1
|
Fuentes R, Marlow FL, Abrams EW, Zhang H, Kobayashi M, Gupta T, Kapp LD, DiNardo Z, Heller R, Cisternas R, García-Castro P, Segovia-Miranda F, Montecinos-Franjola F, Vought W, Vejnar CE, Giraldez AJ, Mullins MC. Maternal regulation of the vertebrate oocyte-to-embryo transition. PLoS Genet 2024; 20:e1011343. [PMID: 39052672 DOI: 10.1371/journal.pgen.1011343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Maternally-loaded factors in the egg accumulate during oogenesis and are essential for the acquisition of oocyte and egg developmental competence to ensure the production of viable embryos. However, their molecular nature and functional importance remain poorly understood. Here, we present a collection of 9 recessive maternal-effect mutants identified in a zebrafish forward genetic screen that reveal unique molecular insights into the mechanisms controlling the vertebrate oocyte-to-embryo transition. Four genes, over easy, p33bjta, poached and black caviar, were found to control initial steps in yolk globule sizing and protein cleavage during oocyte maturation that act independently of nuclear maturation. The krang, kazukuram, p28tabj, and spotty genes play distinct roles in egg activation, including cortical granule biology, cytoplasmic segregation, the regulation of microtubule organizing center assembly and microtubule nucleation, and establishing the basic body plan. Furthermore, we cloned two of the mutant genes, identifying the over easy gene as a subunit of the Adaptor Protein complex 5, Ap5m1, which implicates it in regulating intracellular trafficking and yolk vesicle formation. The novel maternal protein Krang/Kiaa0513, highly conserved in metazoans, was discovered and linked to the function of cortical granules during egg activation. These mutant genes represent novel genetic entry points to decipher the molecular mechanisms functioning in the oocyte-to-embryo transition, fertility, and human disease. Additionally, our genetic adult screen not only contributes to the existing knowledge in the field but also sets the basis for future investigations. Thus, the identified maternal genes represent key players in the coordination and execution of events prior to fertilization.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Florence L Marlow
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine Mount Sinai, New York, New York, United States of America
| | - Elliott W Abrams
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Purchase College, State University of New York, Purchase, New York, United States of America
| | - Hong Zhang
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Tripti Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lee D Kapp
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zachary DiNardo
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ronald Heller
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ruth Cisternas
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Priscila García-Castro
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fabián Segovia-Miranda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Montecinos-Franjola
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, Maryland, United States of America
| | - William Vought
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Damage-Induced Mutation Clustering in Gram-Positive Bacteria: Preliminary Data. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenomenon of a nonrandom distribution of mutations in a genome has been observed for many years. In fact, recent findings have indicated the presence of mutation clusters in different biological systems, including chemically treated yeast, transgenic mice, and human cancer cells. Until now, an asymmetrical distribution of mutations was only described in a single bacterial species. Here, we used ethyl methanesulfonate mutagenesis and a whole-genome sequencing approach to determine if this phenomenon is universal and not confined to Gram-negative bacteria. The Gram-positive bacterium Bacillus subtilis was selected for ethyl methanesulfonate treatment, followed by the next-generation sequencing of several mutagenized B. subtilis genomes. A nonrandom distribution of mutations was observed. This pilot study with a limited number of sequenced clones may indicate not only the universality of the phenomenon of mutation clusters but also the effectiveness of the use of a whole-genome sequencing approach in studying this phenomenon.
Collapse
|
3
|
Su Y, Huang Q, Wang Z, Wang T. High genetic and epigenetic variation of transposable elements: Potential drivers to rapid adaptive evolution for the noxious invasive weed Mikania micrantha. Ecol Evol 2021; 11:13501-13517. [PMID: 34646486 PMCID: PMC8495827 DOI: 10.1002/ece3.8075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE-based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty-five transposon-inserted genes were sequenced and homology-based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE-associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Qiqi Huang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
4
|
Bleykasten-Grosshans C, Fabrizio R, Friedrich A, Schacherer J. Species-wide transposable element repertoires retrace the evolutionary history of the Saccharomyces cerevisiae host. Mol Biol Evol 2021; 38:4334-4345. [PMID: 34115140 PMCID: PMC8476168 DOI: 10.1093/molbev/msab171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transposable elements (TE) are an important source of genetic variation with a dynamic and content that greatly differ in a wide range of species. The origin of the intraspecific content variation is not always clear and little is known about the precise nature of it. Here, we surveyed the species-wide content of the Ty LTR-retrotransposons in a broad collection of 1,011 Saccharomyces cerevisiae natural isolates to understand what can stand behind the variation of the repertoire that is the type and number of Ty elements. We have compiled an exhaustive catalog of all the TE sequence variants present in the S. cerevisiae species by identifying a large set of new sequence variants. The characterization of the TE content in each isolate clearly highlighted that each subpopulation exhibits a unique and specific repertoire, retracing the evolutionary history of the species. Most interestingly, we have shown that ancient interspecific hybridization events had a major impact in the birth of new sequence variants and therefore in the shaping of the TE repertoires. We also investigated the transpositional activity of these elements in a large set of natural isolates, and we found a broad variability related to the level of ploidy as well as the genetic background. Overall, our results pointed out that the evolution of the Ty content is deeply impacted by clade-specific events such as introgressions and therefore follows the population structure. In addition, our study lays the foundation for future investigations to better understand the transpositional regulation and more broadly the TE–host interactions.
