1
|
Kulikova DA, Bespalova AV, Zelentsova ES, Evgen'ev MB, Funikov SY. Epigenetic Phenomenon of Paramutation in Plants and Animals. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1429-1450. [PMID: 39245454 DOI: 10.1134/s0006297924080054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Collapse
Affiliation(s)
- Dina A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alina V Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Scarpa A, Kofler R. The impact of paramutations on the invasion dynamics of transposable elements. Genetics 2023; 225:iyad181. [PMID: 37819004 PMCID: PMC10697812 DOI: 10.1093/genetics/iyad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
According to the prevailing view, the trap model, the activity of invading transposable elements (TEs) is greatly reduced when a TE copy jumps into a piRNA cluster, which triggers the emergence of piRNAs that silence the TE. One crucial component in the host defence are paramutations. Mediated by maternally deposited piRNAs, paramutations convert TE insertions into piRNA producing loci, thereby transforming selfish TEs into agents of the host defence. Despite this significant effect, the impact of paramutations on the dynamics of TE invasions remains unknown. To address this issue, we performed extensive forward simulations of TE invasions with piRNA clusters and paramutations. We found that paramutations significantly affect TE dynamics, by accelerating the silencing of TE invasions, reducing the number of insertions accumulating during the invasions and mitigating the fitness cost of TEs. We also demonstrate that piRNA production induced by paramutations, an epigenetically inherited trait, may be positively selected. Finally, we show that paramutations may account for three important open problems with the trap model. Firstly, paramutated TE insertions may compensate for the insufficient number of insertions in piRNA clusters observed in previous studies. Secondly, paramutations may explain the discrepancy between the observed and the expected abundance of different TE families in Drosophila melanogaster. Thirdly, piRNA clusters may be crucial to trigger the host defence, but paramutations render the clusters dispensable once the defence has been established. This could account for the lack of TE activation when three major piRNA clusters were deleted in a previous study.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Wien 1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Wien 1210, Austria
| |
Collapse
|
3
|
Kalmykova AI, Sokolova OA. Retrotransposons and Telomeres. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1739-1753. [PMID: 38105195 DOI: 10.1134/s0006297923110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023]
Abstract
Transposable elements (TEs) comprise a significant part of eukaryotic genomes being a major source of genome instability and mutagenesis. Cellular defense systems suppress the TE expansion at all stages of their life cycle. Piwi proteins and Piwi-interacting RNAs (piRNAs) are key elements of the anti-transposon defense system, which control TE activity in metazoan gonads preventing inheritable transpositions and developmental defects. In this review, we discuss various regulatory mechanisms by which small RNAs combat TE activity. However, active transposons persist, suggesting these powerful anti-transposon defense mechanisms have a limited capacity. A growing body of evidence suggests that increased TE activity coincides with genome reprogramming and telomere lengthening in different species. In the Drosophila fruit fly, whose telomeres consist only of retrotransposons, a piRNA-mediated mechanism is required for telomere maintenance and their length control. Therefore, the efficacy of protective mechanisms must be finely balanced in order not only to suppress the activity of transposons, but also to maintain the proper length and stability of telomeres. Structural and functional relationship between the telomere homeostasis and LINE1 retrotransposon in human cells indicates a close link between selfish TEs and the vital structure of the genome, telomere. This relationship, which permits the retention of active TEs in the genome, is reportedly a legacy of the retrotransposon origin of telomeres. The maintenance of telomeres and the execution of other crucial roles that TEs acquired during the process of their domestication in the genome serve as a type of payment for such a "service."
Collapse
Affiliation(s)
- Alla I Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Olesya A Sokolova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
4
|
Wierzbicki F, Kofler R. The composition of piRNA clusters in Drosophila melanogaster deviates from expectations under the trap model. BMC Biol 2023; 21:224. [PMID: 37858221 PMCID: PMC10588112 DOI: 10.1186/s12915-023-01727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND It is widely assumed that the invasion of a transposable element (TE) in mammals and invertebrates is stopped when a copy of the TE jumps into a piRNA cluster (i.e., the trap model). However, recent works, which for example showed that deletion of three major piRNA clusters has no effect on TE activity, cast doubt on the trap model. RESULTS Here, we test the trap model from a population genetics perspective. Our simulations show that the composition of regions that act as transposon traps (i.e., potentially piRNA clusters) ought to deviate from regions that have no effect on TE activity. We investigated TEs in five Drosophila melanogaster strains using three complementary approaches to test whether the composition of piRNA clusters matches these expectations. We found that the abundance of TE families inside and outside of piRNA clusters is highly correlated, although this is not expected under the trap model. Furthermore, the distribution of the number of TE insertions in piRNA clusters is also much broader than expected. CONCLUSIONS We found that the observed composition of piRNA clusters is not in agreement with expectations under the simple trap model. Dispersed piRNA producing TE insertions and temporal as well as spatial heterogeneity of piRNA clusters may account for these deviations.
Collapse
Affiliation(s)
- Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Asif-Laidin A, Casier K, Ziriat Z, Boivin A, Viodé E, Delmarre V, Ronsseray S, Carré C, Teysset L. Modeling early germline immunization after horizontal transfer of transposable elements reveals internal piRNA cluster heterogeneity. BMC Biol 2023; 21:117. [PMID: 37226160 PMCID: PMC10210503 DOI: 10.1186/s12915-023-01616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND A fraction of all genomes is composed of transposable elements (TEs) whose mobility needs to be carefully controlled. In gonads, TE activity is repressed by PIWI-interacting RNAs (piRNAs), a class of small RNAs synthesized by heterochromatic loci enriched in TE fragments, called piRNA clusters. Maintenance of active piRNA clusters across generations is secured by maternal piRNA inheritance providing the memory for TE repression. On rare occasions, genomes encounter horizontal transfer (HT) of new TEs with no piRNA targeting them, threatening the host genome integrity. Naïve genomes can eventually start to produce new piRNAs against these genomic invaders, but the timing of their emergence remains elusive. RESULTS Using a set of TE-derived transgenes inserted in different germline piRNA clusters and functional assays, we have modeled a TE HT in Drosophila melanogaster. We have found that the complete co-option of these transgenes by a germline piRNA cluster can occur within four generations associated with the production of new piRNAs all along the transgenes and the germline silencing of piRNA sensors. Synthesis of new transgenic TE piRNAs is linked to piRNA cluster transcription dependent on Moonshiner and heterochromatin mark deposition that propagates more efficiently on short sequences. Moreover, we found that sequences located within piRNA clusters can have different piRNA profiles and can influence transcript accumulation of nearby sequences. CONCLUSIONS Our study reveals that genetic and epigenetic properties, such as transcription, piRNA profiles, heterochromatin, and conversion efficiency along piRNA clusters, could be heterogeneous depending on the sequences that compose them. These findings suggest that the capacity of transcriptional signal erasure induced by the chromatin complex specific of the piRNA cluster can be incomplete through the piRNA cluster loci. Finally, these results have revealed an unexpected level of complexity that highlights a new magnitude of piRNA cluster plasticity fundamental for the maintenance of genome integrity.
Collapse
Affiliation(s)
- Amna Asif-Laidin
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France
| | - Karine Casier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France
- Present Address: CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Telomere Biology, Paris, F-75005, France
| | - Zoheir Ziriat
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France
| | - Antoine Boivin
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France
| | - Elise Viodé
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France
| | - Valérie Delmarre
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France
| | - Stéphane Ronsseray
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France
| | - Clément Carré
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France
| | - Laure Teysset
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & Small RNA Biology", Paris, F-75005, France.
| |
Collapse
|
6
|
Casier K, Autaa J, Gueguen N, Delmarre V, Marie PP, Ronsseray S, Carré C, Brasset E, Teysset L, Boivin A. The histone demethylase Kdm3 prevents auto-immune piRNAs production in Drosophila. SCIENCE ADVANCES 2023; 9:eade3872. [PMID: 37027460 PMCID: PMC10081847 DOI: 10.1126/sciadv.ade3872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Genome integrity of the animal germline is protected from transposable element activity by PIWI-interacting RNAs (piRNAs). While piRNA biogenesis is intensively explored, little is known about the genetical determination of piRNA clusters, the genomic sources of piRNAs. Using a bimodal epigenetic state piRNA cluster (BX2), we identified the histone demethylase Kdm3 as being able to prevent a cryptic piRNA production. In the absence of Kdm3, dozens of coding gene-containing regions become genuine germline dual-strand piRNA clusters. Eggs laid by Kdm3 mutant females show developmental defects phenocopying loss of function of genes embedded into the additional piRNA clusters, suggesting an inheritance of functional ovarian "auto-immune" piRNAs. Antagonizing piRNA cluster determination through chromatin modifications appears crucial to prevent auto-immune genic piRNAs production.
