1
|
Duan Y, Shang X, Wu R, Yu Y, He Q, Tian R, Li W, Zhu G, Guo W. The transcription factor GhMYB4 represses lipid transfer and sucrose transporter genes and inhibits fiber cell elongation in cotton. PLANT PHYSIOLOGY 2024; 197:kiae637. [PMID: 39607732 DOI: 10.1093/plphys/kiae637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Cotton (Gossypium hirsutum) fiber is a highly elongated single cell with a thickened cell wall. MYB transcription factors are important regulators of plant cell elongation; however, the molecular mechanism involved in regulating fiber elongation remains to be explored. Here, we present evidence that the R2R3-MYB transcription factor GhMYB4 negatively regulates cotton fiber cell elongation by suppressing the expression of 2 crucial genes previously reported to affect fiber development: lipid transfer protein 4 (GhLTP4) and sucrose transporter 12 (GhSWEET12). GhMYB4 is preferentially expressed in elongating fiber cells. Knockdown of GhMYB4 in cotton results in longer fiber cells, whereas overexpression of GhMYB4 in Arabidopsis leads to reduced plant height and root length. Transcriptomic and lipidomic analyses revealed that GhMYB4 is involved in coordinating 3 interconnected biological processes, namely lipid content regulation, auxin signaling, and sugar metabolism. Additionally, we showed that GhMYB4 inhibits the expression of GhLTP4 and GhSWEET12 by binding to the MYB cis-element (TTTAGTG) in their respective promoters. Interestingly, basic helix-loop-helix transcription factor 105 (GhbHLH105) and MYB transcription factor 212 (GhMYB212) counteract the inhibitory effects of GhMYB4 on the expression of GhLTP4 and GhSWEET12, respectively. These findings provide insights into the complex molecular mechanisms regulating plant cell elongation.
Collapse
Affiliation(s)
- Yujia Duan
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoxue Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiping Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Ding B, Liu B, Zhu X, Zhang H, Hu R, Li S, Zhang L, Jiang L, Yang Y, Zhang M, Zhao J, Pei Y, Hou L. Downregulation of the GhROD1 Gene Improves Cotton Fiber Fineness by Decreasing Acyl Pool Saturation, Stimulating Small Heat Shock Proteins (sHSPs), and Reducing H 2O 2 Production. Int J Mol Sci 2024; 25:11242. [PMID: 39457024 PMCID: PMC11509027 DOI: 10.3390/ijms252011242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Cotton fiber is one of the most important natural fiber sources in the world, and lipid metabolism plays a critical role in its development. However, the specific role of lipid molecules in fiber development and the impact of fatty acid alterations on fiber quality remain largely unknown. In this study, we demonstrate that the downregulation of GhROD1, a gene encoding phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), results in an improvement of fiber fineness. We found that GhROD1 downregulation significantly increases the proportion of linoleic acid (18:2) in cotton fibers, which subsequently upregulates genes encoding small heat shock proteins (sHSPs). This, in turn, reduces H2O2 production, thus delaying secondary wall deposition and leading to finer fibers. Our findings reveal how alterations in linoleic acid influence cellulose synthesis and suggest a potential strategy to improve cotton fiber quality by regulating lipid metabolism pathways.
Collapse
Affiliation(s)
- Bo Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Bi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Xi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Huiming Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Rongyu Hu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Silu Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Liuqin Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Linzhu Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Juan Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Lei Hou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Shi S, Tang R, Hao X, Tang S, Chen W, Jiang C, Long M, Chen K, Hu X, Xie Q, Xie S, Meng Z, Ismayil A, Jin X, Wang F, Liu H, Li H. Integrative Transcriptomic and Metabolic Analyses Reveal That Flavonoid Biosynthesis Is the Key Pathway Regulating Pigment Deposition in Naturally Brown Cotton Fibers. PLANTS (BASEL, SWITZERLAND) 2024; 13:2028. [PMID: 39124145 PMCID: PMC11314106 DOI: 10.3390/plants13152028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Brown cotton is a major cultivar of naturally colored cotton, and brown cotton fibers (BCFs) are widely utilized as raw materials for textile industry production due to their advantages of being green and dyeing-pollution-free. However, the mechanisms underlying the pigmentation in fibers are still poorly understood, which significantly limits their extensive applications in related fields. In this study, we conducted a multidimensional comparative analysis of the transcriptomes and metabolomes between brown and white fibers at different developmental periods to identify the key genes and pathways regulating the pigment deposition. The transcriptomic results indicated that the pathways of flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched regulatory pathways, especially in the late development periods of fiber pigmentation; furthermore, the genes distributed in the pathways of PAL, CHS, F3H, DFR, ANR, and UFGT were identified as significantly up-regulated genes. The metabolic results showed that six metabolites, namely (-)-Epigallocatechin, Apiin, Cyanidin-3-O-glucoside, Gallocatechin, Myricetin, and Poncirin, were significantly accumulated in brown fibers but not in white fibers. Integrative analysis of the transcriptomic and metabolomic data demonstrated a possible regulatory network potentially regulating the pigment deposition, in which three MYB transcription factors promote the expression levels of flavonoid biosynthesis genes, thereby inducing the content increase in (-)-Epigallocatechin, Cyanidin-3-O-glucoside, Gallocatechin, and Myricetin in BCFs. Our findings provide new insights into the pigment deposition mechanism in BCFs and offer references for genetic engineering and breeding of colored cotton materials.
Collapse
Affiliation(s)
- Shandang Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
| | - Rui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Xiaoyun Hao
- Rural Energy and Environment Workstation of Yili State, Yining 835000, China
| | - Shouwu Tang
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
| | - Wengang Chen
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
| | - Chao Jiang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Mengqian Long
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Kailu Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Xiangxiang Hu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Asigul Ismayil
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Haifeng Liu
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Tian X, Ji M, You J, Zhang Y, Lindsey K, Zhang X, Tu L, Wang M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:405-422. [PMID: 38163320 DOI: 10.1111/tpj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Cell polarity is the foundation of cell development and tissue morphogenesis. The investigation of polarized growth provides opportunities to gain profound insights into morphogenesis and tissue functionality in organisms. Currently, there are still many mysteries surrounding the mechanisms that regulate polarized cell growth. Cotton fiber cells serve as an excellent model for studying polarized growth, and provide important clues for unraveling the molecular mechanisms, signaling pathways, and regulatory networks of polarized growth. In this study, we characterized two functional genes, GhMDHAR1AT/DT and GhDHAR2AT/DT with predominant expression during fiber elongation. Loss of function of both genes contributed to a significant increase in fiber length. Transcriptomic data revealed up-regulated expression of antioxidant genes in CRISPR mutant lines, along with delayed expression of secondary wall-related genes and temporally prolonged expression of primary wall-related genes. Experimental evidence demonstrated that the increase in GSH content and glutathione peroxidase (GPX) enzyme activity led to enhanced total antioxidant capacity (T-AOC), resulting in reduced H2O2 levels, which contributed to the extension of fiber elongation stage in CRISPR mutant lines. Moreover, the increased polysaccharide synthesis in CRISPR mutant lines was found to provide an abundant supply of raw materials for fiber cell wall elongation, suggesting that synergistic interplay between redox homeostasis and polysaccharide synthesis in fiber cells may facilitate cell wall remodeling and fiber elongation. This study provides valuable insights for deciphering the mechanisms of cell polarized growth and improving cotton fiber quality.
Collapse
Affiliation(s)
- Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Ji
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Islam MR, Karim FE, Khan AN. Statistical analysis of Cotton-Jute blended ratio for producing good quality blended yarn. Heliyon 2024; 10:e25027. [PMID: 38312702 PMCID: PMC10835373 DOI: 10.1016/j.heliyon.2024.e25027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
The present world is focusing on sustainable products. Most of the natural products collected from are environmentally friendly. In the textile sector the main raw material is fiber. Most textile products are made from the natural cotton fibers. But because of the shortage of this fiber, most of the researchers are looking forwards to other sources of natural fibers. Here in Bangladesh the natural jute fiber is available and the textile industries are making jute products but the jute products are comparatively lower price than cotton products. That's why some factories are making cotton-jute blended yarn to minimise the cost and increase the product's quality and appearance. Here in this research work, it was tried to identify the best cotton-jute blended ratio for producing good quality yarn. 80C-20 J, 60C-40 J and 40C-60 J blended ratios are compared with 100 C and 100 J yarn to analyse the results. The CV m%, Thick/Km +50 %, Neps/Km +200 %, IPI, RKM and Elongation% of blended yarns are evaluated and compared the results between the ratios. After that the yarn quality index (YQI) was calculated to identify the ratio which indicates a relation between yarns strength, elongation% and CVm. The other quality index was fiber quality index (FQI) which indicates a relation between fibers strength, fiber mean length, elongation% and fiber fineness. One way ANOVA was applied to see the significance level between the independent variables. Box plot was applied to see the visual effect of statistical analysis at the same time the regression results show the impact of cotton-jute ratio with an equation, through which it was easy to identify the perfect ratio. It was found that higher percentage of cotton and lower percentage of jute fiber blended yarn shows good results than others. The products which were made from the ratios were shown good results for their different use of purposes.