Collapse
Affiliation(s)
| | - Romeo Fabrizio
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF)
| |
Collapse
|
5
|
Laricchia KM, Zdraljevic S, Cook DE, Andersen EC. Natural Variation in the Distribution and Abundance of Transposable Elements Across the Caenorhabditis elegans Species. Mol Biol Evol 2017; 34:2187-2202. [PMID: 28486636 PMCID: PMC5850821 DOI: 10.1093/molbev/msx155] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transposons are mobile DNA elements that generate both adaptive and deleterious phenotypic variation thereby driving genome evolution. For these reasons, genomes have mechanisms to regulate transposable element (TE) activity. Approximately 12–16% of the Caenorhabditis elegans genome is composed of TEs, of which the majority are likely inactive. However, most studies of TE activity have been conducted in the laboratory strain N2, which limits our knowledge of the effects of these mobile elements across natural populations. We analyzed the distribution and abundance of TEs in 208 wild C. elegans strains to better understand how transposons contribute to variation in natural populations. We identified 3,397 TEs as compared with the reference strain, of which 2,771 are novel insertions and 241 are TEs that have been excised in at least one wild strain. Likely because of their hypothesized deleterious effects, we find that TEs are found at low allele frequencies throughout the population, and we predict functional effects of TE insertions. The abundances of TEs reflect their activities, and these data allowed us to perform both genome-wide association mappings and rare variant correlations to reveal several candidate genes that impact TE regulation, including small regulatory piwi-interacting RNAs and chromatin factors. Because TE variation in natural populations could underlie phenotypic variation for organismal and behavioral traits, the transposons that we identified and their regulatory mechanisms can be used in future studies to explore the genomics of complex traits and evolutionary changes.
Collapse
Affiliation(s)
- K M Laricchia
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - S Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL
| | - D E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL
| | - E C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL.,Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL
| |
Collapse
|
6
|
Liu S, Kandoth PK, Lakhssassi N, Kang J, Colantonio V, Heinz R, Yeckel G, Zhou Z, Bekal S, Dapprich J, Rotter B, Cianzio S, Mitchum MG, Meksem K. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat Commun 2017; 8:14822. [PMID: 28345654 PMCID: PMC5378975 DOI: 10.1038/ncomms14822] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
Abstract
Two types of resistant soybean (Glycine max (L.) Merr.) sources are widely used against soybean cyst nematode (SCN, Heterodera glycines Ichinohe). These include Peking-type soybean, whose resistance requires both the rhg1-a and Rhg4 alleles, and PI 88788-type soybean, whose resistance requires only the rhg1-b allele. Multiple copy number of PI 88788-type GmSNAP18, GmAAT, and GmWI12 in one genomic segment simultaneously contribute to rhg1-b resistance. Using an integrated set of genetic and genomic approaches, we demonstrate that the rhg1-a Peking-type GmSNAP18 is sufficient for resistance to SCN in combination with Rhg4. The two SNAPs (soluble NSF attachment proteins) differ by only five amino acids. Our findings suggest that Peking-type GmSNAP18 is performing a different role in SCN resistance than PI 88788-type GmSNAP18. As such, this is an example of a pathogen resistance gene that has evolved to underlie two types of resistance, yet ensure the same function within a single plant species.
Collapse
Affiliation(s)
- Shiming Liu
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive RM176, Carbondale, Illinois 62901, USA
| | - Pramod K. Kandoth
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive RM176, Carbondale, Illinois 62901, USA
| | - Jingwen Kang
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive RM176, Carbondale, Illinois 62901, USA
| | - Robert Heinz
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Greg Yeckel
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive RM176, Carbondale, Illinois 62901, USA
| | - Sadia Bekal
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive RM176, Carbondale, Illinois 62901, USA
| | | | - Bjorn Rotter
- GenXPro-GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Silvia Cianzio
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive RM176, Carbondale, Illinois 62901, USA
| |
Collapse
|
7
|
Abstract
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks.
Collapse
Affiliation(s)
- David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Jungeui Hong
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
8
|
Zhou K, Kuo A, Grigoriev IV. Reverse transcriptase and intron number evolution. Stem Cell Investig 2014; 1:17. [PMID: 27358863 DOI: 10.3978/j.issn.2306-9759.2014.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/04/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. METHODS Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. RESULTS The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota's ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss. There was a down trend of EPG from more conserved to less conserved genes. Moreover, species-specific genes have higher exon-densities, shorter exons, and longer introns when compared to genes conserved at the phylum level. However, intron length in species-specific genes became shorter than that of genes conserved in all species after genomes experiencing drastic intron loss. The estimated EPG from the most frequent exon length is more than double that from the RIL method. CONCLUSIONS This implies significant intron loss during the very early period of eukaryotic evolution. De novo gene-birth contributes to shorter exons, longer introns, and higher exon-density in species-specific genes relative to conserved genes.
Collapse
Affiliation(s)
- Kemin Zhou
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Alan Kuo
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
9
|
Parts L. Genome-wide mapping of cellular traits using yeast. Yeast 2014; 31:197-205. [PMID: 24700360 DOI: 10.1002/yea.3010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/09/2022] Open
Abstract
Yeast has long enjoyed superiority as a genetic model because of its short generation time and ease of generating alleles for genetic analysis. However, recent developments of guided nucleases for genome editing in higher eukaryotes, and funding pressures for translational findings, force all model organism communities to reaffirm and rearticulate the advantages of their chosen creature. Here I examine the utility of budding yeast for understanding the genetic basis of cellular traits, using natural variation as well as classical genetic perturbations, and its future prospects compared to undertaking the work in human cell lines. Will yeast remain central, or will it join the likes of phage as an early model that is no longer widely used to answer the pressing questions?