Collapse
Affiliation(s)
- Karine Casier
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Julie Autaa
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Nathalie Gueguen
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Valérie Delmarre
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Pauline P. Marie
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Stéphane Ronsseray
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Clément Carré
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Emilie Brasset
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Laure Teysset
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Antoine Boivin
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| |
Collapse
|
7
|
Wierzbicki F, Kofler R, Signor S. Evolutionary dynamics of piRNA clusters in Drosophila. Mol Ecol 2023; 32:1306-1322. [PMID: 34878692 DOI: 10.1111/mec.16311] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
Small RNAs produced from transposable element (TE)-rich sections of the genome, termed piRNA clusters, are a crucial component in the genomic defence against selfish DNA. In animals, it is thought the invasion of a TE is stopped when a copy of the TE inserts into a piRNA cluster, triggering the production of cognate small RNAs that silence the TE. Despite this importance for TE control, little is known about the evolutionary dynamics of piRNA clusters, mostly because these repeat-rich regions are difficult to assemble and compare. Here, we establish a framework for studying the evolution of piRNA clusters quantitatively. Previously introduced quality metrics and a newly developed software for multiple alignments of repeat annotations (Manna) allow us to estimate the level of polymorphism segregating in piRNA clusters and the divergence among homologous piRNA clusters. By studying 20 conserved piRNA clusters in multiple assemblies of four Drosophila species, we show that piRNA clusters are evolving rapidly. While 70%-80% of the clusters are conserved within species, the clusters share almost no similarity between species as closely related as D. melanogaster and D. simulans. Furthermore, abundant insertions and deletions are segregating within the Drosophila species. We show that the evolution of clusters is mainly driven by large insertions of recently active TEs and smaller deletions mostly in older TEs. The effect of these forces is so rapid that homologous clusters often do not contain insertions from the same TE families.
Collapse
Affiliation(s)
- Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
8
|
Gutiérrez J, Aleix-Mata G, Montiel EE, Cabral-de-Mello DC, Marchal JA, Sánchez A. Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae. Genes (Basel) 2022; 14:117. [PMID: 36672858 PMCID: PMC9859602 DOI: 10.3390/genes14010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
In the genus Talpa a new species, named Talpa aquitania, has been recently described. Only cytogenetic data are available for the nuclear genome of this species. In this work, we characterize the satellitome of the T. aquitania genome that presents 16 different families, including telomeric sequences, and they represent 1.24% of the genome. The first satellite DNA family (TaquSat1-183) represents 0.558%, and six more abundant families, including TaquSat1-183, comprise 1.13%, while the remaining 11 sat-DNAs represent only 0.11%. The average A + T content of the SatDNA families was 50.43% and the median monomer length was 289.24 bp. The analysis of these SatDNAs indicated that they have different grades of clusterization, homogenization, and degeneration. Most of the satDNA families are present in the genomes of the other Talpa species analyzed, while in the genomes of other more distant species of Talpidae, only some of them are present, in accordance with the library hypothesis. Moreover, chromosomal localization by FISH revealed that some satDNAs are localized preferentially on centromeric and non-centromeric heterochromatin in T. aquitania and also in the sister species T. occidentalis karyotype. The differences observed between T. aquitania and the close relative T. occidentalis and T. europaea suggested that the satellitome is a very dynamic component of the genomes and that the satDNAs could be responsible for chromosomal differences between the species. Finally, in a broad context, these data contribute to the understanding of the evolution of satellitomes on mammals.
Collapse
Affiliation(s)
- Juana Gutiérrez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Gaël Aleix-Mata
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Eugenia E. Montiel
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Diogo C. Cabral-de-Mello
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP—Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Juan Alberto Marchal
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
9
|
Kofler R, Nolte V, Schlötterer C. The transposition rate has little influence on the plateauing level of the P-element. Mol Biol Evol 2022; 39:6613335. [PMID: 35731857 PMCID: PMC9254008 DOI: 10.1093/molbev/msac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The popular trap model assumes that the invasions of transposable elements (TEs) in mammals and invertebrates are stopped by piRNAs that emerge after insertion of the TE into a piRNA cluster. It remains, however, still unclear which factors influence the dynamics of TE invasions. The activity of the TE (i.e., transposition rate) is one frequently discussed key factor. Here we take advantage of the temperature-dependent activity of the P-element, a widely studied eukaryotic TE, to test how TE activity affects the dynamics of a TE invasion. We monitored P-element invasion dynamics in experimental Drosophila simulans populations at hot and cold culture conditions. Despite marked differences in transposition rates, the P-element reached very similar copy numbers at both temperatures. The reduction of the insertion rate upon approaching the copy number plateau was accompanied by similar amounts of piRNAs against the P-element at both temperatures. Nevertheless, we also observed fewer P-element insertions in piRNA clusters than expected, which is not compatible with a simple trap model. The ping-pong cycle, which degrades TE transcripts, becomes typically active after the copy number plateaued. We generated a model, with few parameters, that largely captures the observed invasion dynamics. We conclude that the transposition rate has at the most only a minor influence on TE abundance, but other factors, such as paramutations or selection against TE insertions are shaping the TE composition.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
10
|
Yoth M, Jensen S, Brasset E. The Intricate Evolutionary Balance between Transposable Elements and Their Host: Who Will Kick at Goal and Convert the Next Try? BIOLOGY 2022; 11:710. [PMID: 35625438 PMCID: PMC9138309 DOI: 10.3390/biology11050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that can jump from one genomic locus to another and that have colonized the genomes of all living organisms. TE mobilization and accumulation are an important source of genomic innovations that greatly contribute to the host species evolution. To ensure their maintenance and amplification, TE transposition must occur in the germ cell genome. As TE transposition is also a major threat to genome integrity, the outcome of TE mobility in germ cell genomes could be highly dangerous because such mutations are inheritable. Thus, organisms have developed specialized strategies to protect the genome integrity from TE transposition, particularly in germ cells. Such effective TE silencing, together with ongoing mutations and negative selection, should result in the complete elimination of functional TEs from genomes. However, TEs have developed efficient strategies for their maintenance and spreading in populations, particularly by using horizontal transfer to invade the genome of novel species. Here, we discuss how TEs manage to bypass the host's silencing machineries to propagate in its genome and how hosts engage in a fightback against TE invasion and propagation. This shows how TEs and their hosts have been evolving together to achieve a fine balance between transposition and repression.
Collapse
Affiliation(s)
| | | | - Emilie Brasset
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (M.Y.); (S.J.)
| |
Collapse
|
11
|
Cerqueira de Araujo A, Huguet E, Herniou EA, Drezen JM, Josse T. Transposable element repression using piRNAs, and its relevance to endogenous viral elements (EVEs) and immunity in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100876. [PMID: 35065285 DOI: 10.1016/j.cois.2022.100876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The piRNA system controls transposable element (TE) mobility by transcriptional gene silencing and post-transcriptional gene silencing. Dispersed in insect genomes, piRNA clusters contain TE copies, from which they produce piRNAs (specific small RNAs). These piRNAs can both target the nascent transcripts produced by active TE copies and directly repress them by heterochromatinization. They can also target mature transcripts and cleave them following amplification by the so-called 'ping-pong' loop mechanism. Moreover, piRNA clusters contain endogenous viral elements (EVEs), from which they produce piRNAs. The current idea is that these piRNAs could participate in the antiviral response against exogenous viral infection. In this review, we show that among insects, to date, this antiviral response by the piRNA system appears mainly restricted to mosquitoes, but this could be due to the focus of most studies on arboviruses.
Collapse
Affiliation(s)
- Alexandra Cerqueira de Araujo
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France.
| |
Collapse
|
12
|
Tiedeman Z, Signor S. The transposable elements of the Drosophila serrata reference panel. Genome Biol Evol 2021; 13:6265467. [PMID: 33950180 PMCID: PMC8434751 DOI: 10.1093/gbe/evab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are an important component of the complex genomic ecosystem. Understanding the tempo and mode of TE proliferation, that is whether it is in maintained in transposition selection balance, or is induced periodically by environmental stress or other factors, is important for understanding the evolution of organismal genomes through time. Although TEs have been characterized in individuals or limited samples, a true understanding of the population genetics of TEs, and therefore the tempo and mode of transposition, is still lacking. Here, we characterize the TE landscape in an important model Drosophila, Drosophila serrata using the D. serrata reference panel, which is comprised of 102 sequenced inbred genotypes. We annotate the families of TEs in the D. serrata genome and investigate variation in TE copy number between genotypes. We find that many TEs have low copy number in the population, but this varies by family and includes a single TE making up to 50% of the genome content of TEs. We find that some TEs proliferate in particular genotypes compared with population levels. In addition, we characterize variation in each TE family allowing copy number to vary in each genotype and find that some TEs have diversified very little between individuals suggesting recent spread. TEs are important sources of spontaneous mutations in Drosophila, making up a large fraction of the total number of mutations in particular genotypes. Understanding the dynamics of TEs within populations will be an important step toward characterizing the origin of variation within and between species.
