1
|
Tan M, Sun S, Liu Y, Perreault AA, Phanstiel DH, Dou L, Pang B. Targeting the 3D genome by anthracyclines for chemotherapeutic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.614434. [PMID: 39463926 PMCID: PMC11507702 DOI: 10.1101/2024.10.15.614434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The chromatins are folded into three-dimensional (3D) structures inside cells, which coordinates the regulation of gene transcription by the non-coding regulatory elements. Aberrant chromatin 3D folding has been shown in many diseases, such as acute myeloid leukemia (AML), and may contribute to tumorigenesis. The anthracycline topoisomerase II inhibitors can induce histone eviction and DNA damage. We performed genome-wide high-resolution mapping of the chemotherapeutic effects of various clinically used anthracycline drugs. ATAC-seq was used to profile the histone eviction effects of different anthracyclines. TOP2A ChIP-seq was used to profile the potential DNA damage regions. Integrated analyses show that different anthracyclines have distinct target selectivity on epigenomic regions, based on their respective ATAC-seq and ChIP-seq profiles. We identified the underlying molecular mechanism that unique anthracycline variants selectively target chromatin looping anchors via disrupting CTCF binding, suggesting an additional potential therapeutic effect on the 3D genome. We further performed Hi-C experiments, and data from K562 cells treated with the selective anthracycline drugs indicate that the 3D chromatin organization is disrupted. Furthermore, AML patients receiving anthracycline drugs showed altered chromatin structures around potential looping anchors, which linked to distinct clinical outcomes. Our data indicate that anthracyclines are potent and selective epigenomic targeting drugs and can target the 3D genome for anticancer therapy, which could be used for personalized medicine to treat tumors with aberrant 3D chromatin structures.
Collapse
|
2
|
Tsang F, Stolper R, Hanifi M, Cornell L, Francis H, Davies B, Higgs D, Kassouf M. The characteristics of CTCF binding sequences contribute to enhancer blocking activity. Nucleic Acids Res 2024; 52:10180-10193. [PMID: 39106157 PMCID: PMC11417384 DOI: 10.1093/nar/gkae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
While the elements encoding enhancers and promoters have been relatively well studied, the full spectrum of insulator elements which bind the CCCTC binding factor (CTCF), is relatively poorly characterized. This is partly due to the genomic context of CTCF sites greatly influencing their roles and activity. Here we have developed an experimental system to determine the ability of minimal, consistently sized, individual CTCF elements to interpose between enhancers and promoters and thereby reduce gene expression during differentiation. Importantly, each element is tested in the identical location thereby minimising the effect of genomic context. We found no correlation between the ability of CTCF elements to block enhancer-promoter activity with the degree of evolutionary conservation; their resemblance to the consensus core sequences; or the number of CTCF core motifs harboured in the element. Nevertheless, we have shown that the strongest enhancer-promoter blockers include a previously described bound element lying upstream of the CTCF core motif. In addition, we found other uncharacterised DNaseI footprints located close to the core motif that may affect function. We have developed an assay of CTCF sequences which will enable researchers to sub-classify individual CTCF elements in a uniform and unbiased way.
Collapse
Affiliation(s)
- Felice H Tsang
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Rosa J Stolper
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Lucy J Cornell
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Helena S Francis
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Mira T Kassouf
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
3
|
Müller J, Hartwig C, Sonntag M, Bitzer L, Adelmann C, Vainshtein Y, Glanz K, Decker SO, Brenner T, Weber GF, von Haeseler A, Sohn K. A novel approach for in vivo DNA footprinting using short double-stranded cell-free DNA from plasma. Genome Res 2024; 34:1185-1195. [PMID: 39271293 PMCID: PMC11444180 DOI: 10.1101/gr.279326.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Here, we present a method for enrichment of double-stranded cfDNA with an average length of ∼40 bp from cfDNA for high-throughput DNA sequencing. This class of cfDNA is enriched at gene promoters and binding sites of transcription factors or structural DNA-binding proteins, so that a genome-wide DNA footprint is directly captured from liquid biopsies. In short double-stranded cfDNA from healthy individuals, we find significant enrichment of 203 transcription factor motifs. Additionally, short double-stranded cfDNA signals at specific genomic regions correlate negatively with DNA methylation, positively with H3K4me3 histone modifications and gene transcription. The diagnostic potential of short double-stranded cell-free DNA (cfDNA) in blood plasma has not yet been recognized. When comparing short double-stranded cfDNA from patient samples of pancreatic ductal adenocarcinoma with colorectal carcinoma or septic with postoperative controls, we identify 136 and 241 differentially enriched loci, respectively. Using these differentially enriched loci, the disease types can be clearly distinguished by principal component analysis, demonstrating the diagnostic potential of short double-stranded cfDNA signals as a new class of biomarkers for liquid biopsies.
