino-Bizzacchi JM, Filho RM, Maciel MRW. Integrating biomarkers for hemostatic disorders into computational models of blood clot formation: A systematic review. MATHEMATICAL BIOSCIENCES AND ENGINEERING 2024; 21:7707-7739. [DOI: 10.3934/mbe.2024339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
<p>In the pursuit of personalized medicine, there is a growing demand for computational models with parameters that are easily obtainable to accelerate the development of potential solutions. Blood tests, owing to their affordability, accessibility, and routine use in healthcare, offer valuable biomarkers for assessing hemostatic balance in thrombotic and bleeding disorders. Incorporating these biomarkers into computational models of blood coagulation is crucial for creating patient-specific models, which allow for the analysis of the influence of these biomarkers on clot formation. This systematic review aims to examine how clinically relevant biomarkers are integrated into computational models of blood clot formation, thereby advancing discussions on integration methodologies, identifying current gaps, and recommending future research directions. A systematic review was conducted following the PRISMA protocol, focusing on ten clinically significant biomarkers associated with hemostatic disorders: D-dimer, fibrinogen, Von Willebrand factor, factor Ⅷ, P-selectin, prothrombin time (PT), activated partial thromboplastin time (APTT), antithrombin Ⅲ, protein C, and protein S. By utilizing this set of biomarkers, this review underscores their integration into computational models and emphasizes their integration in the context of venous thromboembolism and hemophilia. Eligibility criteria included mathematical models of thrombin generation, blood clotting, or fibrin formation under flow, incorporating at least one of these biomarkers. A total of 53 articles were included in this review. Results indicate that commonly used biomarkers such as D-dimer, PT, and APTT are rarely and superficially integrated into computational blood coagulation models. Additionally, the kinetic parameters governing the dynamics of blood clot formation demonstrated significant variability across studies, with discrepancies of up to 1, 000-fold. This review highlights a critical gap in the availability of computational models based on phenomenological or first-principles approaches that effectively incorporate affordable and routinely used clinical test results for predicting blood coagulation. This hinders the development of practical tools for clinical application, as current mathematical models often fail to consider precise, patient-specific values. This limitation is especially pronounced in patients with conditions such as hemophilia, protein C and S deficiencies, or antithrombin deficiency. Addressing these challenges by developing patient-specific models that account for kinetic variability is crucial for advancing personalized medicine in the field of hemostasis.</p>
Collapse
Affiliation(s)
- Mohamad Al Bannoud
- Laboratory of Optimization, Design, and Advanced Control, School of Chemical Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Centro de Doenças Tromboembólicas, Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Tiago Dias Martins
- Departamento de Engenharia Química, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Silmara Aparecida de Lima Montalvão
- Hematology and Hemotherapy Center, Instituto Nacional de Ciência e Tecnologia do Sangue, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Centro de Doenças Tromboembólicas, Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Joyce Maria Annichino-Bizzacchi
- Hematology and Hemotherapy Center, Instituto Nacional de Ciência e Tecnologia do Sangue, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Centro de Doenças Tromboembólicas, Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control, School of Chemical Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Centro de Doenças Tromboembólicas, Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Maria Regina Wolf Maciel
- Laboratory of Optimization, Design, and Advanced Control, School of Chemical Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Burgreen GW, Zhussupbekov M, Rojano RM, Antaki JF. Exploratory Simulation of Thrombosis in a Temporary LVAD Catheter Pump within a Virtual In-vivo Left Heart Environment. ARXIV 2023:arXiv:2312.04761v1. [PMID: 38106454 PMCID: PMC10723545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Percutaneous catheter pumps are intraventricular temporary mechanical circulatory support (MCS) devices that are positioned across the aortic valve into the left ventricle (LV) and provide continuous antegrade blood flow from the LV into the ascending aorta (AA). MCS devices are most often computationally evaluated as isolated devices subject to idealized steady-state blood flow conditions. In clinical practice, MCS devices operate connected to or within diseased pulsatile native hearts and are often complicated by hemocompatibility related adverse events such as stroke, bleeding, and thrombosis. Whereas aspects of the human circulation are increasingly being simulated via computational methods, the precise interplay of pulsatile LV hemodynamics with MCS pump hemocompatibility remains mostly unknown and not well characterized. Technologies are rapidly converging such that next-generation MCS devices will soon be evaluated in virtual physiological environments that increasingly mimic clinical settings. The purpose of this brief communication is to report results and lessons learned from an exploratory CFD simulation of hemodynamics and thrombosis for a catheter pump situated within a virtual in-vivo left heart environment.