Collapse
Affiliation(s)
- Zachery Tiedeman
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, U.S.A
| | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, U.S.A
| |
Collapse
|
13
|
Wang C, Lin H. Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs. Genome Biol 2021; 22:27. [PMID: 33419460 PMCID: PMC7792047 DOI: 10.1186/s13059-020-02221-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
PIWI proteins, a subfamily of PAZ/PIWI Domain family RNA-binding proteins, are best known for their function in silencing transposons and germline development by partnering with small noncoding RNAs called PIWI-interacting RNAs (piRNAs). However, recent studies have revealed multifaceted roles of the PIWI-piRNA pathway in regulating the expression of other major classes of RNAs in germ cells. In this review, we summarize how PIWI proteins and piRNAs regulate the expression of many disparate RNAs, describing a highly complex global genomic regulatory relationship at the RNA level through which piRNAs functionally connect all major constituents of the genome in the germline.
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
14
|
Ghanim GE, Rio DC, Teixeira FK. Mechanism and regulation of P element transposition. Open Biol 2020; 10:200244. [PMID: 33352068 PMCID: PMC7776569 DOI: 10.1098/rsob.200244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/26/2020] [Indexed: 12/05/2022] Open
Abstract
P elements were first discovered in the fruit fly Drosophila melanogaster as the causative agents of a syndrome of aberrant genetic traits called hybrid dysgenesis. This occurs when P element-carrying males mate with females that lack P elements and results in progeny displaying sterility, mutations and chromosomal rearrangements. Since then numerous genetic, developmental, biochemical and structural studies have culminated in a deep understanding of P element transposition: from the cellular regulation and repression of transposition to the mechanistic details of the transposase nucleoprotein complex. Recent studies have revealed how piwi-interacting small RNA pathways can act to control splicing of the P element pre-mRNA to modulate transposase production in the germline. A recent cryo-electron microscopy structure of the P element transpososome reveals an unusual DNA architecture at the transposon termini and shows that the bound GTP cofactor functions to position the transposon ends within the transposase active site. Genome sequencing efforts have shown that there are P element transposase-homologous genes (called THAP9) in other animal genomes, including humans. This review highlights recent and previous studies, which together have led to new insights, and surveys our current understanding of the biology, biochemistry, mechanism and regulation of P element transposition.
Collapse
Affiliation(s)
- George E. Ghanim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Donald C. Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
15
|
Serrato-Capuchina A, Wang J, Earley E, Peede D, Isbell K, Matute DR. Paternally Inherited P-Element Copy Number Affects the Magnitude of Hybrid Dysgenesis in Drosophila simulans and D. melanogaster. Genome Biol Evol 2020; 12:808-826. [PMID: 32339225 PMCID: PMC7313671 DOI: 10.1093/gbe/evaa084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are repetitive regions of DNA that are able to self-replicate and reinsert themselves throughout host genomes. Since the discovery of TEs, a prevalent question has been whether increasing TE copy number has an effect on the fitness of their hosts. P-elements (PEs) in Drosophila are a well-studied TE that has strong phenotypic effects. When a female without PEs (M) is crossed to a male with them (P), the resulting females are often sterile, a phenomenon called hybrid dysgenesis (HD). Here, we used short- and long-read sequencing to infer the number of PEs in the genomes of dozens of isofemale lines from two Drosophila species and measured whether the magnitude of HD was correlated with the number of PEs in the paternal genome. Consistent with previous reports, we find evidence for a positive correlation between the paternal PE copy number and the magnitude of HD in progeny from ♀M × ♂ P crosses for both species. Other crosses are not affected by the number of PE copies. We also find that the correlation between the strength of HD and PE copy number differs between species, which suggests that there are genetic differences that might make some genomes more resilient to the potentially deleterious effects of TEs. Our results suggest that PE copy number interacts with other factors in the genome and the environment to cause HD and that the importance of these interactions is species specific.
Collapse
Affiliation(s)
| | - Jeremy Wang
- Genetics Department, University of North Carolina, Chapel Hill
| | - Eric Earley
- Genomics in Public Health and Medicine RTI International, Research Triangle Park, North Carolina
| | - David Peede
- Biology Department, University of North Carolina, Chapel Hill
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill
| |
Collapse
|
16
|
Kofler R. piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions. Genome Biol Evol 2020; 12:736-749. [PMID: 32219390 PMCID: PMC7259680 DOI: 10.1093/gbe/evaa064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
piRNA clusters are thought to repress transposable element (TE) activity in mammals and invertebrates. Here, we show that a simple population genetics model reveals a constraint on the size of piRNA clusters: The total size of the piRNA clusters of an organism must exceed 0.2% of a genome to repress TE invasions. Moreover, larger piRNA clusters accounting for up to 3% of the genome may be necessary when populations are small, transposition rates are high, and TE insertions are recessive. If piRNA clusters are too small, the load of deleterious TE insertions that accumulate during a TE invasion may drive populations extinct before an effective piRNA-based defense against the TE can be established. Our findings are solely based on three well-supported assumptions: 1) TEs multiply within genomes, 2) TEs are mostly deleterious, and 3) piRNA clusters act as transposon traps, where a single insertion in a cluster silences all TE copies in trans. Interestingly, the piRNA clusters of some species meet our observed minimum size requirements, whereas the clusters of other species do not. Species with small piRNA clusters, such as humans and mice, may experience severe fitness reductions during invasions of novel TEs, which is possibly even threatening the persistence of some populations. This work also raises the important question of how piRNA clusters evolve. We propose that the size of piRNA clusters may be at an equilibrium between evolutionary forces that act to expand and contract piRNA clusters.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
17
|
Abstract
In mammals and invertebrates, the proliferation of an invading transposable element (TE) is thought to be stopped by an insertion into a piRNA cluster. Here, we explore the dynamics of TE invasions under this trap model using computer simulations. We found that piRNA clusters confer a substantial benefit, effectively preventing extinction of host populations from a proliferation of deleterious TEs. TE invasions consist of three distinct phases: first, the TE amplifies within the population, next TE proliferation is stopped by segregating cluster insertions, and finally the TE is inactivated by fixation of a cluster insertion. Suppression by segregating cluster insertions is unstable and bursts of TE activity may yet occur. The transposition rate and the population size mostly influence the length of the phases but not the amount of TEs accumulating during an invasion. Solely, the size of piRNA clusters was identified as a major factor influencing TE abundance. We found that a single nonrecombining cluster is more efficient in stopping invasions than clusters distributed over several chromosomes. Recombination among cluster sites makes it necessary that each diploid carries, on the average, four cluster insertions to stop an invasion. Surprisingly, negative selection in a model with piRNA clusters can lead to a novel equilibrium state, where TE copy numbers remain stable despite only some individuals in a population carrying a cluster insertion. In Drosophila melanogaster, the trap model accounts for the abundance of TEs produced in the germline but fails to predict the abundance of TEs produced in the soma.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
18
|
Srivastav SP, Rahman R, Ma Q, Pierre J, Bandyopadhyay S, Lau NC. Har-P, a short P-element variant, weaponizes P-transposase to severely impair Drosophila development. eLife 2019; 8:49948. [PMID: 31845649 PMCID: PMC6917496 DOI: 10.7554/elife.49948] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/16/2019] [Indexed: 12/20/2022] Open
Abstract
Without transposon-silencing Piwi-interacting RNAs (piRNAs), transposition causes an ovarian atrophy syndrome in Drosophila called gonadal dysgenesis (GD). Harwich (Har) strains with P-elements cause severe GD in F1 daughters when Har fathers mate with mothers lacking P-element-piRNAs (i.e. ISO1 strain). To address the mystery of why Har induces severe GD, we bred hybrid Drosophila with Har genomic fragments into the ISO1 background to create HISR-D or HISR-N lines that still cause Dysgenesis or are Non-dysgenic, respectively. In these lines, we discovered a highly truncated P-element variant we named ‘Har-P’ as the most frequent de novo insertion. Although HISR-D lines still contain full-length P-elements, HISR-N lines lost functional P-transposase but retained Har-P’s that when crossed back to P-transposase restores GD induction. Finally, we uncovered P-element-piRNA-directed repression on Har-P’s transmitted paternally to suppress somatic transposition. The Drosophila short Har-P’s and full-length P-elements relationship parallels the MITEs/DNA-transposase in plants and SINEs/LINEs in mammals. DNA provides the instructions needed for life, a role that relies on it being a very stable and organized molecule. However, some sections of DNA are able to move from one place in the genome to another. When these “mobile genetic elements” move they may disrupt other genes and cause disease. For example, a mobile section of DNA known as the P-element causes a condition called gonadal dysgenesis in female fruit flies, leading to infertility. Only certain strains of fruit flies carry P-elements and the severity of gonadal dysgenesis in their daughters varies. For example, when male fruit flies of a strain known as Harwich (or Har for short) is crossed with female fruit flies that do not contain P-elements, all of their daughters develop severe gonadal dysgenesis and are infertile. However, if the cross is done the other way around, and female Har flies mate with males that do not contain P-elements, the daughters are fertile because the Har mothers provide their daughters with protective molecules that silence the P-elements. But it was a mystery as to why the P-elements from the Har fathers always caused such severe gonadal dysgenesis in all the daughters. Here, Srivastav et al. bred fruit flies to create offspring that had different pieces of Har DNA in a genetic background that was normally free from P-elements; they then analyzed the ‘hybrid’ offspring to identify which pieces of the Har genome caused gonadal dysgenesis in the daughter flies. These experiments showed that Har flies possess a very short variant of the P-element (named “Har-P”) that is more mobile than other variants. However, the Har-P variants still depended on an enzyme known as P-transposase encoded by the full-length P-elements to move around the genome. Further experiments showed that other strains of fruit flies that cause severe gonadal dysgenesis also had very short P-element variants that were almost identical to Har-P. These findings may explain why Har and some other strains of fruit flies drive severe gonadal dysgenesis. In the future, it may be possible to transfer P-transposase and Har-P into mosquitoes, ticks and other biting insects to make them infertile and help reduce the spread of certain diseases in humans.