Collapse
Affiliation(s)
- Jan Müller
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
- Max Perutz Labs, Vienna Biocenter Campus, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Structural and Computational Biology, Center of Integrative Bioinformatics Vienna, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Christina Hartwig
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
- Institute for Interfacial Engineering and Plasma Technology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mirko Sonntag
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
- Interfaculty Graduate School of Infection Biology and Microbiology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Lisa Bitzer
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Christopher Adelmann
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Yevhen Vainshtein
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Karolina Glanz
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Sebastian O Decker
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, 69120 Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Georg F Weber
- Department of Surgery, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arndt von Haeseler
- Center of Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- University of Vienna, Faculty of Computer Science Bioinformatics and Computational Biology, 1090 Vienna, Austria
| | - Kai Sohn
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany;
| |
Collapse
|
4
|
Sheng Y, Wang Y, Yang W, Wang XQ, Lu J, Pan B, Nan B, Liu Y, Ye F, Li C, Song J, Dou Y, Gao S, Liu Y. Semiconservative transmission of DNA N 6-adenine methylation in a unicellular eukaryote. Genome Res 2024; 34:740-756. [PMID: 38744529 PMCID: PMC11216311 DOI: 10.1101/gr.277843.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.
Collapse
Affiliation(s)
- Yalan Sheng
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yuanyuan Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Wentao Yang
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Xue Qing Wang
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Bo Pan
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Bei Nan
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yongqiang Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Fei Ye
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chun Li
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Jikui Song
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Yali Dou
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Shan Gao
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yifan Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA;
| |
Collapse
|
5
|
Žumer K, Ochmann M, Aljahani A, Zheenbekova A, Devadas A, Maier KC, Rus P, Neef U, Oudelaar AM, Cramer P. FACT maintains chromatin architecture and thereby stimulates RNA polymerase II pausing during transcription in vivo. Mol Cell 2024; 84:2053-2069.e9. [PMID: 38810649 DOI: 10.1016/j.molcel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone that supports transcription through chromatin in vitro, but its functional roles in vivo remain unclear. Here, we analyze the in vivo functions of FACT with the use of multi-omics analysis after rapid FACT depletion from human cells. We show that FACT depletion destabilizes chromatin and leads to transcriptional defects, including defective promoter-proximal pausing and elongation, and increased premature termination of RNA polymerase II. Unexpectedly, our analysis revealed that promoter-proximal pausing depends not only on the negative elongation factor (NELF) but also on the +1 nucleosome, which is maintained by FACT.
