1
|
García GA, Galick DS, Smith JM, Iyanga MM, Rivas MR, Eyono JNM, Phiri WP, Donfack OT, Smith DL, Guerra CA. The challenge of improving long-lasting insecticidal nets coverage on Bioko Island: using data to adapt distribution strategies. Malar J 2024; 23:324. [PMID: 39472916 PMCID: PMC11523664 DOI: 10.1186/s12936-024-05139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Since 2015, malaria vector control on Bioko Island has relied heavily upon long-lasting insecticidal nets (LLIN) to complement other interventions. Despite significant resources utilised, however, achieving and maintaining high coverage has been elusive. Here, core LLIN indicators were used to assess and redefine distribution strategies. METHODS LLIN indicators were estimated for Bioko Island between 2015 and 2022 using a 1x1 km grid of areas. The way these indicators interacted was used to critically assess coverage targets. Particular attention was paid to spatial heterogeneity and to differences between urban Malabo, the capital, and the rural periphery. RESULTS LLIN coverage according to all indicators varied substantially across areas, decreased significantly soon after mass distribution campaigns (MDC) and, with few exceptions, remained consistently below the recommended target. Use was strongly correlated with population access, particularly in Malabo. After a change in strategy in Malabo from MDC to fixed distribution points, use-to-access showed significant improvement, indicating those who obtained their nets from these sources were more likely to keep them and use them. Moreover, their use rates were significantly higher than those of whom sourced their nets elsewhere. CONCLUSIONS Striking a better balance between LLIN distribution efficiency and coverage represents a major challenge as LLIN retention and use rates remain low despite high access resulting from MDC. The cost-benefit of fixed distribution points in Malabo revealed significant advantages, offering a viable alternative for ensuring access to LLINs to those who use them.
Collapse
Affiliation(s)
- Guillermo A García
- MCD Global Health, 8403 Colesville Road, Suite 320, 20910, Silver Spring, USA.
| | - David S Galick
- MCD Global Health, Av. Parques de Africa, Malabo, Equatorial Guinea
| | - Jordan M Smith
- MCD Global Health, 8403 Colesville Road, Suite 320, 20910, Silver Spring, USA
| | | | - Matilde Riloha Rivas
- National Malaria Control Program, Ministry of Health and Social Welfare of Equatorial Guinea, Malabo, Equatorial Guinea
| | | | - Wonder P Phiri
- MCD Global Health, Av. Parques de Africa, Malabo, Equatorial Guinea
| | | | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Avenue, 98121, Seattle, USA
| | - Carlos A Guerra
- MCD Global Health, 8403 Colesville Road, Suite 320, 20910, Silver Spring, USA
| |
Collapse
|
2
|
Ooko M, Bela NR, Leonard M, Maye VON, Efiri PBE, Ekoko W, Rivas MR, Galick DS, DeBoer KR, Donfack OT, Guerra CA, García GA, Kleinschmidt I. Malaria burden and residual transmission: two thirds of mosquito bites may not be preventable with current vector control tools on Bioko Island, Equatorial Guinea. Int J Infect Dis 2024; 147:107197. [PMID: 39128600 DOI: 10.1016/j.ijid.2024.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVES This study assesses exposure to malaria vector mosquitos that is nonpreventable through use of nets, the contribution of outdoor and indoor biting towards residual vector exposure, and the risk factors for being bitten and for being infected with malaria parasites on Bioko Island, Equatorial Guinea. METHODS Human behavior and malaria infection data were collected from 13,735 randomly selected residents during cross-sectional surveys, concomitantly with entomological human landing catches, indoors and outdoors, in 20 locations on the Island. Self-reported time of going indoors, going to bed and whether using a net were analyzed to impute for each respondent the number of bites received outdoors and indoors during the night before the survey. RESULTS On average, each person received 2.7 (95% CI: 2.6-2.8) bites per night outdoors, 8.5 (8.3 to 8.7) bites indoors if not using a net, and 4.7 (4.5 to 4.8) bites indoors if using a net. Malaria infection was associated with more bites, regardless of whether received indoors or outdoors. Older age, male gender, not using a net, rural location, and going indoors later increased the risk of being bitten. The proportion of bites not averted by using a net was estimated as 66% (61 to 71). CONCLUSIONS A large proportion of biting, mostly indoors, may not be preventable by bednets. Tools targeting indoor biting should be prioritized in Bioko. Novel vector control tools are urgently needed to reduce overall exposure to mosquito bites.