Collapse
Affiliation(s)
- Leopold Parts
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| |
Collapse
|
10
|
Meiotic recombination initiation in and around retrotransposable elements in Saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003732. [PMID: 24009525 PMCID: PMC3757047 DOI: 10.1371/journal.pgen.1003732] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
Meiotic recombination is initiated by large numbers of developmentally programmed DNA double-strand breaks (DSBs), ranging from dozens to hundreds per cell depending on the organism. DSBs formed in single-copy sequences provoke recombination between allelic positions on homologous chromosomes, but DSBs can also form in and near repetitive elements such as retrotransposons. When they do, they create a risk for deleterious genome rearrangements in the germ line via recombination between non-allelic repeats. A prior study in budding yeast demonstrated that insertion of a Ty retrotransposon into a DSB hotspot can suppress meiotic break formation, but properties of Ty elements in their most common physiological contexts have not been addressed. Here we compile a comprehensive, high resolution map of all Ty elements in the rapidly and efficiently sporulating S. cerevisiae strain SK1 and examine DSB formation in and near these endogenous retrotransposable elements. SK1 has 30 Tys, all but one distinct from the 50 Tys in S288C, the source strain for the yeast reference genome. From whole-genome DSB maps and direct molecular assays, we find that DSB levels and chromatin structure within and near Tys vary widely between different elements and that local DSB suppression is not a universal feature of Ty presence. Surprisingly, deletion of two Ty elements weakened adjacent DSB hotspots, revealing that at least some Ty insertions promote rather than suppress nearby DSB formation. Given high strain-to-strain variability in Ty location and the high aggregate burden of Ty-proximal DSBs, we propose that meiotic recombination is an important component of host-Ty interactions and that Tys play critical roles in genome instability and evolution in both inbred and outcrossed sexual cycles. Meiosis is the cell division that generates gametes for sexual reproduction. During meiosis, homologous recombination occurs frequently, initiated by DNA double-strand breaks (DSBs) made by Spo11. Meiotic recombination usually occurs between sequences at allelic positions on homologous chromosomes, but a DSB within a repetitive element (e.g., a retrotransposon) can provoke recombination between non-allelic sequences instead. This can create genomic havoc in the form of gross chromosomal rearrangements, which underlie many recurrent human mutations. It has been thought that cells minimize this risk by disfavoring DSB formation in repetitive elements, partly based on studies showing that presence of a Ty element (a yeast retrotransposon) can suppress nearby DSB activity. Whether this is a general feature of Tys has not been evaluated, however. Here, we generated a comprehensive map of Tys in the rapidly sporulating SK1 strain and examined DSB formation in and around all of these endogenous Ty elements. Remarkably, most natural Ty elements do not appear to suppress DSB formation nearby, and at least some of them increase local DSBs. These findings have implications for understanding the relationship between host and transposon, and for understanding the impact of retrotransposons on genome stability and evolution during sexual reproduction.
Collapse
|
11
|
Abstract
Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast.
Collapse
|
12
|
Bleykasten-Grosshans C, Friedrich A, Schacherer J. Genome-wide analysis of intraspecific transposon diversity in yeast. BMC Genomics 2013; 14:399. [PMID: 23768249 PMCID: PMC4022208 DOI: 10.1186/1471-2164-14-399] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/06/2013] [Indexed: 02/02/2023] Open
Abstract
Background In the model organism Saccharomyces cerevisiae, the transposable elements (TEs) consist of LTR (Long Terminal Repeat) retrotransposons called Ty elements belonging to five families, Ty1 to Ty5. They take the form of either full-length coding elements or non-coding solo-LTRs corresponding to remnants of former transposition events. Although the biological features of Ty elements have been studied in detail in S. cerevisiae and the Ty content of the reference strain (S288c) was accurately annotated, the Ty-related intra-specific diversity has not been closely investigated so far. Results In this study, we investigated the Ty contents of 41 available genomes of isolated S. cerevisiae strains of diverse geographical and ecological origins. The strains were compared in terms of the number of Ty copies, the content of the potential transpositionally active elements and the genomic insertion maps. The strain repertoires were also investigated in the closely related Ty1 and Ty2 families and subfamilies. Conclusions This is the first genome-wide analysis of the diversity associated to the Ty elements, carried out for a large set of S. cerevisiae strains. The results of the present analyses suggest that the current Ty-related polymorphism has resulted from multiple causes such as differences between strains, between Ty families and over time, in the recent transpositional activity of Ty elements. Some new Ty1 variants were also identified, and we have established that Ty1 variants have different patterns of distribution among strains, which further contributes to the strain diversity.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS, Department of Genetics, Genomics and Microbiology, University of Strasbourg, UMR 7156, 28, rue Goethe, Strasbourg, 67083, France.
| | | | | |
Collapse
|
13
|
Menconi G, Battaglia G, Grossi R, Pisanti N, Marangoni R. Mobilomics in Saccharomyces cerevisiae strains. BMC Bioinformatics 2013; 14:102. [PMID: 23514613 PMCID: PMC3684551 DOI: 10.1186/1471-2105-14-102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/11/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus-like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. RESULTS Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non-conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra-specific comparison are sharp markers of inter-specific evolution: indeed, many events of non-conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. CONCLUSIONS The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to infer MGEs also for low coverage genomes with unresolved bases, where traditional approaches are largely ineffective.