Collapse
Affiliation(s)
- Kristina Žumer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Moritz Ochmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Abrar Aljahani
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Am Fassberg 11, 37077 Göttingen, Germany
| | - Aiturgan Zheenbekova
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Arjun Devadas
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kerstin Caroline Maier
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Petra Rus
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ute Neef
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
6
|
Rimoldi M, Wang N, Zhang J, Villar D, Odom DT, Taipale J, Flicek P, Roller M. DNA methylation patterns of transcription factor binding regions characterize their functional and evolutionary contexts. Genome Biol 2024; 25:146. [PMID: 38844976 PMCID: PMC11155190 DOI: 10.1186/s13059-024-03218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND DNA methylation is an important epigenetic modification which has numerous roles in modulating genome function. Its levels are spatially correlated across the genome, typically high in repressed regions but low in transcription factor (TF) binding sites and active regulatory regions. However, the mechanisms establishing genome-wide and TF binding site methylation patterns are still unclear. RESULTS Here we use a comparative approach to investigate the association of DNA methylation to TF binding evolution in mammals. Specifically, we experimentally profile DNA methylation and combine this with published occupancy profiles of five distinct TFs (CTCF, CEBPA, HNF4A, ONECUT1, FOXA1) in the liver of five mammalian species (human, macaque, mouse, rat, dog). TF binding sites are lowly methylated, but they often also have intermediate methylation levels. Furthermore, biding sites are influenced by the methylation status of CpGs in their wider binding regions even when CpGs are absent from the core binding motif. Employing a classification and clustering approach, we extract distinct and species-conserved patterns of DNA methylation levels at TF binding regions. CEBPA, HNF4A, ONECUT1, and FOXA1 share the same methylation patterns, while CTCF's differ. These patterns characterize alternative functions and chromatin landscapes of TF-bound regions. Leveraging our phylogenetic framework, we find DNA methylation gain upon evolutionary loss of TF occupancy, indicating coordinated evolution. Furthermore, each methylation pattern has its own evolutionary trajectory reflecting its genomic contexts. CONCLUSIONS Our epigenomic analyses indicate a role for DNA methylation in TF binding changes across species including that specific DNA methylation profiles characterize TF binding and are associated with their regulatory activity, chromatin contexts, and evolutionary trajectories.
Collapse
Affiliation(s)
- Martina Rimoldi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Ning Wang
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, Stockholm, SE, 141 83, Sweden
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, Stockholm, SE, 141 83, Sweden
| | - Diego Villar
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, 0RE, CB2, UK
- Present Address Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, 0RE, CB2, UK
- Present address Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, Stockholm, SE, 141 83, Sweden
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
7
|
Cochran K, Yin M, Mantripragada A, Schreiber J, Marinov GK, Kundaje A. Dissecting the cis-regulatory syntax of transcription initiation with deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596138. [PMID: 38853896 PMCID: PMC11160661 DOI: 10.1101/2024.05.28.596138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Despite extensive characterization of mammalian Pol II transcription, the DNA sequence determinants of transcription initiation at a third of human promoters and most enhancers remain poorly understood. Hence, we trained and interpreted a neural network called ProCapNet that accurately models base-resolution initiation profiles from PRO-cap experiments using local DNA sequence. ProCapNet learns sequence motifs with distinct effects on initiation rates and TSS positioning and uncovers context-specific cryptic initiator elements intertwined within other TF motifs. ProCapNet annotates predictive motifs in nearly all actively transcribed regulatory elements across multiple cell-lines, revealing a shared cis-regulatory logic across promoters and enhancers mediated by a highly epistatic sequence syntax of cooperative and competitive motif interactions. ProCapNet models of RAMPAGE profiles measuring steady-state RNA abundance at TSSs distill initiation signals on par with models trained directly on PRO-cap profiles. ProCapNet learns a largely cell-type-agnostic cis-regulatory code of initiation complementing sequence drivers of cell-type-specific chromatin state critical for accurate prediction of cell-type-specific transcription initiation.
Collapse
Affiliation(s)
- Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | | | - Jacob Schreiber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Raimer Young HM, Hou PC, Bartosik AR, Atkin ND, Wang L, Wang Z, Ratan A, Zang C, Wang YH. DNA fragility at topologically associated domain boundaries is promoted by alternative DNA secondary structure and topoisomerase II activity. Nucleic Acids Res 2024; 52:3837-3855. [PMID: 38452213 DOI: 10.1093/nar/gkae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.