Collapse
Affiliation(s)
- Michael Ooko
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | | | | | | - Matilde Riloha Rivas
- National Malaria Control Programme, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | | | | | | | | | | | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Hergott DEB, Guerra CA, García GA, Mba Eyono JN, Donfack OT, Iyanga MM, Nguema Avue RM, Abeso Nsegue CN, Ondo Mifumu TA, Rivas MR, Phiri WP, Murphy SC, Guthrie BL, Smith DL, Balkus JE. Impact of six-month COVID-19 travel moratorium on Plasmodium falciparum prevalence on Bioko Island, Equatorial Guinea. Nat Commun 2024; 15:8285. [PMID: 39333562 PMCID: PMC11436818 DOI: 10.1038/s41467-024-52638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Importation of malaria infections is a suspected driver of sustained malaria prevalence on areas of Bioko Island, Equatorial Guinea. Quantifying the impact of imported infections is difficult because of the dynamic nature of the disease and complexity of designing a randomized trial. We leverage a six-month travel moratorium in and out of Bioko Island during the initial COVID-19 pandemic response to evaluate the contribution of imported infections to malaria prevalence on Bioko Island. Using a difference in differences design and data from island wide household surveys conducted before (2019) and after (2020) the travel moratorium, we compare the change in prevalence between areas of low historical travel to those with high historical travel. Here, we report that in the absence of a travel moratorium, the prevalence of infection in high travel areas was expected to be 9% higher than observed, highlighting the importance of control measures that target imported infections.
Collapse
Affiliation(s)
- Dianna E B Hergott
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA.
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA.
| | - Carlos A Guerra
- MCD Global Health, Bioko Island Malaria Elimination Project, Silver Spring, Maryland, USA
| | - Guillermo A García
- MCD Global Health, Bioko Island Malaria Elimination Project, Silver Spring, Maryland, USA
| | | | - Olivier T Donfack
- MCD Global Health, Bioko Island Malaria Elimination Project, Malabo, Equatorial Guinea
| | - Marcos Mbulito Iyanga
- MCD Global Health, Bioko Island Malaria Elimination Project, Malabo, Equatorial Guinea
| | | | | | | | - Matilde Riloha Rivas
- National Malaria Control Program, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Wonder P Phiri
- MCD Global Health, Bioko Island Malaria Elimination Project, Malabo, Equatorial Guinea
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| | - Brandon L Guthrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Global Health, School of Public Health, University of Washington, Seattle, Washington, USA
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
- Department of Health Metrics Science, University of Washington, Seattle, Washington, USA
| | - Jennifer E Balkus
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Public Health-Seattle & King County, Seattle, Washington, USA
| |
Collapse
|
4
|
Galick DS, Donfack OT, Mifumu TAO, Onvogo CNO, Dougan TB, Mikue MIAA, Nguema GE, Eribo CO, Euka MMB, Marone Martin KP, Phiri WP, Guerra CA, García GA. Adapting malaria indicator surveys to investigate treatment adherence: a pilot study on Bioko Island, Equatorial Guinea. Malar J 2024; 23:244. [PMID: 39138464 PMCID: PMC11323597 DOI: 10.1186/s12936-024-05057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Adherence to anti-malarial treatment regimens is an important aspect of understanding and improving the impact of malaria case management. However, both adherence to artemisinin-based combination therapy (ACT) and the factors driving it vary widely. While many other evaluation activities have been conducted on Bioko Island, until now adherence to anti-malarial treatments, and in particular ACT has not been evaluated. METHODS The implementation of a malaria indicator survey (MIS) conducted on Bioko in 2023 was leveraged to evaluate adherence to ACT provided to individuals testing positive following the survey. A follow-up team visited the targeted households, physically observed treatment blisters where possible, and provided messaging to household members on the importance of adhering to the treatment guidelines to household members. The team used survey data from the targeted households to make messaging as relevant to the household's particular context as possible. RESULTS Overall ACT adherence on Bioko Island was low, around 50%, and this varied demographically and geographically. Some of the highest transmission areas had exceptionally low adherence, but no systematic relationship between proper adherence and Plasmodium falciparum prevalence was detected. Estimates of adherence from follow-up visits were much lower than survey-based estimates in the same households (52.5% versus 87.1%), suggesting that lack of proper adherence may be a much larger issue on Bioko Island than previously thought. CONCLUSION Representative surveys can be easily adapted to provide empirical estimates of adherence to anti-malarial treatments, complementary to survey-based and health facility-based estimates. The large discrepancy between adherence as measured in this study and survey-based estimates on Bioko Island suggests a health facility-based study to quantify adherence among the population receiving treatment for symptomatic malaria may be necessary.