Collapse
Affiliation(s)
- Md. Redwanul Islam
- Department of Textile Engineering, Ahsanullah University of Science and Technology (AUST), Bangladesh
| | - Fahmida-E- Karim
- Department of Textile Engineering, BGMEA University of Fashion & Technology (BUFT), Bangladesh
| | - Ayub Nabi Khan
- Department of Textile Engineering, BGMEA University of Fashion & Technology (BUFT), Bangladesh
| |
Collapse
|
6
|
Naveed S, Gandhi N, Billings G, Jones Z, Campbell BT, Jones M, Rustgi S. Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2023; 24:14174. [PMID: 37762483 PMCID: PMC10532291 DOI: 10.3390/ijms241814174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cotton (Gossypium spp.) is the primary source of natural textile fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an Upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time, and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified molecular markers associated with the gene expression traits via genome-wide association analysis using a 63 K SNP Array. Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed associations with expression traits. Of these 396 markers, 159 were mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated.
Collapse
Affiliation(s)
- Salman Naveed
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Nitant Gandhi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Grant Billings
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Zachary Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - B. Todd Campbell
- USDA-ARS Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA;
| | - Michael Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| |
Collapse
|
7
|
Jareczek JJ, Grover CE, Hu G, Xiong X, Arick Ii MA, Peterson DG, Wendel JF. Domestication over Speciation in Allopolyploid Cotton Species: A Stronger Transcriptomic Pull. Genes (Basel) 2023; 14:1301. [PMID: 37372480 DOI: 10.3390/genes14061301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cotton has been domesticated independently four times for its fiber, but the genomic targets of selection during each domestication event are mostly unknown. Comparative analysis of the transcriptome during cotton fiber development in wild and cultivated materials holds promise for revealing how independent domestications led to the superficially similar modern cotton fiber phenotype in upland (G. hirsutum) and Pima (G. barbadense) cotton cultivars. Here we examined the fiber transcriptomes of both wild and domesticated G. hirsutum and G. barbadense to compare the effects of speciation versus domestication, performing differential gene expression analysis and coexpression network analysis at four developmental timepoints (5, 10, 15, or 20 days after flowering) spanning primary and secondary wall synthesis. These analyses revealed extensive differential expression between species, timepoints, domestication states, and particularly the intersection of domestication and species. Differential expression was higher when comparing domesticated accessions of the two species than between the wild, indicating that domestication had a greater impact on the transcriptome than speciation. Network analysis showed significant interspecific differences in coexpression network topology, module membership, and connectivity. Despite these differences, some modules or module functions were subject to parallel domestication in both species. Taken together, these results indicate that independent domestication led G. hirsutum and G. barbadense down unique pathways but that it also leveraged similar modules of coexpression to arrive at similar domesticated phenotypes.
Collapse
Affiliation(s)
- Josef J Jareczek
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
- Biology Department, Bellarmine University, Louisville, KY 40205, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mark A Arick Ii
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
8
|
Jareczek JJ, Grover CE, Wendel JF. Cotton fiber as a model for understanding shifts in cell development under domestication. FRONTIERS IN PLANT SCIENCE 2023; 14:1146802. [PMID: 36938017 PMCID: PMC10017751 DOI: 10.3389/fpls.2023.1146802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/21/2023] [Indexed: 05/27/2023]
Abstract
Cotton fiber provides the predominant plant textile in the world, and it is also a model for plant cell wall biosynthesis. The development of the single-celled cotton fiber takes place across several overlapping but discrete stages, including fiber initiation, elongation, the transition from elongation to secondary cell wall formation, cell wall thickening, and maturation and cell death. During each stage, the developing fiber undergoes a complex restructuring of genome-wide gene expression change and physiological/biosynthetic processes, which ultimately generate a strikingly elongated and nearly pure cellulose product that forms the basis of the global cotton industry. Here, we provide an overview of this developmental process focusing both on its temporal as well as evolutionary dimensions. We suggest potential avenues for further improvement of cotton as a crop plant.
Collapse
Affiliation(s)
- Josef J. Jareczek
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
- Biology Department, Bellarmine University, Louisville, KY, United States
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Qin Y, Sun M, Li W, Xu M, Shao L, Liu Y, Zhao G, Liu Z, Xu Z, You J, Ye Z, Xu J, Yang X, Wang M, Lindsey K, Zhang X, Tu L. Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2372-2388. [PMID: 36053965 PMCID: PMC9674311 DOI: 10.1111/pbi.13918] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.
Collapse
Affiliation(s)
- Yuan Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Weiwen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mingqi Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Lei Shao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yuqi Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiawen Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| |
Collapse
|
10
|
Yu D, Li X, Li Y, Ali F, Li F, Wang Z. Dynamic roles and intricate mechanisms of ethylene in epidermal hair development in Arabidopsis and cotton. THE NEW PHYTOLOGIST 2022; 234:375-391. [PMID: 34882809 DOI: 10.1111/nph.17901] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Ethylene affects many aspects of plant growth and development, including root hairs and trichomes growth in Arabidopsis, as well as fiber development in cotton, though the underlying mechanism is unclear. In this article, we update the research progress associated with the main genes in ethylene biosynthesis and signaling pathway, and we propose a clear ethylene pathway based on genome-wide identification of homologues in cotton. Expression pattern analysis using transcriptome data revealed that some candidate genes may contribute to cotton fiber development through the ethylene pathway. Moreover, we systematically summarized the effects of ethylene on the development of epidermal hair and the underlying regulatory mechanisms in Arabidopsis. Based on the knowledge of ethylene-promoted cell differentiation, elongation, and development in different tissues or plants, we advised a possible regulatory network for cotton fiber development with ethylene as the hub. Importantly, we emphasized the roles of ethylene as an important node in regulating cotton vegetative growth, and stress resistance, and suggested utilizing multiple methods to subtly modify ethylene synthesis or signaling in a tissue or spatiotemporal-specific manner to clarify its exact effect on architecture, adaptability of the plant, and fiber development, paving the way for basic research and genetic improvement of the cotton crop.
Collapse
Affiliation(s)
- Daoqian Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yonghui Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
11
|
Li Y, Mo T, Ran L, Zeng J, Wang C, Liang A, Dai Y, Wu Y, Zhong Z, Xiao Y. Genome resequencing-based high-density genetic map and QTL detection for yield and fiber quality traits in diploid Asiatic cotton (Gossypium arboreum). Mol Genet Genomics 2022; 297:199-212. [PMID: 35048185 DOI: 10.1007/s00438-021-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Cotton is the most important fiber crop in the world. Asiatic cotton (Gossypium arboreum, genome A2) is a diploid cotton species producing spinnable fibers and important germplasm for cotton breeding and a significant model for fiber biology. However, the genetic map of Asiatic cotton has been lagging behind tetraploid cottons, as well as other stable crops. This study aimed to construct a high-density SNP genetic map and to map QTLs for important yield and fiber quality traits. Using a recombinant inbred line (RIL) population and genome resequencing technology, we constructed a high-density genetic map that covered 1980.17 cM with an average distance of 0.61 cM between adjacent markers. QTL analysis revealed a total of 297 QTLs for 13 yield and fiber quality traits in three environments, explaining 5.0-37.4% of the phenotypic variance, among which 75 were stably detected in two or three environments. Besides, 47 QTL clusters, comprising 131 QTLs for representative traits, were identified. Our works laid solid foundation for fine mapping and cloning of QTL for yield and fiber quality traits in Asiatic cotton.
Collapse
Affiliation(s)
- Yaohua Li
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Tong Mo
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Lingfang Ran
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Jianyan Zeng
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Chuannan Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Aimin Liang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yonglu Dai
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yiping Wu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Ziman Zhong
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yuehua Xiao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China.
| |
Collapse
|
12
|
Kolahi M, Faghani E, Kazemian M, Goldson-Barnaby A, Dodangi S. Changes in secondary metabolites and fiber quality of cotton ( Gossypium hirsutum) seed under consecutive water stress and in silico analysis of cellulose synthase and xyloglucan endotransglucosylase. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1837-1857. [PMID: 34539119 PMCID: PMC8405814 DOI: 10.1007/s12298-021-01033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 05/31/2023]
Abstract
Global warming has led to severe drought conditions. The selection of plant varieties that can withstand drought and produce increased yields are of utmost importance. In the current study, secondary metabolites, seed trait and fiber characteristic of cottonseeds (Gossypium hirsutum) exposed to double and third water stress exposure was investigated. Total phenol and tannin content in W1S33 increased significantly after third water stress exposure. Accumulation of wax was enhanced in seeds of W3S33 and W3S34 that were subjected to third water stress. Fiber quality parameters decreased when cottonseeds were rainfed. High irrigation resulted in fragile and delicate fiber. Seeds grown under 66% FC irrigation saved water and produced seeds that had the potential of producing high quality fibers. In silico analysis was performed on cellulose synthase A (CesA) and xyloglucan endotransglycosylase (XET) enzymes present in Gossypium hirsutum. The intracellular locations of the CesA and XET1 enzymes are the plasma membrane and cell wall, respectively. Proline is conserved in the C-terminal of the CesA enzyme and plays an important role in enzyme functionality. This study provides a better understanding as to the mechanisms by which the plant can tolerate and combat water stress conditions as well as reduce water consumption. In order to grow cotton seeds with desirable morphometric characteristics and optimal fibers under water stress exposure and in dry areas, it is better to use seeds that are irrigated under optimal irrigation conditions, ie 66% FC.