Collapse
Affiliation(s)
- Giulia Menconi
- Istituto Nazionale di Alta Matematica, Città Universitaria, Roma, Italia
| | | | | | | | | |
Collapse
|
14
|
Xing J, Witherspoon DJ, Jorde LB. Mobile element biology: new possibilities with high-throughput sequencing. Trends Genet 2013; 29:280-9. [PMID: 23312846 DOI: 10.1016/j.tig.2012.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 12/29/2022]
Abstract
Mobile elements comprise more than half of the human genome, but until recently their large-scale detection was time consuming and challenging. With the development of new high-throughput sequencing (HTS) technologies, the complete spectrum of mobile element variation in humans can now be identified and analyzed. Thousands of new mobile element insertions (MEIs) have been discovered, yielding new insights into mobile element biology, evolution, and genomic variation. Here, we review several high-throughput methods, with an emphasis on techniques that specifically target MEIs in humans. We highlight recent applications of these methods in evolutionary studies and in the analysis of somatic alterations in human normal and tumor tissues.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Genetics, Human Genetic Institute of New Jersey, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
15
|
Carr M, Bensasson D, Bergman CM. Evolutionary genomics of transposable elements in Saccharomyces cerevisiae. PLoS One 2012; 7:e50978. [PMID: 23226439 PMCID: PMC3511429 DOI: 10.1371/journal.pone.0050978] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is one of the premier model systems for studying the genomics and evolution of transposable elements. The availability of the S. cerevisiae genome led to unprecedented insights into its five known transposable element families (the LTR retrotransposons Ty1-Ty5) in the years shortly after its completion. However, subsequent advances in bioinformatics tools for analysing transposable elements and the recent availability of genome sequences for multiple strains and species of yeast motivates new investigations into Ty evolution in S. cerevisiae. Here we provide a comprehensive phylogenetic and population genetic analysis of all Ty families in S. cerevisiae based on a systematic re-annotation of Ty elements in the S288c reference genome. We show that previous annotation efforts have underestimated the total copy number of Ty elements for all known families. In addition, we identify a new family of Ty3-like elements related to the S. paradoxus Ty3p which is composed entirely of degenerate solo LTRs. Phylogenetic analyses of LTR sequences identified three families with short-branch, recently active clades nested among long branch, inactive insertions (Ty1, Ty3, Ty4), one family with essentially all recently active elements (Ty2) and two families with only inactive elements (Ty3p and Ty5). Population genomic data from 38 additional strains of S. cerevisiae show that the majority of Ty insertions in the S288c reference genome are fixed in the species, with insertions in active clades being predominantly polymorphic and insertions in inactive clades being predominantly fixed. Finally, we use comparative genomic data to provide evidence that the Ty2 and Ty3p families have arisen in the S. cerevisiae genome by horizontal transfer. Our results demonstrate that the genome of a single individual contains important information about the state of TE population dynamics within a species and suggest that horizontal transfer may play an important role in shaping the genomic diversity of transposable elements in unicellular eukaryotes.
Collapse
Affiliation(s)
- Martin Carr
- School of Applied Sciences, University of Huddersfield, West Yorkshire, UK.
| | | | | |
Collapse
|
16
|
New prediction model for probe specificity in an allele-specific extension reaction for haplotype-specific extraction (HSE) of Y chromosome mixtures. PLoS One 2012; 7:e45955. [PMID: 23049901 PMCID: PMC3457965 DOI: 10.1371/journal.pone.0045955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/23/2012] [Indexed: 01/30/2023] Open
Abstract
Allele-specific extension reactions (ASERs) use 3′ terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3′ terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3′ terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%.
Collapse
|
17
|
Cardelli M, Marchegiani F, Provinciali M. Alu insertion profiling: array-based methods to detect Alu insertions in the human genome. Genomics 2012; 99:340-6. [PMID: 22495107 DOI: 10.1016/j.ygeno.2012.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/15/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
The analysis of the genetic variability associated to Alu sequences was hampered by the absence of genome-wide methodologies able to efficiently detect new polymorphisms/mutations among these repetitive elements. Here we describe two Alu insertion profiling (AIP) methods based on the hybridization of Alu-flanking genomic fragments on tiling microarrays. Protocols are designed to preferentially detect active Alu subfamilies. We tested AIP methods by analyzing chromosomes 1 and 6 in two genomic samples. In genomic regions covered by array-features, with a sensitivity of 2% (AIP1) -4% (AIP2) and 5% (AIP1) -8% (AIP2) for the old J and S Alu lineages respectively, we obtained a sensitivity of 67% (AIP1) -90% (AIP2) for the young Ya subfamily. Among the loci showing sample-to-sample differences, 5 (AIP1) -8 (AIP2) were associated to known Alu polymorphisms. Moreover, we were able to confirm by PCR and DNA sequencing 4 new intragenic Alu elements, polymorphic in 10 additional individuals.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, INRCA-IRCCS, Ancona, Italy
| | | | | |
Collapse
|
18
|
Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR. Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanol−A Review. Appl Biochem Biotechnol 2012; 166:1908-26. [DOI: 10.1007/s12010-012-9619-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
19
|
Abstract
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
Collapse
|
20
|
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011; 12:187-215. [PMID: 21801021 DOI: 10.1146/annurev-genom-082509-141802] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Human Genetics, University of MIchigan Medical School, Ann Arbor, Michigan 48109-5618, USA.
| | | | | | | |
Collapse
|
21
|
Liti G, Schacherer J. The rise of yeast population genomics. C R Biol 2011; 334:612-9. [DOI: 10.1016/j.crvi.2011.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/23/2011] [Indexed: 01/16/2023]
|
22
|
Bleykasten-Grosshans C, Neuvéglise C. Transposable elements in yeasts. C R Biol 2011; 334:679-86. [PMID: 21819950 DOI: 10.1016/j.crvi.2011.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022]
Abstract
With the development of new sequencing technologies in the past decade, yeast genomes have been extensively sequenced and their structures investigated. Transposable elements (TEs) are ubiquitous in eukaryotes and constitute a limited part of yeast genomes. However, due to their ability to move in genomes and generate dispersed repeated sequences, they contribute to modeling yeast genomes and thereby induce plasticity. This review assesses the TE contents of yeast genomes investigated so far. Their diversity and abundance at the inter- and intraspecific levels are presented, and their effects on gene expression and genome stability is considered. Recent results concerning TE-host interactions are also analyzed.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS UMR 7156, Laboratoire Génétique Moléculaire Génomique Microbiologie, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg cedex, France.
| | | |
Collapse
|
23
|
Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 2011; 7:509. [PMID: 21734648 PMCID: PMC3159978 DOI: 10.1038/msb.2011.42] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/12/2011] [Indexed: 12/25/2022] Open
Abstract
Advances in DNA sequencing, high-throughput technologies, and genetic manipulation systems have enabled empirical studies of the molecular and genomic bases of adaptive evolution. This review discusses key insights learned from direct observation of the evolution process. Laboratory evolution studies provide fundamental biological insight through direct observation of the evolution process. They not only enable testing of evolutionary theory and principles, but also have applications to metabolic engineering and human health. Genome-scale tools are revolutionizing studies of laboratory evolution by providing complete determination of the genetic basis of adaptation and the changes in the organism's gene expression state. Here, we review studies centered on four central themes of laboratory evolution studies: (1) the genetic basis of adaptation; (2) the importance of mutations to genes that encode regulatory hubs; (3) the view of adaptive evolution as an optimization process; and (4) the dynamics with which laboratory populations evolve.