Collapse
|
5
|
Ochomo E, Rund SSC, Mthawanji RS, Antonio-Nkondjio C, Machani M, Samake S, Wolie RZ, Nsango S, Lown LA, Matoke-Muhia D, Kamau L, Lukyamuzi E, Njeri J, Chabi J, Akrofi OO, Ntege C, Mero V, Mwalimu C, Kiware S, Bilgo E, Traoré MM, Afrane Y, Hakizimana E, Muleba M, Orefuwa E, Chaki P, Juma EO. Mosquito control by abatement programmes in the United States: perspectives and lessons for countries in sub-Saharan Africa. Malar J 2024; 23:8. [PMID: 38178145 PMCID: PMC10768238 DOI: 10.1186/s12936-023-04829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA.
Collapse
Affiliation(s)
- Eric Ochomo
- Entomology Department, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
- Vector Control Products Unit, Researchworld Limited, Kisumu, Kenya.
| | | | - Rosheen S Mthawanji
- Vector Biology Group, Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination Pour la lutte contre les Endémies en Afrique centrale (OCEAC), Yaounde, Cameroon
| | - Maxwell Machani
- Entomology Department, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Rosine Z Wolie
- Vector Control Product Evaluation Centre - Institut Pierre Richet (VCPEC-IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Unité de Formation et de Recherche des Sciences de la Nature, Université Nangui Abrogoua, Abdijan, Côte d'Ivoire
| | - Sandrine Nsango
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Centre Pasteur in Cameroon, Yaounde, Cameroon
| | | | - Damaris Matoke-Muhia
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edward Lukyamuzi
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | - Jane Njeri
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | | | | | - Charles Ntege
- National Malaria Control Division Ministry of Health, Kampala, Uganda
| | - Victor Mero
- Ifakara Health Institute (IHI), Dar es Salaam, Tanzania
| | | | - Samson Kiware
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
- Ifakara Health Institute (IHI), Dar es Salaam, Tanzania
| | - Etienne Bilgo
- Institut de Recherche en Sciences de la Sante (IRSS) Direction regionale de l'Ouest, Bobo Dioulasso, Burkina Faso
| | - Mohamed Moumine Traoré
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Yaw Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Hakizimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Ministry of Health, Kigali, Rwanda
- Pan-African Mosquito Control Organization (PAMCO), Rwanda Chapter, Kigali, Rwanda
| | | | - Emma Orefuwa
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | - Prosper Chaki
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | - Elijah Omondi Juma
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| |
Collapse
|
6
|
DeBoer KR, Vaz LM, Ondo Mfumu TA, Nlang JAM, Ondo L, Riloha Rivas M, Incardona S, Pollock J, von Fricken ME, Mba Eyono JN, Donfack OT, Guerra CA, García GA. Assessing IRS performance in a gender-integrated vector control programme on Bioko Island, Equatorial Guinea, 2010-2021. Malar J 2023; 22:323. [PMID: 37880774 PMCID: PMC10599007 DOI: 10.1186/s12936-023-04755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a common vector control strategy in countries with high malaria burden. Historically, social norms have prevented women from working in IRS programmes. The Bioko Island Malaria Elimination Project has actively sought to reduce gender inequality in malaria control operations for many years by promoting women's participation in IRS. METHODS This study investigated the progress of female engagement and compared spray productivity by gender from 2010 to 2021, using inferential tests and multivariable regression. Spray productivity was measured by rooms sprayed by spray operator per day (RSOD), houses sprayed by spray operator per day (HSOD), and the daily productivity ratio (DPR), defined as the ratio of RSOD to HSOD, which standardized productivity by house size. RESULTS The percentage of women participating in IRS has increased over time. The difference in DPR comparing male and female spray operators was only statistically significant (p < 0.05) for two rounds, where the value was higher for women compared to men. Regression analyses showed marginal, significant differences in DPR between men and women, but beta coefficients were extremely small and thus not indicative of a measurable effect of gender on operational performance. CONCLUSIONS The quantitative analyses of spray productivity are counter to stigmatizing beliefs that women are less capable than male counterparts during IRS spray rounds. The findings from this research support the participation of women in IRS campaigns, and a renewed effort to implement equitable policies and practices that intentionally engage women in vector control activities.