Collapse
Affiliation(s)
- Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 61357-43169 Ahvaz, Iran
| | - Elham Faghani
- Agronomy Department, Agricultural Research, Education and Extension Organization (AREEO), Cotton Research Institute, Gorgan, Iran
| | - Mina Kazemian
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Sedighe Dodangi
- Expertise Lab, Agricultural Research, Education and Extension Organization (AREEO), Cotton Research Institute, Gorgan, Iran
| |
Collapse
|
13
|
Chen X, Lai H, Li R, Yao Y, Liu J, Yuan S, Fu S, Hu X, Guo J. Character changes and Transcriptomic analysis of a cassava sexual Tetraploid. BMC PLANT BIOLOGY 2021; 21:188. [PMID: 33874893 PMCID: PMC8056498 DOI: 10.1186/s12870-021-02963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) is an important food crop known for its high starch content. Polyploid breeding is effective in its genetic improvement, and use of 2n gametes in sexual polyploid breeding is one of the potential methods for cassava breeding and improvement. In our study, the cassava sexual tetraploid (ST), which carries numerous valuable traits, was successfully generated by hybridizing 2n female gametes SC5 (♀) and 2n male gametes SC10 (♂). However, the molecular mechanisms remain unclear. To understand these underlying molecular mechanisms behind the phenotypic alterations and heterosis in ST plants, we investigated the differences in gene expression between polyploids and diploids by determining the transcriptomes of the ST plant and its parents during the tuber root enlargement period. We also compared the characters and transcriptomes of the ST plant with its parents. RESULTS The ST plant was superior in plant height, stem diameter, leaf area, petiole length, plant weight, and root weight than the parent plants, except the leaf number, which was lower. The number of starch granules was higher in the roots of ST plants than those in the parent plants after five months (tuber root enlargement period), which could be due to a higher leaf net photosynthetic rate leading to early filling of starch granules. Based on transcriptome analysis, we identified 2934 and 3171 differentially expressed genes (DEGs) in the ST plant as compared to its female and male parents, respectively. Pathway enrichment analyses revealed that flavonoid biosynthesis and glycolysis/gluconeogenesis were significantly enriched in the ST plants, which might contribute to the colors of petiole (purple-red), root epidermis (dark brown), and tuber starch accumulation, respectively. CONCLUSIONS After sexual polyploidization, the phenotype of ST has changed significantly in comparison to their diploid parents, mainly manifest as enlarged biomass, yield, early starch filling, deep colored petiole and root epidermis. The tetraploid plants were also mature early due to early starch grain filling. Owing to enriched flavonoid biosynthesis and glycolysis/gluconeogenesis, they are possibly resistant to adversity stresses and provide better yield, respectively.
Collapse
Affiliation(s)
- Xia Chen
- Agricultural College of Hainan University, Haikou, 571104 China
| | - Hanggui Lai
- Agricultural College of Hainan University, Haikou, 571104 China
| | - Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Shuai Yuan
- Agricultural College of Hainan University, Haikou, 571104 China
| | - Shaoping Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Xinwen Hu
- Agricultural College of Hainan University, Haikou, 571104 China
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
14
|
Liu Z, Wang X, Sun Z, Zhang Y, Meng C, Chen B, Wang G, Ke H, Wu J, Yan Y, Wu L, Li Z, Yang J, Zhang G, Ma Z. Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes. BMC PLANT BIOLOGY 2021; 21:89. [PMID: 33568051 PMCID: PMC7876823 DOI: 10.1186/s12870-021-02859-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/27/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Dirigent (DIR) proteins mediate regioselectivity and stereoselectivity during lignan biosynthesis and are also involved in lignin, gossypol and pterocarpan biosynthesis. This gene family plays a vital role in enhancing stress resistance and in secondary cell-wall development, but systematical understanding is lacking in cotton. RESULTS In this study, 107 GbDIRs and 107 GhDIRs were identified in Gossypium barbadense and Gossypium hirsutum, respectively. Most of these genes have a classical gene structure without intron and encode proteins containing a signal peptide. Phylogenetic analysis showed that cotton DIR genes were classified into four distinct subfamilies (a, b/d, e, and f). Of these groups, DIR-a and DIR-e were evolutionarily conserved, and segmental and tandem duplications contributed equally to their formation. In contrast, DIR-b/d mainly expanded by recent tandem duplications, accompanying with a number of gene clusters. With the rapid evolution, DIR-b/d-III was a Gossypium-specific clade involved in atropselective synthesis of gossypol. RNA-seq data highlighted GhDIRs in response to Verticillium dahliae infection and suggested that DIR gene family could confer Verticillium wilt resistance. We also identified candidate DIR genes related to fiber development in G. barbadense and G. hirsutum and revealed their differential expression. To further determine the involvement of DIR genes in fiber development, we overexpressed a fiber length-related gene GbDIR78 in Arabidopsis and validated its function in trichomes and hypocotyls. CONCLUSIONS These findings contribute novel insights towards the evolution of DIR gene family and provide valuable information for further understanding the roles of DIR genes in cotton fiber development as well as in stress responses.
Collapse
Affiliation(s)
- Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yuanyuan Yan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
15
|
Conservation and Divergence in Duplicated Fiber Coexpression Networks Accompanying Domestication of the Polyploid Gossypium hirsutum L. G3-GENES GENOMES GENETICS 2020; 10:2879-2892. [PMID: 32586849 PMCID: PMC7407458 DOI: 10.1534/g3.120.401362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gossypium hirsutum L. (Upland cotton) has an evolutionary history involving inter-genomic hybridization, polyploidization, and subsequent domestication. We analyzed the developmental dynamics of the cotton fiber transcriptome accompanying domestication using gene coexpression networks for both joint and homoeologous networks. Remarkably, most genes exhibited expression for at least one homoeolog, confirming previous reports of widespread gene usage in cotton fibers. Most coexpression modules comprising the joint network are preserved in each subgenomic network and are enriched for similar biological processes, showing a general preservation of network modular structure for the two co-resident genomes in the polyploid. Interestingly, only one fifth of homoeologs co-occur in the same module when separated, despite similar modular structures between the joint and homoeologous networks. These results suggest that the genome-wide divergence between homoeologous genes is sufficient to separate their co-expression profiles at the intermodular level, despite conservation of intramodular relationships within each subgenome. Most modules exhibit D-homoeolog expression bias, although specific modules do exhibit A-homoeolog bias. Comparisons between wild and domesticated coexpression networks revealed a much tighter and denser network structure in domesticated fiber, as evidenced by its fewer modules, 13-fold increase in the number of development-related module member genes, and the poor preservation of the wild network topology. These results demonstrate the amazing complexity that underlies the domestication of cotton fiber.
Collapse
|
16
|
The Gossypium longicalyx Genome as a Resource for Cotton Breeding and Evolution. G3-GENES GENOMES GENETICS 2020; 10:1457-1467. [PMID: 32122962 PMCID: PMC7202014 DOI: 10.1534/g3.120.401050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cotton is an important crop that has made significant gains in production over the last century. Emerging pests such as the reniform nematode have threatened cotton production. The rare African diploid species Gossypium longicalyx is a wild species that has been used as an important source of reniform nematode immunity. While mapping and breeding efforts have made some strides in transferring this immunity to the cultivated polyploid species, the complexities of interploidal transfer combined with substantial linkage drag have inhibited progress in this area. Moreover, this species shares its most recent common ancestor with the cultivated A-genome diploid cottons, thereby providing insight into the evolution of long, spinnable fiber. Here we report a newly generated de novo genome assembly of G. longicalyx. This high-quality genome leveraged a combination of PacBio long-read technology, Hi-C chromatin conformation capture, and BioNano optical mapping to achieve a chromosome level assembly. The utility of the G. longicalyx genome for understanding reniform immunity and fiber evolution is discussed.