Collapse
|
24
|
Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, Zhu X, Neale MJ, Jasin M, Socci ND, Hochwagen A, Keeney S. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 2011; 144:719-31. [PMID: 21376234 PMCID: PMC3063416 DOI: 10.1016/j.cell.2011.02.009] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/13/2011] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
Abstract
The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By sequencing these fragments, we uncover a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore how DSB distribution is influenced by large-scale chromosome structures, chromatin, transcription factors, and local sequence composition. Our analysis offers mechanistic insight into DSB formation and early processing steps, supporting the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We also discuss implications for evolutionary dynamics of recombination hot spots.
Collapse
Affiliation(s)
- Jing Pan
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Mariko Sasaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Ryan Kniewel
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Sam E. Tischfield
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Cornell University, New York, NY, USA
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Matthew J. Neale
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nicholas D. Socci
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Bleykasten-Grosshans C, Jung PP, Fritsch ES, Potier S, de Montigny J, Souciet JL. The Ty1 LTR-retrotransposon population in Saccharomyces cerevisiae genome: dynamics and sequence variations during mobility. FEMS Yeast Res 2011; 11:334-44. [DOI: 10.1111/j.1567-1364.2011.00721.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
26
|
Rothe J, Roewer L, Nagy M. Individual specific extraction of DNA from male mixtures--First evaluation studies. Forensic Sci Int Genet 2010; 5:117-21. [PMID: 21115416 DOI: 10.1016/j.fsigen.2010.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In forensic work, the interpretation of DNA profiles becomes complicated when samples contain more than one contributor because the simultaneous amplification of individual identification markers results in mixed profiles. To overcome this problem, we present haplotype-specific extraction (HSE) as a more straightforward method to analyze a DNA mixture. HSE has been developed to clarify ambiguous HLA alleles by separating diploid samples into their haploid components to facilitate HLA typing. We have started to establish new protocols and strategies to adapt HSE for the separation of male DNA mixtures in forensic analysis. First results have shown an improved enrichment of male DNA from a single contributor. We have also evaluated a new, optimized buffer composition by testing different concentrations of its components. Improved separation of a male DNA mixture is detected using AmpFℓSTR(®) Yfiler short tandem repeat analysis.
Collapse
Affiliation(s)
- Jessica Rothe
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité- Campus Virchow-Klinikum, Augustenburger Platz 1, Forum 4, 13353 Berlin, Germany.
| | | | | |
Collapse
|
27
|
Gupta T, Marlow FL, Ferriola D, Mackiewicz K, Dapprich J, Monos D, Mullins MC. Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 2010; 6:e1001073. [PMID: 20808893 PMCID: PMC2924321 DOI: 10.1371/journal.pgen.1001073] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 07/15/2010] [Indexed: 11/23/2022] Open
Abstract
Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg. How the axes of the embryo are established is an important question in developmental biology. In many organisms, the axes of the embryo are established during oogenesis through the generation of a polarized egg. Very little is known regarding the mechanisms of polarity establishment and maintenance in vertebrate oocytes and eggs. We have identified a zebrafish mutant called magellan, which displays a defect in egg polarity. The gene disrupted in the magellan mutant encodes the cytoskeletal linker protein microtubule actin crosslinking factor 1 (macf1). In vertebrates, it can take years to identify the molecular nature of a mutation. We used a new technique to identify the magellan mutation, which allowed us to rapidly isolate genomic DNA linked to the mutation and sequence it. Our results describe an important new function for macf1 in polarizing the oocyte and egg and demonstrate the feasibility of this new technique for the efficient identification of mutations.
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Deborah Ferriola
- Generation Biotech, Lawrenceville, New Jersey, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Katarzyna Mackiewicz
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Johannes Dapprich
- Generation Biotech, Lawrenceville, New Jersey, United States of America
| | - Dimitri Monos
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Use of high throughput sequencing to observe genome dynamics at a single cell level. Proc Natl Acad Sci U S A 2009; 106:20830-5. [PMID: 19934054 DOI: 10.1073/pnas.0906681106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
With the development of high throughput sequencing technology, it becomes possible to directly analyze mutation distribution in a genome-wide fashion, dissociating mutation rate measurements from the traditional underlying assumptions. Here, we sequenced several genomes of Escherichia coli from colonies obtained after chemical mutagenesis and observed a strikingly nonrandom distribution of the induced mutations. These include long stretches of exclusively G to A or C to T transitions along the genome and orders of magnitude intra- and intergenomic differences in mutation density. Whereas most of these observations can be explained by the known features of enzymatic processes, the others could reflect stochasticity in the molecular processes at the single-cell level. Our results demonstrate how analysis of the molecular records left in the genomes of the descendants of an individual mutagenized cell allows for genome-scale observations of fixation and segregation of mutations, as well as recombination events, in the single genome of their progenitor.