Collapse
Affiliation(s)
- Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Pei-Chi Hou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Anna R Bartosik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Oberbeckmann E, Oudelaar AM. Genome organization across scales: mechanistic insights from in vitro reconstitution studies. Biochem Soc Trans 2024; 52:793-802. [PMID: 38451192 PMCID: PMC11088924 DOI: 10.1042/bst20230883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Eukaryotic genomes are compacted and organized into distinct three-dimensional (3D) structures, which range from small-scale nucleosome arrays to large-scale chromatin domains. These chromatin structures play an important role in the regulation of transcription and other nuclear processes. The molecular mechanisms that drive the formation of chromatin structures across scales and the relationship between chromatin structure and function remain incompletely understood. Because the processes involved are complex and interconnected, it is often challenging to dissect the underlying principles in the nuclear environment. Therefore, in vitro reconstitution systems provide a valuable approach to gain insight into the molecular mechanisms by which chromatin structures are formed and to determine the cause-consequence relationships between the processes involved. In this review, we give an overview of in vitro approaches that have been used to study chromatin structures across scales and how they have increased our understanding of the formation and function of these structures. We start by discussing in vitro studies that have given insight into the mechanisms of nucleosome positioning. Next, we discuss recent efforts to reconstitute larger-scale chromatin domains and loops and the resulting insights into the principles of genome organization. We conclude with an outlook on potential future applications of chromatin reconstitution systems and how they may contribute to answering open questions concerning chromatin architecture.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - A. Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Hall Hickman A, Jenner RG. Apparent RNA bridging between PRC2 and chromatin is an artifact of non-specific chromatin precipitation upon RNA degradation. Cell Rep 2024; 43:113856. [PMID: 38416641 DOI: 10.1016/j.celrep.2024.113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain repression of genes specific for other cell lineages. In vitro, RNA inhibits PRC2 activity, but the effect of RNA on PRC2 in cells is less clear, with studies concluding that RNA either antagonizes or promotes PRC2 chromatin association. The addition of RNase A to chromatin immunoprecipitation reactions has been reported to reduce detection of PRC2 target sites, suggesting the existence of RNA bridges connecting PRC2 to chromatin. Here, we show that the apparent loss of PRC2 chromatin association after RNase A treatment is due to non-specific chromatin precipitation. RNA degradation precipitates chromatin out of solution, thereby masking enrichment of specific DNA sequences in chromatin immunoprecipitation reactions. Maintaining chromatin solubility by the addition of poly-L-glutamic acid rescues detection of PRC2 chromatin occupancy upon RNA degradation. These findings undermine support for the model that RNA bridges PRC2 and chromatin in cells.
Collapse
Affiliation(s)
- Alexander Hall Hickman
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; CRUK City of London Centre, University College London, London WC1E 6BT, UK
| | - Richard G Jenner
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; CRUK City of London Centre, University College London, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Oberbeckmann E, Quililan K, Cramer P, Oudelaar AM. In vitro reconstitution of chromatin domains shows a role for nucleosome positioning in 3D genome organization. Nat Genet 2024; 56:483-492. [PMID: 38291333 PMCID: PMC10937381 DOI: 10.1038/s41588-023-01649-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Eukaryotic genomes are organized into chromatin domains. The molecular mechanisms driving the formation of these domains are difficult to dissect in vivo and remain poorly understood. Here we reconstitute Saccharomyces cerevisiae chromatin in vitro and determine its 3D organization at subnucleosome resolution by micrococcal nuclease-based chromosome conformation capture and molecular dynamics simulations. We show that regularly spaced and phased nucleosome arrays form chromatin domains in vitro that resemble domains in vivo. This demonstrates that neither loop extrusion nor transcription is required for basic domain formation in yeast. In addition, we find that the boundaries of reconstituted domains correspond to nucleosome-free regions and that insulation strength scales with their width. Finally, we show that domain compaction depends on nucleosome linker length, with longer linkers forming more compact structures. Together, our results demonstrate that regular nucleosome positioning is important for the formation of chromatin domains and provide a proof-of-principle for bottom-up 3D genome studies.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany.
| | - Kimberly Quililan
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany
- The Francis Crick Institute, London, UK
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany.