Collapse
|
17
|
Patel JD, Huang X, Lin L, Das S, Chandnani R, Khanal S, Adhikari J, Shehzad T, Guo H, Roy-Zokan EM, Rong J, Paterson AH. The Ligon lintless -2 Short Fiber Mutation Is Located within a Terminal Deletion of Chromosome 18 in Cotton. PLANT PHYSIOLOGY 2020; 183:277-288. [PMID: 32102829 PMCID: PMC7210651 DOI: 10.1104/pp.19.01531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/28/2020] [Indexed: 05/06/2023]
Abstract
Extreme elongation distinguishes about one-fourth of cotton (Gossypium sp.) seed epidermal cells as "lint" fibers, useful for the textile industry, from "fuzz" fibers (<5 mm). Ligon lintless-2 (Li 2 ), a dominant mutation that results in no lint fiber but normal fuzz fiber, offers insight into pathways and mechanisms that differentiate spinnable cotton from its progenitors. A genetic map developed using 1,545 F2 plants showed that marker CISP15 was 0.4 cM from Li 2 , and "dominant" simple sequence repeat (SSR) markers (i.e. with null alleles in the Li 2 genotype) SSR7 and SSR18 showed complete linkage with Li 2 Nonrandom distribution of markers with null alleles suggests that the Li 2 phenotype results from a 176- to 221-kb deletion of the terminal region of chromosome 18 that may have been masked in prior pooled-sample mapping strategies. The deletion includes 10 genes with putative roles in fiber development. Two Glycosyltransferase Family 1 genes showed striking expression differences during elongation of wild-type versus Li 2 fiber, and virus-induced silencing of these genes in the wild type induced Li 2 -like phenotypes. Further, at least 7 of the 10 putative fiber development genes in the deletion region showed higher expression in the wild type than in Li 2 mutants during fiber development stages, suggesting coordinated regulation of processes in cell wall development and cell elongation, consistent with the hypothesis that some fiber-related quantitative trait loci comprise closely spaced groups of functionally diverse but coordinately regulated genes.
Collapse
Affiliation(s)
- Jinesh D Patel
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Xianzhong Huang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
- Plant Genomics Laboratory, College of Life Sciences, Shihezi University, 832003 Shihezi, China
| | - Lifeng Lin
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Sayan Das
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Rahul Chandnani
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Sameer Khanal
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Jeevan Adhikari
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Eileen M Roy-Zokan
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Junkang Rong
- Zhejiang A&F University, Linan, Hangzhou 311300, Zhejiang, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
18
|
Hu W, Chen L, Qiu X, Wei J, Lu H, Sun G, Ma X, Yang Z, Zhu C, Hou Y, Han X, Sun C, Hu R, Cai Y, Zhang H, Li F, Shen G. AKR2A participates in the regulation of cotton fibre development by modulating biosynthesis of very-long-chain fatty acids. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:526-539. [PMID: 31350932 PMCID: PMC6953204 DOI: 10.1111/pbi.13221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 05/17/2023]
Abstract
The biosynthesis of very-long-chain fatty acids (VLCFAs) and their transport are required for fibre development. However, whether other regulatory factors are involved in this process is unknown. We report here that overexpression of an Arabidopsis gene ankyrin repeat-containing protein 2A (AKR2A) in cotton promotes fibre elongation. RNA-Seq analysis was employed to elucidate the mechanisms of AKR2A in regulating cotton fibre development. The VLCFA content and the ratio of VLCFAs to short-chain fatty acids increased in AKR2A transgenic lines. In addition, AKR2A promotes fibre elongation by regulating ethylene and synergizing with the accumulation of auxin and hydrogen peroxide. Analysis of RNA-Seq data indicates that AKR2A up-regulates transcript levels of genes involved in VLCFAs' biosynthesis, ethylene biosynthesis, auxin and hydrogen peroxide signalling, cell wall and cytoskeletal organization. Furthermore, AKR2A interacted with KCS1 in Arabidopsis both in vitro and in vivo. Moreover, the VLCFA content and the ratio of VLCFAs to short-chain fatty acids increased significantly in seeds of AKR2A-overexpressing lines and AKR2A/KCS1 co-overexpressing lines, while AKR2A mutants are the opposite trend. Our results uncover a novel cotton fibre growth mechanism by which the critical regulator AKR2A promotes fibre development via activating hormone signalling cascade by mediating VLCFA biosynthesis. This study provides a potential candidate gene for improving fibre yield and quality through genetic engineering.
Collapse
Affiliation(s)
- Wenjun Hu
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Lin Chen
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiaoyun Qiu
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jia Wei
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hongling Lu
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Guochang Sun
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiongfeng Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Chunquan Zhu
- National Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yuqi Hou
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiao Han
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Chunyan Sun
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Rongbin Hu
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Yifan Cai
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Hong Zhang
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Fuguang Li
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Guoxin Shen
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
19
|
Huang K, Zhu A, Chen X, Shi Y, Tang Q, Wang X, Sun Z, Luan M, Chen J. Comparative transcriptomics reveals the selection patterns of domesticated ramie. Ecol Evol 2019; 9:7057-7068. [PMID: 31380033 PMCID: PMC6662332 DOI: 10.1002/ece3.5271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
Abstract
Although domestication has dramatically altered the phenotype, physiology, and life history of ramie (Boehmeria nivea) plants, few studies have investigated the effects of domestication on the structure and expression pattern of genes in this fiber crop. To investigate the selective pattern and genetic relationships among a cultivated variety of ramie (BNZ: B. nivea, ZZ1) and four wild species, BNT (B. nivea var. tenacissima), BNN (B. nivea var. nipononivea), BNW (B. nivea var. nivea), and BAN (B. nivea var. viridula), in the section Tilocnide, we performed an RNA sequencing analysis of these ramie species. The de novo assembly of the "all-ramie" transcriptome yielded 119,114 unigenes with an average length of 633 bp, and a total of 7,084 orthologous gene pairs were identified. The phylogenetic tree showed that the cultivar BNZ clustered with BAN in one group, BNW was closely related to BNT, and BNN formed a separate group. Introgression analysis indicated that gene flow occurred from BNZ to BNN and BAN, and between BAN and BNN. Among these orthologs, 2,425 and 269 genes underwent significant purifying and positive selection, respectively. For these positively selected genes, oxidation-reduction process (GO:0055114) and stress response pathways (GO:0006950) were enriched, indicating that modulation of the cellular redox status was important during both ramie fiber evolution and improvement. Two genes related to the suppression of flowering and one gene annotated as a flowering-promoting factor were subjected to positive selection, probably caused by human manipulation. Additionally, five genes were homologs of those involved in abiotic stress tolerance and disease resistance, with higher expression levels in the cultivar BNZ than in the wild species. Collectively, the results of this study indicated that domestication has resulted in the upregulation of many genes involved in the abiotic and biotic stress responses, fiber yield, and plant growth of ramie.
Collapse
Affiliation(s)
- Kun‐Yong Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Ai‐Guo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | | | - Ya‐Liang Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Xiao‐Fei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Zhi‐Min Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Ming‐Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Jian‐Hua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| |
Collapse
|
20
|
Xu Y, Magwanga RO, Cai X, Zhou Z, Wang X, Wang Y, Zhang Z, Jin D, Guo X, Wei Y, Li Z, Wang K, Liu F. Deep Transcriptome Analysis Reveals Reactive Oxygen Species (ROS) Network Evolution, Response to Abiotic Stress, and Regulation of Fiber Development in Cotton. Int J Mol Sci 2019; 20:E1863. [PMID: 30991750 PMCID: PMC6514600 DOI: 10.3390/ijms20081863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) are important molecules in the plant, which are involved in many biological processes, including fiber development and adaptation to abiotic stress in cotton. We carried out transcription analysis to determine the evolution of the ROS genes and analyzed their expression levels in various tissues of cotton plant under abiotic stress conditions. There were 515, 260, and 261 genes of ROS network that were identified in Gossypium hirsutum (AD₁ genome), G. arboreum (A genome), and G. raimondii (D genome), respectively. The ROS network genes were found to be distributed in all the cotton chromosomes, but with a tendency of aggregating on either the lower or upper arms of the chromosomes. Moreover, all the cotton ROS network genes were grouped into 17 families as per the phylogenetic tress analysis. A total of 243 gene pairs were orthologous in G. arboreum and G. raimondii. There were 240 gene pairs that were orthologous in G. arboreum, G. raimondii, and G. hirsutum. The synonymous substitution value (Ks) peaks of orthologous gene pairs between the At subgenome and the A progenitor genome (G. arboreum), D subgenome and D progenitor genome (G. raimondii) were 0.004 and 0.015, respectively. The Ks peaks of ROS network orthologous gene pairs between the two progenitor genomes (A and D genomes) and two subgenomes (At and Dt subgenome) were 0.045. The majority of Ka/Ks value of orthologous gene pairs between the A, D genomes and two subgenomes of TM-1 were lower than 1.0. RNA seq. analysis and RT-qPCR validation, showed that, CSD1,2,3,5,6; FSD1,2; MSD1,2; APX3,11; FRO5.6; and RBOH6 played a major role in fiber development while CSD1, APX1, APX2, MDAR1, GPX4-6-7, FER2, RBOH6, RBOH11, and FRO5 were integral for enhancing salt stress in cotton. ROS network-mediated signal pathway enhances the mechanism of fiber development and regulation of abiotic stress in Gossypium. This study will enhance the understanding of ROS network and form the basic foundation in exploring the mechanism of ROS network-involving the fiber development and regulation of abiotic stress in cotton.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
- Jaramogi Oginga Odinga University of Science and Technology (JOOUST), School of Biological and Physical Sciences (SPBS), P.O BOX 210-40600, Bondo, Kenya.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Zhenmei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Dingsha Jin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Xinlei Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Yangyang Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
- Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Zhenqing Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| |
Collapse
|
21
|
Liu HF, Luo C, Song W, Shen H, Li G, He ZG, Chen WG, Cao YY, Huang F, Tang SW, Hong P, Zhao EF, Zhu J, He D, Wang S, Huo GY, Liu H. Flavonoid biosynthesis controls fiber color in naturally colored cotton. PeerJ 2018; 6:e4537. [PMID: 29682406 PMCID: PMC5910794 DOI: 10.7717/peerj.4537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
The existence of only natural brown and green cotton fibers (BCF and GCF, respectively), as well as poor fiber quality, limits the use of naturally colored cotton (Gossypium hirsutum L.). A better understanding of fiber pigment regulation is needed to surmount these obstacles. In this work, transcriptome analysis and quantitative reverse transcription PCR revealed that 13 and 9 phenylpropanoid (metabolic) pathway genes were enriched during pigment synthesis, while the differential expression of phenylpropanoid (metabolic) and flavonoid metabolic pathway genes occurred among BCF, GCF, and white cotton fibers (WCF). Silencing the chalcone flavanone isomerase gene in a BCF line resulted in three fiber phenotypes among offspring of the RNAi lines: BCF, almost WCF, and GCF. The lines with almost WCF suppressed chalcone flavanone isomerase, while the lines with GCF highly expressed the glucosyl transferase (3GT) gene. Overexpression of the Gh3GT or Arabidopsis thaliana 3GT gene in BCF lines resulted in GCF. Additionally, the phenylpropanoid and flavonoid metabolites of BCF and GCF were significantly higher than those of WCF as assessed by a metabolomics analysis. Thus, the flavonoid biosynthetic pathway controls both brown and green pigmentation processes. Like natural colored fibers, the transgenic colored fibers were weaker and shorter than WCF. This study shows the potential of flavonoid pathway modifications to alter cotton fibers’ color and quality.