Collapse
|
29
|
Faddah DA, Ganko EW, McCoach C, Pickrell JK, Hanlon SE, Mann FG, Mieczkowska JO, Jones CD, Lieb JD, Vision TJ. Systematic identification of balanced transposition polymorphisms in Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000502. [PMID: 19503594 PMCID: PMC2682701 DOI: 10.1371/journal.pgen.1000502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 05/04/2009] [Indexed: 01/22/2023] Open
Abstract
High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism. Balanced structural polymorphisms are differences in the relative arrangement of genomic features within species that do not affect DNA copy number. Little is known about their prevalence or importance because they are difficult to observe. Here, we present a novel methodology for systematically identifying such polymorphisms based on the idea that single-copy DNA that occupies different genomic locations in two parents will segregate independently during meiosis and will therefore reveal itself as a copy number difference among a fraction of progeny. Comparative hybridization reveals multiple balanced structural polymorphisms that involve changes to gene order in two strains of yeast; the results are independently validated using paired-end whole genome shotgun sequencing. The longest transposed segment we identify comprises 13.5 kb near the telomere of chromosome XV in the S288C reference strain and contains several annotated genes. We map the location of this polymorphism in the non-reference strain using genome-wide genotypic data, which also reveals an appreciable frequency of ectopic recombination among transposed segment pairs. The breakpoints of the remaining polymorphisms are localized by the paired-end sequence data. Our work provides proof-of-principle for a very general approach to systematically identify all balanced genomic polymorphisms in two different genotypes and is a starting point for understanding the frequency, evolutionary origins, and functional consequences of this seldom-studied class of genomic structural variation in eukaryotes.
Collapse
Affiliation(s)
- Dina A. Faddah
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric W. Ganko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline McCoach
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Joseph K. Pickrell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sean E. Hanlon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Frederick G. Mann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joanna O. Mieczkowska
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D. Lieb
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JDL); (TJV)
| | - Todd J. Vision
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JDL); (TJV)
| |
Collapse
|
30
|
Fritsch ES, Schacherer J, Bleykasten-Grosshans C, Souciet JL, Potier S, de Montigny J. Influence of genetic background on the occurrence of chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 2009; 10:99. [PMID: 19267901 PMCID: PMC2674068 DOI: 10.1186/1471-2164-10-99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 03/06/2009] [Indexed: 01/14/2023] Open
Abstract
Background Chromosomal rearrangements such as duplications and deletions are key factors in evolutionary processes because they promote genomic plasticity. Although the genetic variations in the Saccharomyces cerevisiae species have been well documented, there is little known to date about the impact of the genetic background on the appearance of rearrangements. Results Using the same genetic screening, the type of rearrangements and the mutation rates observed in the S288c S. cerevisiae strain were compared to previous findings obtained in the FL100 background. Transposon-associated rearrangements, a major chromosomal rearrangement event selected in FL100, were not detected in S288c. The mechanisms involved in the occurrence of deletions and duplications in the S288c strain were also tackled, using strains deleted for genes implicated in homologous recombination (HR) or non-homologous end joining (NHEJ). Our results indicate that an Yku80p-independent NHEJ pathway is involved in the occurrence of these rearrangements in the S288c background. Conclusion The comparison of two different S. cerevisiae strains, FL100 and S288c, allowed us to conclude that intra-species genomic variations have an important impact on the occurrence of chromosomal rearrangement and that this variability can partly be explained by differences in Ty1 retrotransposon activity.
Collapse
Affiliation(s)
- Emilie S Fritsch
- Laboratory of Molecular Genetics, Genomics and Microbiology, UMR7156, University of Strasbourg and CNRS, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
31
|
The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 2008; 4:e1000303. [PMID: 19079573 PMCID: PMC2586090 DOI: 10.1371/journal.pgen.1000303] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/07/2008] [Indexed: 01/07/2023] Open
Abstract
The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for ∼200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light on the function and regulation of individual metabolic pathways. Adaptive evolution is a central biological process that underlies diverse phenomena from the acquisition of antibiotic resistance by microbes to the evolution of niche specialization. Two unresolved questions regarding adaptive evolution are what types of genomic variation are associated with adaptation and how repeatable is the process. We evolved yeast populations for more than 200 generations in nutrient-limited chemostats. We find that the phenotype of adapted individuals, as measured using global gene expression, is much less variable in clones adapted to sulfate limitation than either glucose or phosphate limitation. We comprehensively analyzed the genomes of adapted clones and found that those adapted to sulfate limitation almost invariably carry amplifications of the gene encoding a sulfur transporter, but the mutations in individuals adapted to glucose and phosphate limitation are much more diverse. This parallelism holds true at the level of single-nucleotide mutations. Although there may be other paths to adapt to sulfate limitation, one path confers a much greater advantage than all others so it dominates. By contrast, there are a number of ways to adapt to glucose and phosphate limitation that confer similar advantages. We conclude that the reproducibility of evolution depends on the specific selective pressure experienced by the organism.
Collapse
|
32
|
Nagano AJ, Fukazawa M, Hayashi M, Ikeuchi M, Tsukaya H, Nishimura M, Hara-Nishimura I. AtMap1: a DNA microarray for genomic deletion mapping in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:1058-1065. [PMID: 18702675 DOI: 10.1111/j.1365-313x.2008.03656.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have designed a novel tiling array, AtMap1, for genomic deletion mapping. AtMap1 is a 60-mer oligonucleotide microarray consisting of 42 497 data probes designed from the genomic sequence of Arabidopsis thaliana Col-0. The average probe interval is 2.8 kb. The performance of the AtMap1 array was assessed using the deletion mutants mag2-2, rot3-1 and zig-2. Eight of the probes showed threefold lower signals in mag2-2 than Col-0. Seven of these probes were located in one region on chromosome 3. We considered these adjacent probes to represent one deletion. This deletion was consistent with a reported deleted region. The other probe was located near the end of chromosome 4. A newly identified deletion around the probe was confirmed by PCR. We also detected the responsible deletions for rot3-1 and zig-2. Thus we concluded that the AtMap1 array was sufficiently sensitive to identify a deletion without any a priori knowledge of the deletion. An analysis of the result of hybridization of Ler and previously reported polymorphism data revealed that the signal decrease tended to depend on the overlap size of sequence polymorphisms. Mutation mapping is time-consuming, laborious and costly. The AtMap1 array removes these limitations.