Collapse
Affiliation(s)
- Satyam P Srivastav
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States
| | - Reazur Rahman
- Department of Biology, Brandeis University, Waltham, United States
| | - Qicheng Ma
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States
| | - Jasmine Pierre
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States
| | - Saptaparni Bandyopadhyay
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States.,Department of Biology, Brandeis University, Waltham, United States.,Genome Science Institute, Boston University School of Medicine, Boston, United States
| |
Collapse
|
19
|
Casier K, Boivin A, Carré C, Teysset L. Environmentally-Induced Transgenerational Epigenetic Inheritance: Implication of PIWI Interacting RNAs. Cells 2019; 8:cells8091108. [PMID: 31546882 PMCID: PMC6770481 DOI: 10.3390/cells8091108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Environmentally-induced transgenerational epigenetic inheritance is an emerging field. The understanding of associated epigenetic mechanisms is currently in progress with open questions still remaining. In this review, we present an overview of the knowledge of environmentally-induced transgenerational inheritance and associated epigenetic mechanisms, mainly in animals. The second part focuses on the role of PIWI-interacting RNAs (piRNAs), a class of small RNAs involved in the maintenance of the germline genome, in epigenetic memory to put into perspective cases of environmentally-induced transgenerational inheritance involving piRNA production. Finally, the last part addresses how genomes are facing production of new piRNAs, and from a broader perspective, how this process might have consequences on evolution and on sporadic disease development.
Collapse
Affiliation(s)
- Karine Casier
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France.
| | - Antoine Boivin
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France.
| | - Clément Carré
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France.
| | - Laure Teysset
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France.
| |
Collapse
|
20
|
Radion E, Morgunova V, Ryazansky S, Akulenko N, Lavrov S, Abramov Y, Komarov PA, Glukhov SI, Olovnikov I, Kalmykova A. Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline. Epigenetics Chromatin 2018; 11:40. [PMID: 30001204 PMCID: PMC6043984 DOI: 10.1186/s13072-018-0210-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. RESULTS To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. CONCLUSIONS piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline.
Collapse
Affiliation(s)
- Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergey Lavrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Yuri Abramov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Pavel A Komarov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.,Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sergey I Glukhov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.
| |
Collapse
|
21
|
Kofler R, Senti KA, Nolte V, Tobler R, Schlötterer C. Molecular dissection of a natural transposable element invasion. Genome Res 2018; 28:824-835. [PMID: 29712752 PMCID: PMC5991514 DOI: 10.1101/gr.228627.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The first tracking of the dynamics of a natural invasion by a transposable element (TE) provides unprecedented details on the establishment of host defense mechanisms against TEs. We captured a D. simulans population at an early stage of a P-element invasion and studied the spread of the TE in replicated experimentally evolving populations kept under hot and cold conditions. We analyzed the factors controlling the invasion by NGS, RNA-FISH, and gonadal dysgenesis assays. Under hot conditions, the P-element spread rapidly for 20 generations, but no further spread was noted later on. This plateauing of the invasion was mediated by the rapid emergence of P-element-specific piRNAs. Under cold conditions, we observed a lower expression of the P-element and a slower emergence of the piRNA defense, resulting in a three times slower invasion that continued beyond 40 generations. We conclude that the environment is a major factor determining the evolution of TEs in their host.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
| | | | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Ray Tobler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
| | | |
Collapse
|
22
|
Qiu GH, Huang C, Zheng X, Yang X. The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics 2018; 10:499-517. [PMID: 29616594 DOI: 10.2217/epi-2017-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral and abundant noncoding DNA has been hypothesized to protect the genome and the central protein-coding sequences against DNA damage in somatic genome. In the cytosol, invading exogenous nucleic acids may first be deactivated by small RNAs encoded by noncoding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. In the nucleus, the radicals generated by radiation in the cytosol, radiation energy and invading exogenous nucleic acids are absorbed, blocked and/or reduced by peripheral heterochromatin, and damaged DNA in heterochromatin is removed and excluded from the nucleus to the cytoplasm through nuclear pore complexes. To further strengthen the hypothesis, this review summarizes the experimental evidence supporting the protective function of noncoding DNA in the genome of male germ cells. Based on these data, this review provides evidence supporting the protective role of noncoding DNA in the genome defense of sperm genome through similar mechanisms to those of the somatic genome.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
23
|
Akulenko N, Ryazansky S, Morgunova V, Komarov PA, Olovnikov I, Vaury C, Jensen S, Kalmykova A. Transcriptional and chromatin changes accompanying de novo formation of transgenic piRNA clusters. RNA (NEW YORK, N.Y.) 2018; 24:574-584. [PMID: 29358235 PMCID: PMC5855956 DOI: 10.1261/rna.062851.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/09/2018] [Indexed: 05/31/2023]
Abstract
Expression of transposable elements in the germline is controlled by Piwi-interacting (pi) RNAs produced by genomic loci termed piRNA clusters and associated with Rhino, a heterochromatin protein 1 (HP1) homolog. Previously, we have shown that transgenes containing a fragment of the I retrotransposon form de novo piRNA clusters in the Drosophila germline providing suppression of I-element activity. We noted that identical transgenes located in different genomic sites vary considerably in piRNA production and classified them as "strong" and "weak" piRNA clusters. Here, we investigated what chromatin and transcriptional changes occur at the transgene insertion sites after their conversion into piRNA clusters. We found that the formation of a transgenic piRNA cluster is accompanied by activation of transcription from both genomic strands that likely initiates at multiple random sites. The chromatin of all transgene-associated piRNA clusters contain high levels of trimethylated lysine 9 of histone H3 (H3K9me3) and HP1a, whereas Rhino binding is considerably higher at the strong clusters. None of these chromatin marks was revealed at the "empty" sites before transgene insertion. Finally, we have shown that in the nucleus of polyploid nurse cells, the formation of a piRNA cluster at a given transgenic genomic copy works according to an "all-or-nothing" model: either there is high Rhino enrichment or there is no association with Rhino at all. As a result, genomic copies of a weak piRNA transgenic cluster show a mosaic association with Rhino foci, while the majority of strong transgene copies associate with Rhino and are hence involved in piRNA production.
Collapse
Affiliation(s)
- Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Pavel A Komarov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Chantal Vaury
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 10448, F-63001 Clermont-Ferrand, France
| | - Silke Jensen
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 10448, F-63001 Clermont-Ferrand, France
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
24
|
Asif-Laidin A, Delmarre V, Laurentie J, Miller WJ, Ronsseray S, Teysset L. Short and long-term evolutionary dynamics of subtelomeric piRNA clusters in Drosophila. DNA Res 2017; 24:459-472. [PMID: 28459978 PMCID: PMC5737368 DOI: 10.1093/dnares/dsx017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
Two Telomeric Associated Sequences, TAS-R and TAS-L, form the principal subtelomeric repeat families identified in Drosophila melanogaster. They are PIWI-interacting RNA (piRNA) clusters involved in repression of Transposable Elements. In this study, we revisited TAS structural and functional dynamics in D. melanogaster and in related species. In silico analysis revealed that TAS-R family members are composed of previously uncharacterized domains. This analysis also showed that TAS-L repeats are composed of arrays of a region we have named "TAS-L like" (TLL) identified specifically in one TAS-R family member, X-TAS. TLL were also present in other species of the melanogaster subgroup. Therefore, it is possible that TLL represents an ancestral subtelomeric piRNA core-cluster. Furthermore, all D. melanogaster genomes tested possessed at least one TAS-R locus, whereas TAS-L can be absent. A screen of 110 D. melanogaster lines showed that X-TAS is always present in flies living in the wild, but often absent in long-term laboratory stocks and that natural populations frequently lost their X-TAS within 2 years upon lab conditioning. Therefore, the unexpected structural and temporal dynamics of subtelomeric piRNA clusters demonstrated here suggests that genome organization is subjected to distinct selective pressures in the wild and upon domestication in the laboratory.