Collapse
Affiliation(s)
- Hai-Feng Liu
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Cheng Luo
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Wu Song
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Haitao Shen
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Gang He
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Wen-Gang Chen
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Yan-Yan Cao
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Fang Huang
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Shou-Wu Tang
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - En-Feng Zhao
- Translational Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianbo Zhu
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Dajun He
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Shaoming Wang
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Guang-Ying Huo
- Translational Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hailiang Liu
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China.,Translational Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Eriksson JS, de Sousa F, Bertrand YJK, Antonelli A, Oxelman B, Pfeil BE. Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evol Biol 2018; 18:9. [PMID: 29374461 PMCID: PMC5787288 DOI: 10.1186/s12862-018-1127-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/22/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Whole genome duplication plays a central role in plant evolution. There are two main classes of polyploid formation: autopolyploids which arise within one species by doubling of similar homologous genomes; in contrast, allopolyploidy (hybrid polyploidy) arise via hybridization and subsequent doubling of nonhomologous (homoeologous) genomes. The distinction between polyploid origins can be made using gene phylogenies, if alleles from each genome can be correctly retrieved. We examined whether two closely related tetraploid Mediterranean shrubs (Medicago arborea and M. strasseri) have an allopolyploid origin - a question that has remained unsolved despite substantial previous research. We sequenced and analyzed ten low-copy nuclear genes from these and related species, phasing all alleles. To test the efficacy of allele phasing on the ability to recover the evolutionary origin of polyploids, we compared these results to analyses using unphased sequences. RESULTS In eight of the gene trees the alleles inferred from the tetraploids formed two clades, in a non-sister relationship. Each of these clades was more closely related to alleles sampled from other species of Medicago, a pattern typical of allopolyploids. However, we also observed that alleles from one of the remaining genes formed two clades that were sister to one another, as is expected for autopolyploids. Trees inferred from unphased sequences were very different, with the tetraploids often placed in poorly supported and different positions compared to results obtained using phased alleles. CONCLUSIONS The complex phylogenetic history of M. arborea and M. strasseri is explained predominantly by shared allotetraploidy. We also observed that an increase in woodiness is correlated with polyploidy in this group of species and present a new possibility that woodiness could be a transgressive phenotype. Correctly phased homoeologues are likely to be critical for inferring the hybrid origin of allopolyploid species, when most genes retain more than one homoeologue. Ignoring homoeologous variation by merging the homoeologues can obscure the signal of hybrid polyploid origins and produce inaccurate results.
Collapse
Affiliation(s)
- Jonna S Eriksson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden. .,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.
| | - Filipe de Sousa
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Yann J K Bertrand
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.,Gothenburg Botanical Garden, SE-41319, Göteborg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| | - Bernard E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| |
Collapse
|
23
|
Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 2017; 49:579-587. [PMID: 28263319 DOI: 10.1038/ng.3807] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
Comparative population genomics offers an excellent opportunity for unraveling the genetic history of crop domestication. Upland cotton (Gossypium hirsutum) has long been an important economic crop, but a genome-wide and evolutionary understanding of the effects of human selection is lacking. Here, we describe a variation map for 352 wild and domesticated cotton accessions. We scanned 93 domestication sweeps occupying 74 Mb of the A subgenome and 104 Mb of the D subgenome, and identified 19 candidate loci for fiber-quality-related traits through a genome-wide association study. We provide evidence showing asymmetric subgenome domestication for directional selection of long fibers. Global analyses of DNase I-hypersensitive sites and 3D genome architecture, linking functional variants to gene transcription, demonstrate the effects of domestication on cis-regulatory divergence. This study provides new insights into the evolution of gene organization, regulation and adaptation in a major crop, and should serve as a rich resource for genome-based cotton improvement.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Min Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaolin Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xinhui Nie
- Key Laboratory of Oasis Eco-agriculture of the Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiyan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ling Min
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daojun Yuan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Zhang F, Jin X, Wang L, Li S, Wu S, Cheng C, Zhang T, Guo W. A Cotton Annexin Affects Fiber Elongation and Secondary Cell Wall Biosynthesis Associated with Ca2+ Influx, ROS Homeostasis, and Actin Filament Reorganization. PLANT PHYSIOLOGY 2016; 171:1750-70. [PMID: 27255486 PMCID: PMC4936584 DOI: 10.1104/pp.16.00597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 05/23/2023]
Abstract
Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca(2+) conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca(2+)-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca(2+) is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Like Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| |
Collapse
|
25
|
Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Gallagher JP, Grover CE, Hu G, Wendel JF. Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis. Mol Ecol 2016; 25:2644-60. [PMID: 27027619 DOI: 10.1111/mec.13626] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species.