Collapse
Affiliation(s)
- Atsushi J Nagano
- Division of Biological Science, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Kvitek DJ, Will JL, Gasch AP. Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 2008; 4:e1000223. [PMID: 18927628 PMCID: PMC2562515 DOI: 10.1371/journal.pgen.1000223] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022] Open
Abstract
Interactions between an organism and its environment can significantly influence
phenotypic evolution. A first step toward understanding this process is to
characterize phenotypic diversity within and between populations. We explored
the phenotypic variation in stress sensitivity and genomic expression in a large
panel of Saccharomyces strains collected from diverse
environments. We measured the sensitivity of 52 strains to 14 environmental
conditions, compared genomic expression in 18 strains, and identified gene
copy-number variations in six of these isolates. Our results demonstrate a large
degree of phenotypic variation in stress sensitivity and gene expression.
Analysis of these datasets reveals relationships between strains from similar
niches, suggests common and unique features of yeast habitats, and implicates
genes whose variable expression is linked to stress resistance. Using a simple
metric to suggest cases of selection, we found that strains collected from oak
exudates are phenotypically more similar than expected based on their genetic
diversity, while sake and vineyard isolates display more diverse phenotypes than
expected under a neutral model. We also show that the laboratory strain S288c is
phenotypically distinct from all of the other strains studied here, in terms of
stress sensitivity, gene expression, Ty copy number, mitochondrial content, and
gene-dosage control. These results highlight the value of understanding the
genetic basis of phenotypic variation and raise caution about using laboratory
strains for comparative genomics. Much attention has been given to the ways in which organisms evolve new
phenotypes and the influence of the environment on this process. A major focus
of study is defining the genetic basis for phenotypes important for organismal
fitness. As a first step toward this goal, we surveyed phenotypic variation in
diverse yeast strains collected from different environments by characterizing
variations in stress resistance and genomic expression. We uncovered many
phenotypic differences across yeast strains, both in stress tolerance and gene
expression. The similarities and differences of the strains analyzed uncovered
phenotypes shared by strains that live in similar environments, suggesting
common features of yeast niches as well as mechanisms that different strains use
to thrive in those conditions. We provide evidence that some characteristics of
strains isolated from oak tree soil have been selected for, perhaps because of
the shared selective pressures imposed by their environment. One theme emerging
from our studies is that the laboratory strain of yeast, long used as a model
for yeast physiology and basic biology, is aberrant compared to all other
strains. This result raises caution about making general conclusions about yeast
biology based on a single strain with a specific genetic makeup.
Collapse
Affiliation(s)
- Daniel J. Kvitek
- Laboratory of Genetics, University of Wisconsin–Madison,
Madison, Wisconsin, United States of America
| | - Jessica L. Will
- Laboratory of Genetics, University of Wisconsin–Madison,
Madison, Wisconsin, United States of America
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin–Madison,
Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison,
Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
34
|
Mamedov IZ, Amosova AL, Fisunov GY, Lebedev YB. A new polymorphic retroelement database (PRED) for the human genome. Mol Biol 2008. [DOI: 10.1134/s0026893308040213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Dapprich J, Ferriola D, Magira EE, Kunkel M, Monos D. SNP-specific extraction of haplotype-resolved targeted genomic regions. Nucleic Acids Res 2008; 36:e94. [PMID: 18611953 PMCID: PMC2528194 DOI: 10.1093/nar/gkn345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The availability of genotyping platforms for comprehensive genetic analysis of complex traits has resulted in a plethora of studies reporting the association of specific single-nucleotide polymorphisms (SNPs) with common diseases or drug responses. However, detailed genetic analysis of these associated regions that would correlate particular polymorphisms to phenotypes has lagged. This is primarily due to the lack of technologies that provide additional sequence information about genomic regions surrounding specific SNPs, preferably in haploid form. Enrichment methods for resequencing should have the specificity to provide DNA linked to SNPs of interest with sufficient quality to be used in a cost-effective and high-throughput manner. We describe a simple, automated method of targeting specific sequences of genomic DNA that can directly be used in downstream applications. The method isolates haploid chromosomal regions flanking targeted SNPs by hybridizing and enzymatically elongating oligonucleotides with biotinylated nucleotides based on their selective binding to unique sequence elements that differentiate one allele from any other differing sequence. The targeted genomic region is captured by streptavidin-coated magnetic particles and analyzed by standard genotyping, sequencing or microarray analysis. We applied this technology to determine contiguous molecular haplotypes across a ∼150 kb genomic region of the major histocompatibility complex.
Collapse
|
36
|
Antifungal resistance mechanisms in dermatophytes. Mycopathologia 2008; 166:369-83. [PMID: 18478356 DOI: 10.1007/s11046-008-9110-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/15/2008] [Accepted: 01/30/2008] [Indexed: 01/19/2023]
Abstract
Although fungi do not cause outbreaks or pandemics, the incidence of severe systemic fungal infections has increased significantly, mainly because of the explosive growth in the number of patients with compromised immune system. Thus, drug resistance in pathogenic fungi, including dermatophytes, is gaining importance. The molecular aspects involved in the resistance of dermatophytes to marketed antifungals and other cytotoxic drugs, such as modifications of target enzymes, over-expression of genes encoding ATP-binding cassette (ABC) transporters and stress-response-related proteins are reviewed. Emphasis is placed on the mechanisms used by dermatophytes to overcome the inhibitory action of terbinafine and survival in the host environment. The relevance of identifying new molecular targets, of expanding the understanding about the molecular mechanisms of resistance and of using this information to design new drugs or to modify those that have become ineffective is also discussed.