| |
Collapse
|
12
|
Liu D, Yehia L, Dhawan A, Ni Y, Eng C. Cell-free DNA fragmentomics and second malignant neoplasm risk in patients with PTEN hamartoma tumor syndrome. Cell Rep Med 2024; 5:101384. [PMID: 38242121 PMCID: PMC10897513 DOI: 10.1016/j.xcrm.2023.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Individuals with PTEN hamartoma tumor syndrome (PHTS) harbor pathogenic germline PTEN variants that confer a significantly increased lifetime risk of various organ-specific cancers including second primary malignant neoplasms (SMNs). Currently, there are no reliable biomarkers that can predict individual-level cancer risk. Despite the highly promising value of cell-free DNA (cfDNA) as a biomarker for underlying sporadic cancers, the utility of cfDNA in individuals with known cancer-associated germline variants and subclinical cancers remains poorly understood. We perform ultra-low-pass whole-genome sequencing (ULP-WGS) of cfDNA from plasma samples from patients with PHTS and cancer as well as those without cancer. Analysis of cfDNA reveals that patients with PHTS and SMNs have distinct cfDNA size distribution, aberrant genome-wide fragmentation, and differential fragment end motif frequencies. Our work provides evidence that cfDNA profiles may be used as a marker for SMN risk in patients with PHTS.
Collapse
Affiliation(s)
- Darren Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew Dhawan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Ni
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Tam PLF, Cheung MF, Chan LY, Leung D. Cell-type differential targeting of SETDB1 prevents aberrant CTCF binding, chromatin looping, and cis-regulatory interactions. Nat Commun 2024; 15:15. [PMID: 38167730 PMCID: PMC10762014 DOI: 10.1038/s41467-023-44578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
SETDB1 is an essential histone methyltransferase that deposits histone H3 lysine 9 trimethylation (H3K9me3) to transcriptionally repress genes and repetitive elements. The function of differential H3K9me3 enrichment between cell-types remains unclear. Here, we demonstrate mutual exclusivity of H3K9me3 and CTCF across mouse tissues from different developmental timepoints. We analyze SETDB1 depleted cells and discover that H3K9me3 prevents aberrant CTCF binding independently of DNA methylation and H3K9me2. Such sites are enriched with SINE B2 retrotransposons. Moreover, analysis of higher-order genome architecture reveals that large chromatin structures including topologically associated domains and subnuclear compartments, remain intact in SETDB1 depleted cells. However, chromatin loops and local 3D interactions are disrupted, leading to transcriptional changes by modifying pre-existing chromatin landscapes. Specific genes with altered expression show differential interactions with dysregulated cis-regulatory elements. Collectively, we find that cell-type specific targets of SETDB1 maintain cellular identities by modulating CTCF binding, which shape nuclear architecture and transcriptomic networks.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ming Fung Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Lu Yan Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
| |
Collapse
|
14
|
Wang C, Manders F, Groh L, Oldenkamp R, Logie C. Corticosteroid-induced chromatin loop dynamics at the FKBP5 gene. Ann N Y Acad Sci 2023; 1529:109-119. [PMID: 37796452 DOI: 10.1111/nyas.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
FKBP5 is a 115-kb-long glucocorticoid-inducible gene implicated in psychiatric disorders. To investigate the complexities of chromatin interaction frequencies at the FKBP5 topologically associated domain (TAD), we deployed 15 one-to-all chromatin capture viewpoints near gene promoters, enhancers, introns, and CTCF-loop anchors. This revealed a "one-TAD-one-gene" structure encompassing the FKBP5 promoter and its enhancers. The FKBP5 promoter and its two glucocorticoid-stimulated enhancers roam the entire TAD while displaying subtle cell type-specific interactomes. The FKBP5 TAD consists of two nested CTCF loops that are coordinated by one CTCF site in the eighth intron of FKBP5 and another beyond its polyadenylation site, 61 kb further. Loop extension correlates with transcription increases through the intronic CTCF site. This is efficiently compensated for, since the short loop is restored even under high transcription regimes. The boundaries of the FKBP5 TAD consist of divergent CTCF site patterns, harbor multiple smaller genes, and are resilient to glucocorticoid stimulation. Interestingly, both FKBP5 TAD boundaries harbor H3K27me3-marked heterochromatin blocks that may reinforce them. We propose that cis-acting genetic and epigenetic polymorphisms underlying FKBP5 expression variation are likely to reside within a 240-kb region that consists of the FKBP5 TAD, its left sub-TAD, and both its boundaries.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Freek Manders