Collapse
Affiliation(s)
- Joseph P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
27
|
Guo K, Du X, Tu L, Tang W, Wang P, Wang M, Liu Z, Zhang X. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3289-301. [PMID: 27091877 PMCID: PMC4892722 DOI: 10.1093/jxb/erw146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
High-quality cotton fibre equates to a more comfortable textile. Fibre length is an important index of fibre quality. Hydrogen peroxide (H2O2) acts as a signalling molecule in the regulation of fibre elongation. Results from in vitro ovule culture suggest that the alteration of fibre cell H2O2 levels affects fibre development. Ascorbate peroxidase (APX) is an important reactive oxygen species (ROS) scavenging enzyme, and we found that GhAPX1AT/DT encoded one member of the previously unrealized group of cytosolic APXs (cAPXs) that were preferentially expressed during the fibre elongation stage. Transgenic cottons with up- and down-regulation of GhAPX1AT/DT were generated to control fibre endogenous levels of H2O2 Suppression of all cAPX (IAO) resulted in a 3.5-fold increase in H2O2 level in fibres and oxidative stress, which significantly suppressed fibre elongation. The fibre length of transgenic lines with over-expression or specific down-regulation of GhAPX1AT/DT did not show any obvious change. However, the fibres in the over-expression lines exhibited higher tolerance to oxidative stress. Differentially expressed genes (DEGs) in fibres at 10 days post-anthesis (DPA) of IAO lines identified by RNA-seq were related to redox homeostasis, signalling pathways, stress responses and cell wall synthesis, and the DEGs that were up-regulated in IAO lines were also up-regulated in the 10 DPA and 20 DPA fibres of wild cotton compared with domesticated cotton. These results suggest that optimal H2O2 levels and redox state regulated by cytosolic APX are key mechanisms regulating fibre elongation, and dysregulation of the increase in H2O2 induces oxidative stress and results in shorter fibres by initiating secondary cell wall-related gene expression.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenxin Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhen Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
28
|
|
29
|
Wendel JF, Grover CE. Taxonomy and Evolution of the Cotton Genus, Gossypium. AGRONOMY MONOGRAPHS 2015. [DOI: 10.2134/agronmonogr57.2013.0020] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Jonathan F. Wendel
- Dep. of Ecology, Evolution and Organismal Biology, Bessey Hall; Iowa State University; Ames IA 50011
| | - Corrinne E. Grover
- Dep. of Ecology, Evolution and Organismal Biology, Bessey Hall; Iowa State University; Ames IA 50011
| |
Collapse
|
30
|
Wang M, Yuan D, Tu L, Gao W, He Y, Hu H, Wang P, Liu N, Lindsey K, Zhang X. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). THE NEW PHYTOLOGIST 2015; 207:1181-97. [PMID: 25919642 DOI: 10.1111/nph.13429] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/22/2015] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts of at least 200 bp in length, possess no apparent coding capacity and are involved in various biological regulatory processes. Until now, no systematic identification of lncRNAs has been reported in cotton (Gossypium spp.). Here, we describe the identification of 30 550 long intergenic noncoding RNA (lincRNA) loci (50 566 transcripts) and 4718 long noncoding natural antisense transcript (lncNAT) loci (5826 transcripts). LncRNAs are rich in repetitive sequences and preferentially expressed in a tissue-specific manner. The detection of abundant genome-specific and/or lineage-specific lncRNAs indicated their weak evolutionary conservation. Approximately 76% of homoeologous lncRNAs exhibit biased expression patterns towards the At or Dt subgenomes. Compared with protein-coding genes, lncRNAs showed overall higher methylation levels and their expression was less affected by gene body methylation. Expression validation in different cotton accessions and coexpression network construction helped to identify several functional lncRNA candidates involved in cotton fibre initiation and elongation. Analysis of integrated expression from the subgenomes of lncRNAs generating miR397 and its targets as a result of genome polyploidization indicated their pivotal functions in regulating lignin metabolism in domesticated tetraploid cotton fibres. This study provides the first comprehensive identification of lncRNAs in Gossypium.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhui Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghui He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keith Lindsey
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
31
|
Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 2015; 16:477. [PMID: 26116072 PMCID: PMC4482290 DOI: 10.1186/s12864-015-1708-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
Background The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. Results Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. Conclusions The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Gyoungju Nah
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mary V Duke
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | | | - Xueying Guan
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qingxin Song
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Z Jeffrey Chen
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Brian E Scheffler
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
32
|
Shi G, Guo X, Guo J, Liu L, Hua J. Analyzing serial cDNA libraries revealed reactive oxygen species and gibberellins signaling pathways in the salt response of Upland cotton (Gossypium hirsutum L.). PLANT CELL REPORTS 2015; 34:1005-23. [PMID: 25700980 DOI: 10.1007/s00299-015-1761-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/22/2023]
Abstract
By comparing series full-length cDNA libraries stressed and control, the dynamic process of salt stress response in Upland cotton was studied, and reactive oxygen species and gibberellins signaling pathways were proposed. The Upland cotton is the most important fiber plant with highly salt tolerance. However, the molecular mechanism underlying salt tolerance in domesticated cotton was unclear. Here, seven full-length cDNA libraries were constructed for seedling roots of Upland cotton 'Zhong G 5' at 0, 3, 12 and 48 h after the treatment of control or 150 mM NaCl stress. About 3300 colonies in each library were selected robotically for 5'-end pyrosequencing, resulting in 20,358 expressed sequence tags (ESTs) totally. And 8516 uniESTs were then assembled, including 2914 contigs and 5602 singletons, and explored for Gene Ontology (GO) function. GO comparison between serial stress libraries and control reflected the growth regulation, stimulus response, signal transduction and biology regulation processes were conducted dynamically in response to salt stress. MYB, MYB-related, WRKY, bHLH, GRAS and ERF families of transcription factors were significantly enriched in the early response. 65 differentially expressed genes (DEGs), mainly associated with reactive oxygen species (ROS) scavenging, gibberellins (GAs) metabolism, signal transduction, transcription regulation, stress response and transmembrane transport, were identified and confirmed by quantitative real-time PCR. Overexpression of selected DEGs increased tolerance against salt stress in transgenic yeast. Results in this study supported that a ROS-GAs interacting signaling pathway of salt stress response was activated in Upland cotton. Our results provided valuable gene resources for further investigation of the molecular mechanism of salinity tolerance.
Collapse
Affiliation(s)
- Gongyao Shi
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China,
| | | | | | | | | |
Collapse
|
33
|
Yan Q, Liu HS, Yao D, Li X, Chen H, Dou Y, Wang Y, Pei Y, Xiao YH. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization. PLoS One 2015; 10:e0126558. [PMID: 25992947 PMCID: PMC4436304 DOI: 10.1371/journal.pone.0126558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/03/2015] [Indexed: 12/05/2022] Open
Abstract
Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus.
Collapse
Affiliation(s)
- Qian Yan
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Hou-Sheng Liu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Dan Yao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Xin Li
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Han Chen
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yang Dou
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yi Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yan Pei
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yue-Hua Xiao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
- * E-mail:
| |
Collapse
|
34
|
Hu G, Koh J, Yoo MJ, Pathak D, Chen S, Wendel JF. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.). PLANTA 2014; 240:1237-1251. [PMID: 25156487 DOI: 10.1007/s00425-014-2146-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | |
Collapse
|
35
|
Wang XC, Li Q, Jin X, Xiao GH, Liu GJ, Liu NJ, Qin YM. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. J Proteomics 2014; 114:16-27. [PMID: 25449837 DOI: 10.1016/j.jprot.2014.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 01/30/2023]
Abstract
UNLABELLED An iTRAQ-based proteomics of ovules from the upland cotton species Gossypium hirsutum and its fuzzless-lintless mutant was performed, and finally 2729 proteins that preferentially accumulated at anthesis in wild-type ovules were identified. We confirmed that the gene expression levels of 2005 among these proteins also increased by performing an RNA sequencing transcriptomics. Expression of proteins involved in carboxylic acid metabolism, small-molecule metabolic processes, hormone regulation, and lipid metabolism was significantly enhanced in wild-type ovules. Quantitative real-time PCR verified the increased expression of 26 genes involved in these processes. Cotton 3-hydroxyacyl-CoA dehydratase (GhPAS2) catalyzing the third reaction of very long-chain fatty acid (VLCFA) biosynthesis, accumulated at anthesis in wild-type ovules. Heterogeneous expression of GhPAS2 restored viability to the Saccharomyces cerevisiae haploid psh1-deletion strain deficient in PAS2 activity. Application of VLCFA biosynthesis inhibitor acetochlor (2-chloro-N-[ethoxymethyl]-N-[2-ethyl-6-methyl-phenyl]-acetamide; ACE) and gibberellic acid to the unfertilized cotton ovules significantly suppressed fiber cell protrusion. In this study, the profiling of gene expression at both transcriptome and proteome levels provides new insights into cotton fiber cell initiation. BIOLOGICAL SIGNIFICANCE Cotton fiber initiation determines the ultimate number of fibers per ovule, thereby determining fiber yield. In total, 2729 proteins were preferentially accumulated in wild-type ovules at anthesis. The most up-regulated proteins were assigned to carboxylic acid metabolism, small-molecule metabolic processes, hormone regulation, and lipid metabolism. In consistence with these findings, we characterized GhPAS2 gene coding for the enzyme that catalyzes VLCFA production. VLCFA biosynthesis inhibitor, acetochlor, was shown to significantly suppress fiber initiation. This study provides a genome-scale transcriptomic and proteomic characterization of fiber initial cells, laying a solid basis for further investigation of the molecular processes governing fiber cell development.
Collapse
Affiliation(s)
- Xu-Chu Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qin Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Gao-Jun Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Nin-Jing Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yong-Mei Qin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
36
|
Han J, Tan J, Tu L, Zhang X. A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:861-871. [PMID: 24666593 DOI: 10.1111/pbi.12187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Cotton fibres, the single-celled trichomes derived from the ovule epidermis, provide the most important natural material for the global textile industry. A number of studies have demonstrated that regulating endogenous hormone levels through transgenic approaches can improve cotton fibre qualities. Phytosulfokine-α (PSK-α) is a novel peptide hormone in plants that is involved in regulating cell proliferation and elongation. However, its potential applications in crop genetic improvement have not been evaluated. In this study, we describe how exogenous PSK-α application promotes cotton fibre cell elongation in vitro. Chlorate, an effective inhibitor of peptide sulfation, suppressed fibre elongation in ovule culture. Exogenously applied PSK-α partly restored the chlorate-induced suppression. A putative PSK gene (GhPSK) was cloned from Gossypium hirsutum. Expression pattern analysis revealed that GhPSK is preferentially expressed in rapidly elongating fibre cells (5-20 days postanthesis). Overexpression of GhPSK in cotton increased the endogenous PSK-α level and promoted cotton fibre cell elongation, resulting in longer and finer fibres. Further results from electrophysiological and physiological analyses suggest that GhPSK affects fibre development through regulation of K(+) efflux. Digital gene expression (DGE) profile analysis of GhPSK overexpression lines indicates that PSK signalling may regulate the respiratory electron-transport chain and reactive oxygen species to affect cotton fibre development. These results imply that peptide hormones are involved in cotton fibre growth and suggest a new strategy for the biotechnological improvement of cotton fibre quality.