Collapse
Affiliation(s)
- Amna Asif-Laidin
- Sorbonne Universités, UPMC University of Paris 06, CNRS, Biologie du Développement Paris-Seine, Institut de Biologie Paris-Seine (LBD-IBPS), 75005 Paris, France
| | - Valérie Delmarre
- Sorbonne Universités, UPMC University of Paris 06, CNRS, Biologie du Développement Paris-Seine, Institut de Biologie Paris-Seine (LBD-IBPS), 75005 Paris, France
| | - Jeanne Laurentie
- Sorbonne Universités, UPMC University of Paris 06, CNRS, Biologie du Développement Paris-Seine, Institut de Biologie Paris-Seine (LBD-IBPS), 75005 Paris, France
| | - Wolfgang J. Miller
- Lab Genome Dynamics, Department for Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stéphane Ronsseray
- Sorbonne Universités, UPMC University of Paris 06, CNRS, Biologie du Développement Paris-Seine, Institut de Biologie Paris-Seine (LBD-IBPS), 75005 Paris, France
| | - Laure Teysset
- Sorbonne Universités, UPMC University of Paris 06, CNRS, Biologie du Développement Paris-Seine, Institut de Biologie Paris-Seine (LBD-IBPS), 75005 Paris, France
| |
Collapse
|
25
|
Affiliation(s)
- Floyd A Reed
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| |
Collapse
|
26
|
From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila. G3-GENES GENOMES GENETICS 2017; 7:505-516. [PMID: 27932388 PMCID: PMC5295597 DOI: 10.1534/g3.116.037291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.
Collapse
|
27
|
Radion E, Ryazansky S, Akulenko N, Rozovsky Y, Kwon D, Morgunova V, Olovnikov I, Kalmykova A. Telomeric Retrotransposon HeT-A Contains a Bidirectional Promoter that Initiates Divergent Transcription of piRNA Precursors in Drosophila Germline. J Mol Biol 2016; 429:3280-3289. [PMID: 27939293 DOI: 10.1016/j.jmb.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Abstract
PIWI-interacting RNAs (piRNAs) provide the silencing of transposable elements in the germline. Drosophila telomeres are maintained by transpositions of specialized telomeric retroelements. piRNAs generated from sense and antisense transcripts of telomeric elements provide telomere length control in the germline. Previously, we have found that antisense transcription of the major telomeric retroelement HeT-A is initiated upstream of the HeT-A sense transcription start site. Here, we performed a deletion analysis of the HeT-A promoter and show that common regulatory elements are shared by sense and antisense promoters of HeT-A. Therefore, the HeT-A promoter is a bidirectional promoter capable of processive sense and antisense transcription. Ovarian small RNA data show that a solo HeT-A promoter within an euchromatic transgene initiates the divergent transcription of transgenic reporter genes and subsequent processing of these transcripts into piRNAs. These events lead to the formation of a divergent unistrand piRNA cluster at solo HeT-A promoters, in contrast to endogenous telomeres that represent strong dual-strand piRNA clusters. Solo HeT-A promoters are not immunoprecipitated with heterochromatin protein 1 (HP1) homolog Rhino, a marker of the dual-strand piRNA clusters, but are associated with HP1 itself, which provides piRNA-mediated transcriptional repression of the reporter genes. Unlike endogenous dual-strand piRNA clusters, the solo HeT-A promoter does not produce overlapping transcripts. In a telomeric context, however, bidirectional promoters of tandem HeT-A repeats provide a read-through transcription of both genomic strands, followed by Rhi binding. These data indicate that Drosophila telomeres share properties of unistrand and dual-strand piRNA clusters.
Collapse
Affiliation(s)
- Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Yakov Rozovsky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Dmitry Kwon
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| |
Collapse
|
28
|
Simmons MJ, Grimes CD, Czora CS. Cytotype Regulation Facilitates Repression of Hybrid Dysgenesis by Naturally Occurring KP Elements in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:1891-7. [PMID: 27172198 PMCID: PMC4938643 DOI: 10.1534/g3.116.028597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022]
Abstract
P elements inserted in the Telomere Associated Sequences (TAS) at the left end of the X chromosome are determiners of cytotype regulation of the entire P family of transposons. This regulation is mediated by Piwi-interacting (pi) RNAs derived from the telomeric P elements (TPs). Because these piRNAs are transmitted maternally, cytotype regulation is manifested as a maternal effect of the TPs. When a TP is combined with a transgenic P element inserted at another locus, this maternal effect is strengthened. However, when certain TPs are combined with transgenes that contain the small P element known as KP, stronger regulation arises from a zygotic effect of the KP element. This zygotic effect is observed with transgenic KP elements that are structurally intact, as well as with KP elements that are fused to an ancillary promoter from the hsp70 gene. Zygotic regulation by a KP element occurs only when a TP was present in the maternal germ line, and it is more pronounced when the TP was also present in the grand-maternal germ line. However, this regulation does not require zygotic expression of the TP These observations can be explained if maternally transmitted piRNAs from TPs enable a polypeptide encoded by KP elements to repress P element transposition in zygotes that contain a KP element. In nature, repression by the KP polypeptide may therefore be facilitated by cytotype-mediating piRNAs.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Craig D Grimes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Cody S Czora
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
29
|
Hermant C, Boivin A, Teysset L, Delmarre V, Asif-Laidin A, van den Beek M, Antoniewski C, Ronsseray S. Paramutation in Drosophila Requires Both Nuclear and Cytoplasmic Actors of the piRNA Pathway and Induces Cis-spreading of piRNA Production. Genetics 2015; 201:1381-96. [PMID: 26482790 PMCID: PMC4676525 DOI: 10.1534/genetics.115.180307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
Transposable element activity is repressed in the germline in animals by PIWI-interacting RNAs (piRNAs), a class of small RNAs produced by genomic loci mostly composed of TE sequences. The mechanism of induction of piRNA production by these loci is still enigmatic. We have shown that, in Drosophila melanogaster, a cluster of tandemly repeated P-lacZ-white transgenes can be activated for piRNA production by maternal inheritance of a cytoplasm containing homologous piRNAs. This activated state is stably transmitted over generations and allows trans-silencing of a homologous transgenic target in the female germline. Such an epigenetic conversion displays the functional characteristics of a paramutation, i.e., a heritable epigenetic modification of one allele by the other. We report here that piRNA production and trans-silencing capacities of the paramutated cluster depend on the function of the rhino, cutoff, and zucchini genes involved in primary piRNA biogenesis in the germline, as well as on that of the aubergine gene implicated in the ping-pong piRNA amplification step. The 21-nt RNAs, which are produced by the paramutated cluster, in addition to 23- to 28-nt piRNAs are not necessary for paramutation to occur. Production of these 21-nt RNAs requires Dicer-2 but also all the piRNA genes tested. Moreover, cytoplasmic transmission of piRNAs homologous to only a subregion of the transgenic locus can generate a strong paramutated locus that produces piRNAs along the whole length of the transgenes. Finally, we observed that maternally inherited transgenic small RNAs can also impact transgene expression in the soma. In conclusion, paramutation involves both nuclear (Rhino, Cutoff) and cytoplasmic (Aubergine, Zucchini) actors of the piRNA pathway. In addition, since it is observed between nonfully homologous loci located on different chromosomes, paramutation may play a crucial role in epigenome shaping in Drosophila natural populations.
Collapse
Affiliation(s)
- Catherine Hermant
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Antoine Boivin
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Laure Teysset
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Valérie Delmarre
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Amna Asif-Laidin
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Marius van den Beek
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Drosophila Genetics and Epigenetics," F-75005, Paris, France CNRS, FR3631, Institut de Biologie Paris-Seine, ARTbio Bioinformatics Analysis Facility, F-75005, Paris, France
| | - Christophe Antoniewski
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Drosophila Genetics and Epigenetics," F-75005, Paris, France CNRS, FR3631, Institut de Biologie Paris-Seine, ARTbio Bioinformatics Analysis Facility, F-75005, Paris, France
| | - Stéphane Ronsseray
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| |
Collapse
|
30
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
31
|
The cellular basis of hybrid dysgenesis and Stellate regulation in Drosophila. Curr Opin Genet Dev 2015; 34:88-94. [PMID: 26451497 PMCID: PMC4674331 DOI: 10.1016/j.gde.2015.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 11/23/2022]
Abstract
During normal tissue development, the accumulation of unrepaired cellular and genomic damage can impair growth and ultimately leads to death. To preserve cellular integrity, cells employ a number of defense mechanisms including molecular checkpoints, during which development is halted while dedicated pathways attempt repair. This process is most critical in germline tissues where cellular damage directly threatens an organism's reproductive capacity and offspring viability. In the fruit fly, Drosophila melanogaster, germline development has been extensively studied for over a century and the breadth of our knowledge has flourished in the genomics age. Intriguingly, several peculiar phenomena that trigger catastrophic germline damage described decades ago, still endure only a partial understanding of the underlying molecular causes. A deeper reexamination using new molecular and genetic tools may greatly benefit our understanding of host system biology. Among these, and the focus of this concise review, are hybrid dysgenesis and an intragenomic conflict that pits the X and Y sex chromosomes against each other.