Collapse
Affiliation(s)
- Greg W Burgreen
- Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS
| | | | | | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
10
|
Montgomery D, Municchi F, Leiderman K. clotFoam: An Open-Source Framework to Simulate Blood Clot Formation Under Arterial Flow. ARXIV 2023:arXiv:2304.09180v3. [PMID: 37131873 PMCID: PMC10153289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blood clotting involves the coupled processes of platelet aggregation and coagulation. Simulating clotting under flow in complex geometries is challenging due to multiple temporal and spatial scales and high computational cost. clotFoam is an open-source software developed in OpenFOAM that employs a continuum model of platelet advection, diffusion, and aggregation in a dynamic fluid environment and a simplified coagulation model with proteins that advect, diffuse, and react within the fluid and with wall-bound species through reactive boundary conditions. Our framework provides the foundation on which one can build more complex models and perform reliable simulations in almost any computational domain.
Collapse
Affiliation(s)
- David Montgomery
- Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States of America
| | - Federico Municchi
- Department of Mechanical Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States of America
| | - Karin Leiderman
- Department of Mathematics, University of North Carolina at Chapel Hill, 216 Lenoir Dr, Chapel Hill, NC 27599, United States of America
- Computational Medicine Program, University of North Carolina at Chapel Hill, 216 Lenoir Dr, Chapel Hill, NC 27599, United States of America
| |
Collapse
|
11
|
Sun X, Li S, He Y, Liu Y, Ma T, Zeng R, Liu Z, Chen Y, Zheng Y, Liu X. Effects of cardiac function alterations on the risk of postoperative thrombotic complications in patients receiving endovascular aortic repair. Front Physiol 2023; 13:1114110. [PMID: 36703931 PMCID: PMC9871241 DOI: 10.3389/fphys.2022.1114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Chronic heart disease (CHD) is a common comorbidity of patients receiving endovascular aneurysm repair (EVAR) for abdominal aortic aneurysms (AAA). The explicit relationship between ventricular systolic function and EVAR complication of thrombotic events is unknown. Methods: In this study, we proposed a three-dimensional numerical model coupled with the lumped-elements heart model, which is capable of simulating thrombus formation in diverse systolic functions. The relation of cardiac functions and the predicted risk of thrombus formation in the aorta and/or endograft of 4 patients who underwent EVAR was investigated. Relative risks for thrombus formation were identified using machine-learning algorithms. Results: The computational results demonstrate that thrombus tended to form on the interior side of the aorta arch and iliac branches, and cardiac function can affect blood flow field and affect thrombus formation, which is consistent with the four patients' post-operative imaging follow-up. We also found that RRT, OSI, TAWSS in thrombosis area are lower than whole average. In addition, we found that the thrombus formation has negative correlations with the maximum ventricular contractile force (r = -.281 ± .101) and positive correlations with the minimum ventricular contractile force (r = .238 ± .074), whereas the effect of heart rate (r = -.015 ± .121) on thrombus formation is not significant. Conclusion: In conclusion, changes in ventricular systolic function may alter the risk of thrombotic events after EVAR repair, which could provide insight into the selection of adjuvant therapy strategies for AAA patients with CHD.
Collapse
Affiliation(s)
- Xiaoning Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Siting Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan He
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuxi Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Rong Zeng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhili Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Chen
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Yuehong Zheng, ; Xiao Liu,
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China,*Correspondence: Yuehong Zheng, ; Xiao Liu,
| |
Collapse
|