Collapse
Affiliation(s)
- Jie Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
37
|
Fang L, Tian R, Chen J, Wang S, Li X, Wang P, Zhang T. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS One 2014; 9:e94642. [PMID: 24762562 PMCID: PMC3998979 DOI: 10.1371/journal.pone.0094642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs) that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs) were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes), glycolysis/gluconeogenesis (122 genes), phenylpropanoid biosynthesis (101 genes), and oxidative phosphorylation (87 genes), etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.
Collapse
Affiliation(s)
- Lei Fang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Ruiping Tian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Jiedan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Sen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Xinghe Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
38
|
Differential transcriptome analysis between Paulownia fortunei and its synthesized autopolyploid. Int J Mol Sci 2014; 15:5079-93. [PMID: 24663058 PMCID: PMC3975441 DOI: 10.3390/ijms15035079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/13/2023] Open
Abstract
Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx). About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST) search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI) non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization.
Collapse
|
39
|
Chen J, Zhang Y, Liu J, Xia M, Wang W, Shen F. Genome-wide analysis of the RNA helicase gene family in Gossypium raimondii. Int J Mol Sci 2014; 15:4635-56. [PMID: 24642883 PMCID: PMC3975418 DOI: 10.3390/ijms15034635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The RNA helicases, which help to unwind stable RNA duplexes, and have important roles in RNA metabolism, belong to a class of motor proteins that play important roles in plant development and responses to stress. Although this family of genes has been the subject of systematic investigation in Arabidopsis, rice, and tomato, it has not yet been characterized in cotton. In this study, we identified 161 putative RNA helicase genes in the genome of the diploid cotton species Gossypium raimondii. We classified these genes into three subfamilies, based on the presence of either a DEAD-box (51 genes), DEAH-box (52 genes), or DExD/H-box (58 genes) in their coding regions. Chromosome location analysis showed that the genes that encode RNA helicases are distributed across all 13 chromosomes of G. raimondii. Syntenic analysis revealed that 62 of the 161 G. raimondii helicase genes (38.5%) are within the identified syntenic blocks. Sixty-six (40.99%) helicase genes from G. raimondii have one or several putative orthologs in tomato. Additionally, GrDEADs have more conserved gene structures and more simple domains than GrDEAHs and GrDExD/Hs. Transcriptome sequencing data demonstrated that many of these helicases, especially GrDEADs, are highly expressed at the fiber initiation stage and in mature leaves. To our knowledge, this is the first report of a genome-wide analysis of the RNA helicase gene family in cotton.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Yujuan Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Jubo Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Minxuan Xia
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
40
|
Nigam D, Kavita P, Tripathi RK, Ranjan A, Goel R, Asif M, Shukla A, Singh G, Rana D, Sawant SV. Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:204-218. [PMID: 24119257 DOI: 10.1111/pbi.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Understanding the contribution of genetic background in fibre quality traits is important for the development of future cotton varieties with superior fibre quality. We used Affymetrix microarray (Santa Clara, CA) and Roche 454 GSFLX (Branford, CT) for comparative transcriptome analysis between two superior and three inferior genotypes at six fibre developmental stages. Microarray-based analysis of variance (ANOVA) for 89 microarrays encompassing five contrasting genotypes and six developmental stages suggests that the stages of the fibre development have a more pronounced effect on the differentially expressed genes (DEGs) than the genetic background of genotypes. Superior genotypes showed enriched activity of cell wall enzymes, such as pectin methyl esterase, at early elongation stage, enriched metabolic activities such as lipid, amino acid and ribosomal protein subunits at peak elongation, and prolonged combinatorial regulation of brassinosteroid and auxin at later stages. Our efforts on transcriptome sequencing were focused on changes in gene expression at 25 DPA. Transcriptome sequencing resulted in the generation of 475 658 and 429 408 high-quality reads from superior and inferior genotypes, respectively. A total of 24 609 novel transcripts were identified manually for Gossypium hirsutum with no hits in NCBI 'nr' database. Gene ontology analyses showed that the genes for ribosome biogenesis, protein transport and fatty acid biosynthesis were over-represented in superior genotype, whereas salt stress, abscisic acid stimuli and water deprivation leading to the increased proteolytic activity were more pronounced in inferior genotype.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang C, Lv Y, Xu W, Zhang T, Guo W. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics 2014; 15:94. [PMID: 24483163 PMCID: PMC3925256 DOI: 10.1186/1471-2164-15-94] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immature fiber (im) mutant of Gossypium hirsutum L. is a special cotton fiber mutant with non-fluffy fibers. It has low dry weight and fineness of fibers due to developmental defects in fiber secondary cell wall (SCW). RESULTS We compared the cellulose content in fibers, thickness of fiber cell wall and fiber transcriptional profiling during SCW development in im mutant and its near-isogenic wild-type line (NIL) TM-1. The im mutant had lower cellulose content and thinner cell walls than TM-1 at same fiber developmental stage. During 25 ~ 35 day post-anthesis (DPA), sucrose content, an important carbon source for cellulose synthesis, was also significantly lower in im mutant than in TM-1. Comparative analysis of fiber transcriptional profiling from 13 ~ 25 DPA indicated that the largest transcriptional variations between the two lines occurred at the onset of SCW development. TM-1 began SCW biosynthesis approximately at 16 DPA, whereas the same fiber developmental program in im mutant was delayed until 19 DPA, suggesting an asynchronous fiber developmental program between TM-1 and im mutant. Functional classification and enrichment analysis of differentially expressed genes (DEGs) between the two NILs indicated that genes associated with biological processes related to cellulose synthesis, secondary cell wall biogenesis, cell wall thickening and sucrose metabolism, respectively, were significantly up-regulated in TM-1. Twelve genes related to carbohydrate metabolism were validated by quantitative reverse transcription PCR (qRT-PCR) and confirmed a temporal difference at the earlier transition and SCW biosynthesis stages of fiber development between TM-1 and im mutant. CONCLUSIONS We propose that Im is an important regulatory gene influencing temporal differences in expression of genes related to fiber SCW biosynthesis. This study lays a foundation for cloning the Im gene, elucidating molecular mechanism of fiber SCW development and further genetic manipulation for the improvement of fiber fineness and maturity.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanda Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wentin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Rambani A, Page JT, Udall JA. Polyploidy and the petal transcriptome of Gossypium. BMC PLANT BIOLOGY 2014; 14:3. [PMID: 24393201 PMCID: PMC3890615 DOI: 10.1186/1471-2229-14-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/08/2013] [Indexed: 05/02/2023]
Abstract
Background Genes duplicated by polyploidy (homoeologs) may be differentially expressed in plant tissues. Recent research using DNA microarrays and RNAseq data have described a cacophony of complex expression patterns during development of cotton fibers, petals, and leaves. Because of its highly canalized development, petal tissue has been used as a model tissue for gene expression in cotton. Recent advances in cotton genome annotation and assembly now permit an enhanced analysis of duplicate gene deployment in petals from allopolyploid cotton. Results Homoeologous gene expression levels were quantified in diploid and tetraploid flower petals of Gossypium using the Gossypium raimondii genome sequence as a reference. In the polyploid, most homoeologous genes were expressed at equal levels, though a subset had an expression bias of AT and DT copies. The direction of gene expression bias was conserved in natural and recent polyploids of cotton. Conservation of direction of bias and additional comparisons between the diploids and tetraploids suggested different regulation mechanisms of gene expression. We described three phases in the evolution of cotton genomes that contribute to gene expression in the polyploid nucleus. Conclusions Compared to previous studies, a surprising level of expression homeostasis was observed in the expression patterns of polyploid genomes. Conserved expression bias in polyploid petals may have resulted from cis-acting modifications that occurred prior to polyploidization. Some duplicated genes were intriguing exceptions to general trends. Mechanisms of gene regulation for these and other genes in the cotton genome warrants further investigation.