Collapse
|
32
|
Ronsseray S. Paramutation phenomena in non-vertebrate animals. Semin Cell Dev Biol 2015; 44:39-46. [PMID: 26318740 DOI: 10.1016/j.semcdb.2015.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
Paramutation was initially described in maize and was defined as an epigenetic interaction between two alleles of a locus, through which one allele induces a heritable modification of the other allele without modifying the DNA sequence [1,2]. Thus it implies that the paramutated allele conserves its new properties on the long term over generations even in the absence of the paramutagenic allele and that it turns paramutagenic itself, without undergoing any changes in the DNA sequence. Some epigenetic interactions have been described in two non-vertebrate animal models, which appear to exhibit similar properties. Both systems are linked to trans-generational transmission of non-coding small RNAs. In Drosophila melanogaster, paramutation is correlated with transmission of PIWI-Interacting RNAs (piRNAs), a class of small non-coding RNAs that repress mobile DNA in the germline. A tandem repeated transgenic locus producing abundant ovarian piRNAs can activate piRNA production and associated homology-dependent silencing at a locus that was previously stably devoid of such capacities. The newly converted locus is then perfectly stable in absence of the inducer locus (>100 generations) and becomes fully paramutagenic. In Caenorhabditis elegans, paramutation is correlated with transmission of siRNAs, which are produced by transgenes targeted by piRNAs in the germline. Indeed, a transgenic locus, targeted by the piRNA machinery, produces siRNAs that can induce silencing of homologous transgenes, which can be further transmitted in a repressed state over generations despite the absence of the inducer transgenic locus. As in fly, the paramutated locus can become fully paramutagenic, and paramutation can be mediated by cytoplasmic inheritance without transmission of the paramutagenic locus itself. Nevertheless, in contrast to flies where the induction is only maternally inherited, both parents can transmit it in worms. In addition, a reciprocal phenomenon - (from off toward on) - appears to be also possible in worms as some activated transgenes can reactivate silent transgenes in the germline, and this modification can also be transmitted to next generations, even so it appears to be only partially stable. Thus, in a given system, opposite paramutation-like phenomena could exist, mediated by antagonist active pathways. As in plants, paramutation in flies and worms correlates with chromatin structure modification of the paramutated locus. In flies, inheritance of small RNAs from one generation to the next transmits a memory mainly targeting loci for repression whereas in worms, small RNAs can target loci either for repression or expression. Nevertheless, in the two species, paramutation can play an important role in the epigenome establishment.
Collapse
Affiliation(s)
- Stéphane Ronsseray
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9 quai Saint-Bernard, F-75005 Paris, France; CNRS, IBPS, UMR 7622, Developmental Biology, 9 quai Saint-Bernard, F-75005 Paris, France.
| |
Collapse
|
33
|
Gabriel JM, Hollick JB. Paramutation in maize and related behaviors in metazoans. Semin Cell Dev Biol 2015; 44:11-21. [PMID: 26318741 DOI: 10.1016/j.semcdb.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Abstract
Paramutation refers to both the process and results of trans-homolog interactions causing heritable changes in both gene regulation and silencing abilities. Originally described in plants, paramutation-like behaviors have now been reported in model metazoans. Here we detail our current understanding of the paramutation mechanism as defined in Zea mays and compare this paradigm to these metazoan examples. Experimental results implicate functional roles of small RNAs in all these model organisms that highlight a diversity of mechanisms by which these molecules specify meiotically heritable regulatory information in the eukarya.
Collapse
Affiliation(s)
- Janelle M Gabriel
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Jay B Hollick
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
34
|
Gvozdev VA, Stolyarenko AD, Klenov MS. Functions of piRNAs and the Piwi protein in Drosophila. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Majumdar S, Rio DC. P Transposable Elements in Drosophila and other Eukaryotic Organisms. Microbiol Spectr 2015; 3:MDNA3-0004-2014. [PMID: 26104714 PMCID: PMC4399808 DOI: 10.1128/microbiolspec.mdna3-0004-2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/20/2022] Open
Abstract
P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins.
Collapse
Affiliation(s)
| | - Donald C. Rio
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, CA 94720-3204
| |
Collapse
|
36
|
Baranasic D, Oppermann T, Cheaib M, Cullum J, Schmidt H, Simon M. Genomic characterization of variable surface antigens reveals a telomere position effect as a prerequisite for RNA interference-mediated silencing in Paramecium tetraurelia. mBio 2014; 5:e01328. [PMID: 25389173 PMCID: PMC4235209 DOI: 10.1128/mbio.01328-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/24/2014] [Indexed: 12/02/2022] Open
Abstract
UNLABELLED Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. IMPORTANCE Alternating surface protein structures have been described for almost all eukaryotic microbes, and a broad variety of functions have been described, such as virulence factors, adhesion molecules, and molecular camouflage. Mechanisms controlling gene expression of variable surface proteins therefore represent a powerful tool for rapid phenotypic variation across kingdoms in pathogenic as well as free-living eukaryotic microbes. However, the epigenetic mechanisms controlling synchronous expression and silencing of individual genes are hardly understood. Using the ciliate Paramecium tetraurelia as a (epi)genetic model, we showed that a subtelomeric gene position effect is associated with the selective occurrence of RNAi-mediated silencing of silent surface protein genes, suggesting small interfering RNA (siRNA)-mediated epigenetic cross talks between silent and active surface antigen genes. Our integrated genomic and molecular approach discloses the correlation between gene position effects and siRNA-mediated trans-silencing, thus providing two new parameters for regulation of mutually exclusive gene expression and the genomic organization of variant gene families.
Collapse
Affiliation(s)
| | - Timo Oppermann
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - John Cullum
- Department for Genetics, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Helmut Schmidt
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Martin Simon
- Saarland University, Centre for Human and Molecular Biology, Molecular Cellular Dynamics, Saarbrücken, Germany
| |
Collapse
|
37
|
Le Thomas A, Stuwe E, Li S, Du J, Marinov G, Rozhkov N, Chen YCA, Luo Y, Sachidanandam R, Toth KF, Patel D, Aravin AA. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes Dev 2014; 28:1667-80. [PMID: 25085419 PMCID: PMC4117942 DOI: 10.1101/gad.245514.114] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
piRNAs guide the repression of diverse transposable elements in metazoan germ cells. Le Thomas et al. show that piRNA biogenesis in Drosophila germ cells depends on the inheritance of homologous piRNAs from the previous generation. Transgenerationally inherited piRNAs trigger piRNA biogenesis in the progeny by two different mechanisms. First, inherited piRNAs guide post-transcriptional processing of precursors into mature piRNAs. Second, inherited piRNAs direct the modification of the chromatin state of cluster sequences. This study provides key insights into the transgenerational mechanism that specifies piRNA biogenesis in the germline. Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors.
Collapse
Affiliation(s)
- Adrien Le Thomas
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA; Ecole Doctorale Complexité du Vivant, Université Pierre et Marie Curie, 75005 Paris, France
| | - Evelyn Stuwe
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA; Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Sisi Li
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Jiamu Du
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA;
| | - Georgi Marinov
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Nikolay Rozhkov
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yung-Chia Ariel Chen
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Ravi Sachidanandam
- Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Katalin Fejes Toth
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Dinshaw Patel
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Alexei A Aravin
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
38
|
Dogini DB, Pascoal VDB, Avansini SH, Vieira AS, Pereira TC, Lopes-Cendes I. The new world of RNAs. Genet Mol Biol 2014; 37:285-93. [PMID: 24764762 PMCID: PMC3983583 DOI: 10.1590/s1415-47572014000200014] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the major developments that resulted from the human genome sequencing projects was a better understanding of the role of non-coding RNAs (ncRNAs). NcRNAs are divided into several different categories according to size and function; however, one shared feature is that they are not translated into proteins. In this review, we will discuss relevant aspects of ncRNAs, focusing on two main types: i) microRNAs, which negatively regulate gene expression either by translational repression or target mRNA degradation, and ii) small interfering RNAs (siRNAs), which are involved in the biological process of RNA interference (RNAi). Our knowledge regarding these two types of ncRNAs has increased dramatically over the past decade, and they have a great potential to become therapeutic alternatives for a variety of human conditions.