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Gendx, Utrecht, The Netherlands
| | - Laszlo Groh
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Roel Oldenkamp
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Sept CE, Tak YE, Cerda-Smith CG, Hutchinson HM, Goel V, Blanchette M, Bhakta MS, Hansen AS, Joung JK, Johnstone S, Eyler CE, Aryee MJ. High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563340. [PMID: 37961446 PMCID: PMC10634716 DOI: 10.1101/2023.10.20.563340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
DNA looping is vital for establishing many enhancer-promoter interactions. While CTCF is known to anchor many cohesin-mediated loops, the looped chromatin fiber appears to predominantly exist in a poorly characterized actively extruding state. To better characterize extruding chromatin loop structures, we used CTCF MNase HiChIP data to determine both CTCF binding at high resolution and 3D contact information. Here we present FactorFinder, a tool that identifies CTCF binding sites at near base-pair resolution. We leverage this substantial advance in resolution to determine that the fully extruded (CTCF-CTCF) state is rare genome-wide with locus-specific variation from ~1-10%. We further investigate the impact of chromatin state on loop extrusion dynamics, and find that active enhancers and RNA Pol II impede cohesin extrusion, facilitating an enrichment of enhancer-promoter contacts in the partially extruded loop state. We propose a model of topological regulation whereby the transient, partially extruded states play active roles in transcription.
Collapse
Affiliation(s)
- Corriene E Sept
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Y Esther Tak
- Molecular Pathology Unit, Massachusetts General Hospital; Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School; Boston, MA 02115, USA
| | - Christian G Cerda-Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Haley M Hutchinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Viraat Goel
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA 02139, USA
| | - Marco Blanchette
- Dovetail Genomics, Cantata Bio LLC, Scotts Valley, CA 95066, USA
| | - Mital S Bhakta
- Dovetail Genomics, Cantata Bio LLC, Scotts Valley, CA 95066, USA
| | - Anders S Hansen
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA 02139, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital; Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School; Boston, MA 02115, USA
| | - Sarah Johnstone
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Christine E Eyler
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine; Durham, NC 27710, USA
| | - Martin J Aryee
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
16
|
Zhao Z, D’Oliveira Albanus R, Taylor H, Tang X, Han Y, Orchard P, Varshney A, Zhang T, Manickam N, Erdos M, Narisu N, Taylor L, Saavedra X, Zhong A, Li B, Zhou T, Naji A, Liu C, Collins F, Parker SCJ, Chen S. An integrative single-cell multi-omics profiling of human pancreatic islets identifies T1D associated genes and regulatory signals. RESEARCH SQUARE 2023:rs.3.rs-3343318. [PMID: 37886586 PMCID: PMC10602166 DOI: 10.21203/rs.3.rs-3343318/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Genome wide association studies (GWAS) have identified over 100 signals associated with type 1 diabetes (T1D). However, translating any given T1D GWAS signal into mechanistic insights, including putative causal variants and the context (cell type and cell state) in which they function, has been limited. Here, we present a comprehensive multi-omic integrative analysis of single-cell/nucleus resolution profiles of gene expression and chromatin accessibility in healthy and autoantibody+ (AAB+) human islets, as well as islets under multiple T1D stimulatory conditions. We broadly nominate effector cell types for all T1D GWAS signals. We further nominated higher-resolution contexts, including effector cell types, regulatory elements, and genes for three independent T1D risk variants acting through islet cells within the pancreas at the DLK1/MEG3, RASGRP1, and TOX loci. Subsequently, we created isogenic gene knockouts DLK1-/-, RASGRP1-/-, and TOX-/-, and the corresponding regulatory region knockout, RASGRP1Δ, and DLK1Δ hESCs. Loss of RASGRP1 or DLK1, as well as knockout of the regulatory region of RASGRP1 or DLK1, increased β cell apoptosis. Additionally, pancreatic β cells derived from isogenic hESCs carrying the risk allele of rs3783355A/A exhibited increased β cell death. Finally, RNA-seq and ATAC-seq identified five genes upregulated in both RASGRP1-/- and DLK1-/- β-like cells, four of which are associated with T1D. Together, this work reports an integrative approach for combining single cell multi-omics, GWAS, and isogenic hESC-derived β-like cells to prioritize the T1D associated signals and their underlying context-specific cell types, genes, SNPs, and regulatory elements, to illuminate biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Zeping Zhao