Collapse
Affiliation(s)
- Aditi Rambani
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Justin T Page
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua A Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
43
|
Yoo MJ, Wendel JF. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet 2014; 10:e1004073. [PMID: 24391525 PMCID: PMC3879233 DOI: 10.1371/journal.pgen.1004073] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/15/2013] [Indexed: 01/05/2023] Open
Abstract
The single-celled cotton (Gossypium hirsutum) fiber provides an excellent model to investigate how human selection affects phenotypic evolution. To gain insight into the evolutionary genomics of cotton domestication, we conducted comparative transcriptome profiling of developing cotton fibers using RNA-Seq. Analysis of single-celled fiber transcriptomes from four wild and five domesticated accessions from two developmental time points revealed that at least one-third and likely one-half of the genes in the genome are expressed at any one stage during cotton fiber development. Among these, ∼5,000 genes are differentially expressed during primary and secondary cell wall synthesis between wild and domesticated cottons, with a biased distribution among chromosomes. Transcriptome data implicate a number of biological processes affected by human selection, and suggest that the domestication process has prolonged the duration of fiber elongation in modern cultivated forms. Functional analysis suggested that wild cottons allocate greater resources to stress response pathways, while domestication led to reprogrammed resource allocation toward increased fiber growth, possibly through modulating stress-response networks. This first global transcriptomic analysis using multiple accessions of wild and domesticated cottons is an important step toward a more comprehensive systems perspective on cotton fiber evolution. The understanding that human selection over the past 5,000+ years has dramatically re-wired the cotton fiber transcriptome sets the stage for a deeper understanding of the genetic architecture underlying cotton fiber synthesis and phenotypic evolution. Ever since Darwin biologists have recognized that comparative study of crop plants and their wild relatives offers a powerful framework for generating insights into the mechanisms that underlie evolutionary change. Here, we study the domestication process in cotton, Gossypium hirsutum, an allopolyploid species (containing two different genomes) which initially was domesticated approximately 5000 years ago, and which primarily is grown for its single-celled seed fibers. Strong directional selection over the millennia was accompanied by transformation of the short, coarse, and brown fibers of wild plants into the long, strong, and fine white fibers of the modern cotton crop plant. To explore the evolutionary genetics of cotton domestication, we conducted transcriptome profiling of developing cotton fibers from multiple accessions of wild and domesticated cottons. Comparative analysis revealed that the domestication process dramatically rewired the transcriptome, affecting more than 5,000 genes, and with a more evenly balanced usage of the duplicated copies arising from genome doubling. We identify many different biological processes that were involved in this transformation, including those leading to a prolongation of fiber elongation and a reallocation of resources toward increased fiber growth in modern forms. The data provide a rich resource for future functional analyses targeting crop improvement and evolutionary objectives.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
44
|
Han LB, Li YB, Wang HY, Wu XM, Li CL, Luo M, Wu SJ, Kong ZS, Pei Y, Jiao GL, Xia GX. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. THE PLANT CELL 2013; 25:4421-38. [PMID: 24220634 PMCID: PMC3875727 DOI: 10.1105/tpc.113.116970] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 05/18/2023]
Abstract
LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase-box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits.
Collapse
Affiliation(s)
- Li-Bo Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Yuan-Bao Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Xiao-Min Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Chun-Li Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Luo
- Biotechnology Research Center, Southwest University, Chongqing 404100, China
| | - Shen-Jie Wu
- Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China
| | - Zhao-Sheng Kong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Chongqing 404100, China
| | - Gai-Li Jiao
- Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
45
|
Hu G, Koh J, Yoo MJ, Grupp K, Chen S, Wendel JF. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. THE NEW PHYTOLOGIST 2013; 200:570-582. [PMID: 23795774 DOI: 10.1111/nph.12381] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/27/2013] [Indexed: 05/27/2023]
Abstract
Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jin Koh
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Kara Grupp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
46
|
Chen ZJ. Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 2013; 14:471-82. [PMID: 23752794 DOI: 10.1038/nrg3503] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterosis, also known as hybrid vigour, is widespread in plants and animals, but the molecular bases for this phenomenon remain elusive. Recent studies in hybrids and allopolyploids using transcriptomic, proteomic, metabolomic, epigenomic and systems biology approaches have provided new insights. Emerging genomic and epigenetic perspectives suggest that heterosis arises from allelic interactions between parental genomes, leading to altered programming of genes that promote the growth, stress tolerance and fitness of hybrids. For example, epigenetic modifications of key regulatory genes in hybrids and allopolyploids can alter complex regulatory networks of physiology and metabolism, thus modulating biomass and leading to heterosis. The conceptual advances could help to improve plant and animal productivity through the manipulation of heterosis.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
47
|
Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. PLANT PHYSIOLOGY 2013; 162:86-95. [PMID: 23535943 PMCID: PMC3641232 DOI: 10.1104/pp.112.212142] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/24/2013] [Indexed: 05/18/2023]
Abstract
The cotton (Gossypium spp.) fiber is a unique elongated cell that is useful for investigating cell differentiation. Previous studies have demonstrated the importance of factors such as sugar metabolism, the cytoskeleton, and hormones, which are commonly known to be involved in plant cell development, while the secondary metabolites have been less regarded. By mining public data and comparing analyses of fiber from two cotton species (Gossypium hirsutum and Gossypium barbadense), we found that the flavonoid metabolism is active in early fiber cell development. Different flavonoids exhibited distinct effects on fiber development during ovule culture; among them, naringenin (NAR) could significantly retard fiber development. NAR is a substrate of flavanone 3-hydroxylase (F3H), and silencing the F3H gene significantly increased the NAR content of fiber cells. Fiber development was suppressed following F3H silencing, but the overexpression of F3H caused no obvious effects. Significant retardation of fiber growth was observed after the introduction of the F3H-RNA interference segment into the high-flavonoid brown fiber G. hirsutum T586 line by cross. A greater accumulation of NAR as well as much shorter fibers were also observed in the BC1 generation plants. These results suggest that NAR is negatively associated with fiber development and that the metabolism mediated by F3H is important in fiber development, thus highlighting that flavonoid metabolism represents a novel pathway with the potential for cotton fiber improvement.
Collapse
Affiliation(s)
- Jiafu Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fenglin Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yichun Nie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
48
|
Naoumkina M, Hinchliffe DJ, Turley RB, Bland JM, Fang DD. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutum L.). BMC Genomics 2013; 14:155. [PMID: 23497242 PMCID: PMC3605188 DOI: 10.1186/1471-2164-14-155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li(2)) and results in extremely shortened lint fibers on mature seeds with no visible pleiotropic effects on vegetative growth and development. The Li(2) mutant phenotype provides an ideal model system to study fiber elongation. To understand metabolic processes involved in cotton fiber elongation, changes in metabolites and transcripts in the Li(2) mutant fibers were compared to wild-type fibers during development. RESULTS Principal component analysis of metabolites from GC-MS data separated Li(2) mutant fiber samples from WT fiber samples at the WT elongation stage, indicating that the Li(2) mutation altered the metabolome of the mutant fibers. The observed alterations in the Li(2) metabolome included significant reductions in the levels of detected free sugars, sugar alcohols, sugar acids, and sugar phosphates. Biological processes associated with carbohydrate biosynthesis, cell wall loosening, and cytoskeleton were also down-regulated in Li(2) fibers. Gamma-aminobutyric acid, known as a signaling factor in many organisms, was significantly elevated in mutant fibers. Higher accumulation of 2-ketoglutarate, succinate, and malate suggested higher nitrate assimilation in the Li(2) line. Transcriptional activation of genes involved in nitrogen compound metabolism along with changes in the levels of nitrogen transport amino acids suggested re-direction of carbon flow into nitrogen metabolism in Li(2) mutant fibers. CONCLUSIONS This report provides the first comprehensive analysis of metabolite and transcript changes in response to the Li(2) mutation in elongating fibers. A number of factors associated with cell elongation found in this study will facilitate further research in understanding metabolic processes of cotton fiber elongation.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA.
| | | | | | | | | |
Collapse
|
49
|
Olsen KM, Wendel JF. Crop plants as models for understanding plant adaptation and diversification. FRONTIERS IN PLANT SCIENCE 2013; 4:290. [PMID: 23914199 PMCID: PMC3729982 DOI: 10.3389/fpls.2013.00290] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/13/2013] [Indexed: 05/19/2023]
Abstract
Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of "domestication syndrome" traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various "omics" involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.
Collapse
Affiliation(s)
- Kenneth M. Olsen
- Biology Department, Washington UniversitySt. Louis, MO, USA
- *Correspondence: Kenneth M. Olsen, Biology Department, Washington University, Campus Box 1137, St. Louis, MO 63130-4899, USA e-mail:
| | - Jonathan F. Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
50
|
Olsen KM, Wendel JF. A bountiful harvest: genomic insights into crop domestication phenotypes. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:47-70. [PMID: 23451788 DOI: 10.1146/annurev-arplant-050312-120048] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Human selection during crop domestication has resulted in remarkable transformations of plant phenotypes, providing a window into the genetic basis of morphological evolution. Recent progress in our understanding of the genetic architecture of novel plant traits has emerged from combining advanced molecular technologies with improved experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies reveal a diversity of underlying causative mutations affecting phenotypes important in plant domestication and crop improvement, including coding sequence substitutions, presence/absence and copy number variation, transposon activation leading to novel gene structures and expression patterns, diversification following gene duplication, and polyploidy leading to altered combinatorial capabilities. The genomic regions unknowingly targeted by human selection include both structural and regulatory genes, often with results that propagate through the transcriptome as well as to other levels in the biosynthetic and morphogenetic networks.
Collapse
Affiliation(s)
- Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | | |
Collapse
|