Collapse
|
37
|
Takabatake T, Ishihara H, Ohmachi Y, Tanaka I, Nakamura MM, Fujikawa K, Hirouchi T, Kakinuma S, Shimada Y, Oghiso Y, Tanaka K. Microarray-based global mapping of integration sites for the retrotransposon, intracisternal A-particle, in the mouse genome. Nucleic Acids Res 2008; 36:e59. [PMID: 18450814 PMCID: PMC2425471 DOI: 10.1093/nar/gkn235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian genomes contain numerous evolutionary harbored mobile elements, a part of which are still active and may cause genomic instability. Their movement and positional diversity occasionally result in phenotypic changes and variation by causing altered expression or disruption of neighboring host genes. Here, we describe a novel microarray-based method by which dispersed genomic locations of a type of retrotransposon in a mammalian genome can be identified. Using this method, we mapped the DNA elements for a mouse retrotransposon, intracisternal A-particle (IAP), within genomes of C3H/He and C57BL/6J inbred mouse strains; consequently we detected hundreds of probable IAP cDNA-integrated genomic regions, in which a considerable number of strain-specific putative insertions were included. In addition, by comparing genomic DNAs from radiation-induced myeloid leukemia cells and its reference normal tissue, we detected three genomic regions around which an IAP element was integrated. These results demonstrate the first successful genome-wide mapping of a retrotransposon type in a mammalian genome.
Collapse
Affiliation(s)
- Takashi Takabatake
- Department of Radiobiology, Institute for Environmental Sciences, 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The rapid accumulation of complete genomic sequences offers the opportunity to carry out an analysis of inter- and intra-individual genome variation within a species on a routine basis. Sequencing whole genomes requires resources that are currently beyond those of a single laboratory and therefore it is not a practical approach for resequencing hundreds of individual genomes. DNA microarrays present an alternative way to study differences between closely related genomes. Advances in microarray-based approaches have enabled the main forms of genomic variation (amplifications, deletions, insertions, rearrangements and base-pair changes) to be detected using techniques that are readily performed in individual laboratories using simple experimental approaches.
Collapse
|
39
|
Abstract
Identifying genomic targets of transcription factors is fundamental for understanding transcriptional regulatory networks. Current technology enables identification of all targets of a single transcription factor, but there is no realistic way to achieve the converse: identification of all proteins that bind to a promoter of interest. We have developed a method that promises to fill this void. It employs the yeast retrotransposon Ty5, whose integrase interacts with the Sir4 protein. A DNA-binding protein fused to Sir4 directs insertion of Ty5 into the genome near where it binds; the Ty5 becomes a "calling card" the DNA-binding protein leaves behind in the genome. We constructed customized calling cards for seven transcription factors of yeast by including in each Ty5 a unique DNA sequence that serves as a "molecular bar code." Ty5 transposition was induced in a population of yeast cells, each expressing a different transcription factor-Sir4 fusion and its matched, bar-coded Ty5, and the calling cards deposited into selected regions of the genome were identified, revealing the transcription factors that visited that region of the genome. In each region we analyzed, we found calling cards for only the proteins known to bind there: In the GAL1-10 promoter we found only calling cards for Gal4; in the HIS4 promoter we found only Gcn4 calling cards; in the PHO5 promoter we found only Pho4 and Pho2 calling cards. We discuss how Ty5 calling cards might be implemented for mapping all targets of all transcription factors in a single experiment.
Collapse
Affiliation(s)
- Haoyi Wang
- Department of Genetics, Washington University, School of Medicine, Genome Sequencing Center, St. Louis, Missouri 63108, USA
| | - Mark Johnston
- Department of Genetics, Washington University, School of Medicine, Genome Sequencing Center, St. Louis, Missouri 63108, USA
| | - Robi David Mitra
- Department of Genetics, Washington University, School of Medicine, Genome Sequencing Center, St. Louis, Missouri 63108, USA
- Corresponding author.E-mail ; fax (314) 362-2157
| |
Collapse
|
40
|
Maranhão FCA, Paião FG, Martinez-Rossi NM. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog 2007; 43:166-72. [PMID: 17590307 DOI: 10.1016/j.micpath.2007.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/14/2007] [Indexed: 01/08/2023]
Abstract
Trichophyton rubrum is a cosmopolitan and anthropophilic fungus able to invade keratinized tissue, causing infection in human skin and nails. This work evaluated the changes in the extracellular pH during its growth in keratin (after 6, 12, 24, 48, 72h and 7 days) at initial pH 5.0. We observed a gradual increase of basal pH under keratin exposure when compared to glucose condition. Also, we identified 576T. rubrum transcripts differentially expressed by subtractive suppression hybridization (SSH) using conidia cultivated for 72h in keratin as tester, and cultivated in glucose as driver. The over-expression of 238 transcripts obtained under keratin condition was confirmed by macro-array dot-blot, revealing 28 unigenes. Putative proteins encoded by these genes showed similarity to fungi proteins involved in basic metabolism, growth and virulence, i.e., transporters ABC-MDR, MFS and ATPase of copper, NIMA interactive protein, Gag-Pol polyprotein, virulence factors serine-protease subtilisin and metalloprotease, cytochrome P450, GlcN-6-phosphate deaminase and Hsp30. The upregulation of T. rubrum genes encoding subtilisin, metalloprotease and Gag-Pol polyprotein was also validated by northern blot. The results of this study provide the first insight into genes differentially expressed during T. rubrum grown in keratin that may be involved in fungal pathogenesis.
Collapse
Affiliation(s)
- Fernanda C A Maranhão
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|