Collapse
Affiliation(s)
| | | | - Teresa Ayingono Ondo Mfumu
- MCD Global Health, Malabo, Equatorial Guinea
- Ministry of Health and Social Welfare, National Malaria Control Programme, Malabo, Equatorial Guinea
| | | | - Lucas Ondo
- MCD Global Health, Malabo, Equatorial Guinea
| | - Matilde Riloha Rivas
- Ministry of Health and Social Welfare, National Malaria Control Programme, Malabo, Equatorial Guinea
| | | | | | - Michael E von Fricken
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
7
|
García GA, Janko M, Hergott DEB, Donfack OT, Smith JM, Mba Eyono JN, DeBoer KR, Nguema Avue RM, Phiri WP, Aldrich EM, Schwabe C, Stabler TC, Rivas MR, Cameron E, Guerra CA, Cook J, Kleinschmidt I, Bradley J. Identifying individual, household and environmental risk factors for malaria infection on Bioko Island to inform interventions. Malar J 2023; 22:72. [PMID: 36859263 PMCID: PMC9979414 DOI: 10.1186/s12936-023-04504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Since 2004, malaria transmission on Bioko Island has declined significantly as a result of the scaling-up of control interventions. The aim of eliminating malaria from the Island remains elusive, however, underscoring the need to adapt control to the local context. Understanding the factors driving the risk of malaria infection is critical to inform optimal suits of interventions in this adaptive approach. METHODS This study used individual and household-level data from the 2015 and 2018 annual malaria indicator surveys on Bioko Island, as well as remotely-sensed environmental data in multilevel logistic regression models to quantify the odds of malaria infection. The analyses were stratified by urban and rural settings and by survey year. RESULTS Malaria prevalence was higher in 10-14-year-old children and similar between female and male individuals. After adjusting for demographic factors and other covariates, many of the variables investigated showed no significant association with malaria infection. The factor most strongly associated was history of travel to mainland Equatorial Guinea (mEG), which increased the odds significantly both in urban and rural settings (people who travelled had 4 times the odds of infection). Sleeping under a long-lasting insecticidal net decreased significantly the odds of malaria across urban and rural settings and survey years (net users had around 30% less odds of infection), highlighting their contribution to malaria control on the Island. Improved housing conditions indicated some protection, though this was not consistent across settings and survey year. CONCLUSIONS Malaria risk on Bioko Island is heterogeneous and determined by a combination of factors interacting with local mosquito ecology. These interactions grant further investigation in order to better adapt control according to need. The single most important risk factor identified was travel to mEG, in line with previous investigations, and represents a great challenge for the success of malaria control on the Island.
Collapse
Affiliation(s)
| | - Mark Janko
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Dianna E B Hergott
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | - Wonder P Phiri
- MCD Global Health, Bioko Island, Malabo, Equatorial Guinea
| | | | | | - Thomas C Stabler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matilde Riloha Rivas
- Equatorial Guinea Ministry of Health and Social Welfare, Bioko Island, Malabo, Equatorial Guinea
| | - Ewan Cameron
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| | | | - Jackie Cook
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
- School of Pathology, Faculty of Health Science, Wits Institute for Malaria Research, University of Witwatersrand, Johannesburg, South Africa
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|