Miljković F, Bajorath J. Kinase Drug Discovery: Impact of Open Science and Artificial Intelligence.
Mol Pharm 2024;
21:4849-4859. [PMID:
39240193 DOI:
10.1021/acs.molpharmaceut.4c00659]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Given their central role in signal transduction, protein kinases (PKs) were first implicated in cancer development, caused by aberrant intracellular signaling events. Since then, PKs have become major targets in different therapeutic areas. The preferred approach to therapeutic intervention of PK-dependent diseases is the use of small molecules to inhibit their catalytic phosphate group transfer activity. PK inhibitors (PKIs) are among the most intensely pursued drug candidates, with currently 80 approved compounds and several hundred in clinical trials. Following the elucidation of the human kinome and development of robust PK expression systems and high-throughput assays, large volumes of PK/PKI data have been produced in industrial and academic environments, more so than for many other pharmaceutical targets. In addition, hundreds of X-ray structures of PKs and their complexes with PKIs have been reported. Substantial amounts of PK/PKI data have been made publicly available in part as a result of open science initiatives. PK drug discovery is further supported through the incorporation of data science approaches, including the development of various specialized databases and online resources. Compound and activity data wealth compared to other targets has also made PKs a focal point for the application of artificial intelligence (AI) in pharmaceutical research. Herein, we discuss the interplay of open and data science in PK drug discovery and review exemplary studies that have substantially contributed to its development, including kinome profiling or the analysis of PKI promiscuity versus selectivity. We also take a close look at how AI approaches are beginning to impact PK drug discovery in light of their increasing data orientation.
Collapse