Collapse
Affiliation(s)
- Danyella Barbosa Dogini
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Simoni Helena Avansini
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - André Schwambach Vieira
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Tiago Campos Pereira
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Iscia Lopes-Cendes
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
39
|
Simmons MJ, Meeks MW, Jessen E, Becker JR, Buschette JT, Thorp MW. Genetic interactions between P elements involved in piRNA-mediated repression of hybrid dysgenesis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2014; 4:1417-27. [PMID: 24902606 PMCID: PMC4132173 DOI: 10.1534/g3.114.011221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/31/2014] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that telomeric P elements inserted at the left end of the X chromosome are anchors of the P cytotype, the maternally inherited state that regulates P-element activity in the germ line of Drosophila melanogaster. This regulation is mediated by small RNAs that associate with the Piwi family of proteins (piRNAs). We extend the analysis of cytotype regulation by studying new combinations of telomeric and nontelomeric P elements (TPs and non-TPs). TPs interact with each other to enhance cytotype regulation. This synergism involves a strictly maternal effect, called presetting, which is apparently mediated by piRNAs transmitted through the egg. Presetting by a maternal TP can elicit regulation by an inactive paternally inherited TP, possibly by stimulating its production of primary piRNAs. When one TP has come from a stock heterozygous for a mutation in the aubergine, piwi, or Suppressor of variegation 205 genes, the synergism between two TPs is impaired. TPs also interact with non-TPs to enhance cytotype regulation, even though the non-TPs lack regulatory ability on their own. Non-TPs are not susceptible to presetting by a TP, nor is a TP susceptible to presetting by a non-TP. The synergism between TPs and non-TPs is stronger when the TP was inherited maternally. This synergism may be due to the accumulation of secondary piRNAs created by ping-pong cycling between primary piRNAs from the TPs and mRNAs from the non-TPs. Maternal transmission of P-element piRNAs plays an important role in the maintenance of strong cytotype regulation over generations.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Marshall W Meeks
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Erik Jessen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Jordan R Becker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Jared T Buschette
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Michael W Thorp
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
40
|
Chalker DL. Keeping one's sex. Nature 2014; 509:430-1. [DOI: 10.1038/nature13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Abstract
Cell identities can be stable over a long time due to a “cellular memory” of expression profiles achieved through epigenetic mechanisms. In this review, Stuwe et al. describe recent studies demonstrating that short noncoding RNAs can also provide molecular signals that define epigenetic states of cells, leading to transgenerational epigenetic inheritance. Cells in multicellular organisms have distinct identities characterized by their profiles of expressed genes. Cell identities can be stable over a long time and through multiple cellular divisions but are also responsive to extracellular signals. Since the DNA sequence is identical in all cells, a “cellular memory” of expression profiles is achieved by what are defined as epigenetic mechanisms. Two major molecular principles—networks of transcription factors and maintenance of cis-chromatin modifications—have been implicated in maintaining cellular memory. Here we describe recent studies demonstrating that short noncoding RNAs can also provide molecular signals that define epigenetic states of cells. Small RNAs can act independently or cooperate with chromatin modifications to achieve long-lasting effects necessary for cellular memory and transgenerational inheritance.
Collapse
Affiliation(s)
- Evelyn Stuwe
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
42
|
Dufourt J, Dennis C, Boivin A, Gueguen N, Théron E, Goriaux C, Pouchin P, Ronsseray S, Brasset E, Vaury C. Spatio-temporal requirements for transposable element piRNA-mediated silencing during Drosophila oogenesis. Nucleic Acids Res 2013; 42:2512-24. [PMID: 24288375 PMCID: PMC3936749 DOI: 10.1093/nar/gkt1184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During Drosophila oogenesis, transposable element (TE) repression involves the Piwi-interacting RNA (piRNA) pathway which ensures genome integrity for the next generation. We developed a transgenic model to study repression of the Idefix retrotransposon in the germline. Using a candidate gene KD-approach, we identified differences in the spatio-temporal requirements of the piRNA pathway components for piRNA-mediated silencing. Some of them (Aub, Vasa, Spn-E) are necessary in very early stages of oogenesis within the germarium and appear to be less important for efficient TE silencing thereafter. Others (Piwi, Ago3, Mael) are required at all stages of oogenesis. Moreover, during early oogenesis, in the dividing cysts within the germarium, Idefix anti-sense transgenes escape host control, and this is associated with very low piwi expression. Silencing of P-element-based transgenes is also strongly weakened in these cysts. This region, termed the 'Piwiless pocket' or Pilp, may ensure that new TE insertions occur and are transmitted to the next generation, thereby contributing to genome dynamics. In contrast, piRNA-mediated silencing is strong in germline stem cells in which TE mobilization is tightly repressed ensuring the continued production of viable germline cysts.
Collapse
Affiliation(s)
- Jérémy Dufourt
- Inserm, UMR1103, F-63001 Clermont-Ferrand, France, CNRS, UMR6293, F-63001 Clermont-Ferrand, France, Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, F-63000 Clermont-Ferrand, France, Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, 9 quai Saint Bernard, 75005 Paris, France and CHU, F-63001 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
de Vanssay A, Bougé AL, Boivin A, Hermant C, Teysset L, Delmarre V, Antoniewski C, Ronsseray S. piRNAs and epigenetic conversion in Drosophila. Fly (Austin) 2013; 7:237-41. [PMID: 24088599 DOI: 10.4161/fly.26522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic induction of piRNA production capacity by a locus in the D. melanogaster genome. We used 2 lines carrying a transgenic 7-copy tandem cluster (P-lacZ-white) at the same genomic site. This cluster generates in both lines a local heterochromatic sector. One line (T-1) produces high levels of ovarian piRNAs homologous to the P-lacZ-white transgenes and shows a strong capacity to repress homologous sequences in trans, whereas the other line (BX2) is devoid of both of these capacities. The properties of these 2 lines are perfectly stable over generations. We have shown that the maternal transmission of a cytoplasm carrying piRNAs from the first line can confer to the inert transgenic locus of the second, a totally de novo capacity to produce high levels of piRNAs as well as the ability to induce homology-dependent silencing in trans. These new properties are stably inherited over generations (n>50). Furthermore, the converted locus has itself become able to convert an inert transgenic locus via cytoplasmic maternal inheritance. This results in a stable epigenetic conversion process, which can be performed recurrently--a phenomenon termed paramutation and discovered in Maize 60 y ago. Paramutation in Drosophila corresponds to the first stable paramutation in animals and provides a model system to investigate the epigenetically induced emergence of a piRNA-producing locus, a crucial step in epigenome shaping. In this Extra View, we discuss some additional functional aspects and the possible molecular mechanism of this piRNA-linked paramutation.
Collapse
Affiliation(s)
- Augustin de Vanssay
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | - Anne-Laure Bougé
- Drosophila Genetics and Epigenetics; CNRS URA2578; Institut Pasteur; Paris, France
| | - Antoine Boivin
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | - Catherine Hermant
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | - Laure Teysset
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | - Valérie Delmarre
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | | | - Stéphane Ronsseray
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| |
Collapse
|
44
|
Merriman PJ, Simmons MJ. A test for enhancement of cytotype regulation in Drosophila melanogaster by the transposase-encoding P element ∆2-3. Mol Genet Genomics 2013; 288:535-47. [PMID: 23925475 DOI: 10.1007/s00438-013-0772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
Transposable P elements are regulated in the germ line by piRNAs, which are small RNAs that associate with the Piwi class of proteins. This regulation, called the P cytotype, is enhanced by genetic interactions between P elements that are primary sources of these RNAs and other P elements. The enhanced regulation is thought to reflect amplification of the primary piRNAs by cleavage of mRNAs derived from the other P elements through a mechanism called the ping-pong cycle. We tested the transposase-encoding P element known as ∆2-3 for its ability to enhance cytotype regulation anchored in P elements inserted at the telomere of the left arm of the X chromosome (TP elements). The ∆2-3 P element lacks the intron between exons 2 and 3 in the structurally complete P element (CP). Unlike the CP element, it does not markedly enhance cytotype regulation anchored in TP elements, nor does it transmit transposase activity through the egg cytoplasm. However, mRNAs from both the CP and ∆2-3 elements are maternally deposited in embryos. These observations suggest that maternally transmitted CP mRNA enhances cytotype regulation by participating in the ping-pong cycle and that it encodes the P transposase in the embryonic germ line, whereas maternally transmitted ∆2-3 mRNA does not, possibly because it is not efficiently directed into the primordial embryonic germ line. Strong transposon regulation may, therefore, require ping-pong cycling with maternally inherited mRNAs in the embryo.