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | | | - Henry Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuming Tang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tuo Zhang
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Nandini Manickam
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Mike Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaxia Saavedra
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Aaron Zhong
- Genomic Resource Core Facility, Weill Cornell Medical College, NY 10065, USA
| | - Bo Li
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Ting Zhou
- Genomic Resource Core Facility, Weill Cornell Medical College, NY 10065, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Francis Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen CJ Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| |
Collapse
|
17
|
Xu H, Yi X, Fan X, Wu C, Wang W, Chu X, Zhang S, Dong X, Wang Z, Wang J, Zhou Y, Zhao K, Yao H, Zheng N, Wang J, Chen Y, Plewczynski D, Sham PC, Chen K, Huang D, Li MJ. Inferring CTCF-binding patterns and anchored loops across human tissues and cell types. PATTERNS (NEW YORK, N.Y.) 2023; 4:100798. [PMID: 37602215 PMCID: PMC10436006 DOI: 10.1016/j.patter.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023]
Abstract
CCCTC-binding factor (CTCF) is a transcription regulator with a complex role in gene regulation. The recognition and effects of CTCF on DNA sequences, chromosome barriers, and enhancer blocking are not well understood. Existing computational tools struggle to assess the regulatory potential of CTCF-binding sites and their impact on chromatin loop formation. Here we have developed a deep-learning model, DeepAnchor, to accurately characterize CTCF binding using high-resolution genomic/epigenomic features. This has revealed distinct chromatin and sequence patterns for CTCF-mediated insulation and looping. An optimized implementation of a previous loop model based on DeepAnchor score excels in predicting CTCF-anchored loops. We have established a compendium of CTCF-anchored loops across 52 human tissue/cell types, and this suggests that genomic disruption of these loops could be a general mechanism of disease pathogenesis. These computational models and resources can help investigate how CTCF-mediated cis-regulatory elements shape context-specific gene regulation in cell development and disease progression.
Collapse
Affiliation(s)
- Hang Xu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chengyue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jianhua Wang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongcheng Yao
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Nan Zheng
- Department of Network Security and Informatization, Tianjin Medical University, Tianjin 300070, China
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Pak Chung Sham
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
18
|
Esnault C, Magat T, Zine El Aabidine A, Garcia-Oliver E, Cucchiarini A, Bouchouika S, Lleres D, Goerke L, Luo Y, Verga D, Lacroix L, Feil R, Spicuglia S, Mergny JL, Andrau JC. G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet 2023; 55:1359-1369. [PMID: 37400615 DOI: 10.1038/s41588-023-01437-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/31/2023] [Indexed: 07/05/2023]
Abstract
Metazoan promoters are enriched in secondary DNA structure-forming motifs, such as G-quadruplexes (G4s). Here we describe 'G4access', an approach to isolate and sequence G4s associated with open chromatin via nuclease digestion. G4access is antibody- and crosslinking-independent and enriches for computationally predicted G4s (pG4s), most of which are confirmed in vitro. Using G4access in human and mouse cells, we identify cell-type-specific G4 enrichment correlated with nucleosome exclusion and promoter transcription. G4access allows measurement of variations in G4 repertoire usage following G4 ligand treatment, HDAC and G4 helicases inhibitors. Applying G4access to cells from reciprocal hybrid mouse crosses suggests a role for G4s in the control of active imprinting regions. Consistently, we also observed that G4access peaks are unmethylated, while methylation at pG4s correlates with nucleosome repositioning on DNA. Overall, our study provides a new tool for studying G4s in cellular dynamics and highlights their association with open chromatin, transcription and their antagonism to DNA methylation.