Collapse
Affiliation(s)
- Peter J Merriman
- Department of Genetics, Cell Biology and Development, 250 BioScience Center, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN, 55108-1095, USA
| | | |
Collapse
|
45
|
de Vanssay A, Bougé AL, Boivin A, Hermant C, Teysset L, Delmarre V, Ronsseray S, Antoniewski C. Profiles of piRNA abundances at emerging or established piRNA loci are determined by local DNA sequences. RNA Biol 2013; 10:1233-9. [PMID: 23880829 PMCID: PMC3817142 DOI: 10.4161/rna.25756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) ensure transposable element silencing in Drosophila, thereby preserving genome integrity across generations. Primary piRNAs arise from the processing of long RNA transcripts produced in the germ line by a limited number of telomeric and pericentromeric loci. Primary piRNAs bound to the Argonaute protein Aubergine then drive the production of secondary piRNAs through the "ping-pong" amplification mechanism that involves an interplay with piRNAs bound to the Argonaute protein Argonaute-3. We recently discovered that clusters of P-element-derived transgenes produce piRNAs and mediate silencing of homologous target transgenes in the female germ line. We also demonstrated that some clusters are able to convert other homologous inactive transgene clusters into piRNA-producing loci, which then transmit their acquired silencing capacity over generations. This paramutation phenomenon is mediated by maternal inheritance of piRNAs homologous to the transgenes. Here we further mined our piRNA sequencing data sets generated from various strains carrying transgenes with partial sequence homology at distinct genomic sites. This analysis revealed that same sequences in different genomic contexts generate highly similar profiles of piRNA abundances. The strong tendency of piRNAs for bearing a U at their 5' end has long been recognized. Our observations support the notion that, in addition, the relative frequencies of Drosophila piRNAs are locally determined by the DNA sequence of piRNA loci.
Collapse
Affiliation(s)
- Augustin de Vanssay
- Epigenetic Repression and Transposable Elements; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
de Vanssay A, Bougé AL, Boivin A, Hermant C, Teysset L, Delmarre V, Antoniewski C, Ronsseray S. Conversions épigénétiques transmises de façon stable au cours des générations. Med Sci (Paris) 2013; 29:136-8. [DOI: 10.1051/medsci/2013292007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Rozhkov NV, Hammell M, Hannon GJ. Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev 2013; 27:400-12. [PMID: 23392609 DOI: 10.1101/gad.209767.112] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Silencing of transposons in the Drosophila ovary relies on three Piwi family proteins--Piwi, Aubergine (Aub), and Ago3--acting in concert with their small RNA guides, the Piwi-interacting RNAs (piRNAs). Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell type-specific knockdowns with measurements of steady-state transposon mRNA levels, nascent RNA synthesis, chromatin state, and small RNA abundance. In somatic cells, Piwi loss led to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady-state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on local chromatin states and transcription but also participating in germ cell piRNA biogenesis.
Collapse
Affiliation(s)
- Nikolay V Rozhkov
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
48
|
Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin AA, Tóth KF. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev 2013; 27:390-9. [PMID: 23392610 DOI: 10.1101/gad.209841.112] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the metazoan germline, piwi proteins and associated piwi-interacting RNAs (piRNAs) provide a defense system against the expression of transposable elements. In the cytoplasm, piRNA sequences guide piwi complexes to destroy complementary transposon transcripts by endonucleolytic cleavage. However, some piwi family members are nuclear, raising the possibility of alternative pathways for piRNA-mediated regulation of gene expression. We found that Drosophila Piwi is recruited to chromatin, colocalizing with RNA polymerase II (Pol II) on polytene chromosomes. Knockdown of Piwi in the germline increases expression of transposable elements that are targeted by piRNAs, whereas protein-coding genes remain largely unaffected. Derepression of transposons upon Piwi depletion correlates with increased occupancy of Pol II on their promoters. Expression of piRNAs that target a reporter construct results in a decrease in Pol II occupancy and an increase in repressive H3K9me3 marks and heterochromatin protein 1 (HP1) on the reporter locus. Our results indicate that Piwi identifies targets complementary to the associated piRNA and induces transcriptional repression by establishing a repressive chromatin state when correct targets are found.
Collapse
Affiliation(s)
- Adrien Le Thomas
- California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Hybrids of two Drosophila species show transposable element derepression and piRNA pathway malfunction, revealing adaptive evolution of piRNA pathway components. The Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA pathway genes rather than species-specific differences in TE-derived piRNAs. Eukaryotic genomes contain large quantities of transposable elements (TEs), short self-replicating DNA sequences that can move within the genome. The selfish replication of TEs has potentially drastic consequences for the host, such as disruption of gene function, induction of sterility, and initiation or exacerbation of some cancers. Like the adaptive immune system that defends our bodies against pathogens, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful effects of TEs. Fundamental to piRNA-mediated defense is the production of small noncoding RNAs that act like antibodies to target replicating TEs for destruction by piRNA-effector proteins. piRNAs are expected to diverge rapidly between species in response to genome infection by increasingly disparate TEs. Here, we tested this hypothesis by examining how differences in piRNAs between two species of fruit fly relate to TE “immunity” in their hybrid offspring. Because piRNAs are maternally deposited, we expected excessive replication of paternal TEs in hybrids. Surprisingly, we observe increased activity of both maternal and paternal TEs, together with defects in piRNA production that are reminiscent of piRNA effector-protein mutants. Our observations reveal that piRNA effector-proteins do not function properly in hybrids, and we propose that adaptive evolution among piRNA effector-proteins contributes to host genome defense and leads to the functional incompatibilities that we observe in hybrids.
Collapse
MESH Headings
- Adaptation, Biological
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Crosses, Genetic
- DNA Transposable Elements
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Evolution, Molecular
- Female
- Genetic Complementation Test
- Genome, Insect
- Hybridization, Genetic
- Immunohistochemistry
- Inheritance Patterns
- Male
- Mutation
- Ovary/cytology
- Ovary/metabolism
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Phenotype
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Selection, Genetic
- Species Specificity
Collapse
Affiliation(s)
- Erin S. Kelleher
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (ESK); (DAB)
| | | | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (ESK); (DAB)
| |
Collapse
|
50
|
Lindsay J, Carone DM, Brown J, Hall L, Qureshi S, Mitchell SE, Jannetty N, Hannon G, Renfree M, Pask A, O'Neill M, O'Neill R. Unique small RNA signatures uncovered in the tammar wallaby genome. BMC Genomics 2012; 13:559. [PMID: 23075437 PMCID: PMC3576234 DOI: 10.1186/1471-2164-13-559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022] Open
Abstract
Background Small RNAs have proven to be essential regulatory molecules encoded within eukaryotic genomes. These short RNAs participate in a diverse array of cellular processes including gene regulation, chromatin dynamics and genome defense. The tammar wallaby, a marsupial mammal, is a powerful comparative model for studying the evolution of regulatory networks. As part of the genome sequencing initiative for the tammar, we have explored the evolution of each of the major classes of mammalian small RNAs in an Australian marsupial for the first time, including the first genome-scale analysis of the newest class of small RNAs, centromere repeat associated short interacting RNAs (crasiRNAs). Results Using next generation sequencing, we have characterized the major classes of small RNAs, micro (mi) RNAs, piwi interacting (pi) RNAs, and the centromere repeat associated short interacting (crasi) RNAs in the tammar. We examined each of these small RNA classes with respect to the newly assembled tammar wallaby genome for gene and repeat features, salient features that define their canonical sequences, and the constitution of both highly conserved and species-specific members. Using a combination of miRNA hairpin predictions and co-mapping with miRBase entries, we identified a highly conserved cluster of miRNA genes on the X chromosome in the tammar and a total of 94 other predicted miRNA producing genes. Mapping all miRNAs to the tammar genome and comparing target genes among tammar, mouse and human, we identified 163 conserved target genes. An additional nine genes were identified in tammar that do not have an orthologous miRNA target in human and likely represent novel miRNA-regulated genes in the tammar. A survey of the tammar gonadal piRNAs shows that these small RNAs are enriched in retroelements and carry members from both marsupial and tammar-specific repeat classes. Lastly, this study includes the first in-depth analyses of the newly discovered crasiRNAs. These small RNAs are derived largely from centromere-enriched retroelements, including a novel SINE. Conclusions This study encompasses the first analyses of the major classes of small RNAs for the newly completed tammar genome, validates preliminary annotations using deep sequencing and computational approaches, and provides a foundation for future work on tammar-specific as well as conserved, but previously unknown small RNA progenitors and targets identified herein. The characterization of new miRNA target genes and a unique profile for crasiRNAs has allowed for insight into multiple RNA mediated processes in the tammar, including gene regulation, species incompatibilities, centromere and chromosome function.
Collapse
Affiliation(s)
- James Lindsay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|