Collapse
Affiliation(s)
- Cyril Esnault
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Talha Magat
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Encar Garcia-Oliver
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| | - Soumya Bouchouika
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - David Lleres
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Lutz Goerke
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Yu Luo
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
- Université Paris-Saclay, Institut Curie, Orsay, France
| | - Daniela Verga
- Université Paris-Saclay, Institut Curie, Orsay, France
| | - Laurent Lacroix
- Institut de Biologie de l'École Normale Supérieure, ENS, CNRS UMR8197, Inserm U1024, Paris, France
| | - Robert Feil
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France.
| |
Collapse
|
19
|
Dunjić M, Jonas F, Yaakov G, More R, Mayshar Y, Rais Y, Orenbuch AH, Cheng S, Barkai N, Stelzer Y. Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells. Nat Commun 2023; 14:3791. [PMID: 37365167 DOI: 10.1038/s41467-023-39477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.
Collapse
Affiliation(s)
- Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Roye More
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
20
|
Wang X, Li W, Feng X, Li J, Liu GE, Fang L, Yu Y. Harnessing male germline epigenomics for the genetic improvement in cattle. J Anim Sci Biotechnol 2023; 14:76. [PMID: 37277852 PMCID: PMC10242889 DOI: 10.1186/s40104-023-00874-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Sperm is essential for successful artificial insemination in dairy cattle, and its quality can be influenced by both epigenetic modification and epigenetic inheritance. The bovine germline differentiation is characterized by epigenetic reprogramming, while intergenerational and transgenerational epigenetic inheritance can influence the offspring's development through the transmission of epigenetic features to the offspring via the germline. Therefore, the selection of bulls with superior sperm quality for the production and fertility traits requires a better understanding of the epigenetic mechanism and more accurate identifications of epigenetic biomarkers. We have comprehensively reviewed the current progress in the studies of bovine sperm epigenome in terms of both resources and biological discovery in order to provide perspectives on how to harness this valuable information for genetic improvement in the cattle breeding industry.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Konge Larsen ApS, Kongens Lyngby, 2800, Denmark
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenlong Li
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xia Feng
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianbing Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Hinks M, Marinov GK, Kundaje A, Bintu L, Greenleaf WJ. Single-Molecule Mapping of Chromatin Accessibility Using NOMe-seq/dSMF. Methods Mol Biol 2023; 2611:101-119. [PMID: 36807067 DOI: 10.1007/978-1-0716-2899-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The bulk of gene expression regulation in most organisms is accomplished through the action of transcription factors (TFs) on cis-regulatory elements (CREs). In eukaryotes, these CREs are generally characterized by nucleosomal depletion and thus higher physical accessibility of DNA. Many methods exploit this property to map regions of high average accessibility, and thus putative active CREs, in bulk. However, these techniques do not provide information about coordinated patterns of accessibility along the same DNA molecule, nor do they map the absolute levels of occupancy/accessibility. SMF (Single-Molecule Footprinting) fills these gaps by leveraging recombinant DNA cytosine methyltransferases (MTase) to mark accessible locations on individual DNA molecules. In this chapter, we discuss current methods and important considerations for performing SMF experiments.
Collapse
Affiliation(s)
- Michaela Hinks
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA. .,Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
22
|
Babushkina NP, Kucher AN. Regulatory Potential of SNP Markers in Genes of DNA Repair Systems. Mol Biol 2023. [DOI: 10.1134/s002689332301003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
23
|
Barsoum M, Stenzel AT, Bochyńska A, Kuo CC, Tsompanidis A, Sayadi-Boroujeni R, Bussmann P, Lüscher-Firzlaff J, Costa IG, Lüscher B. Loss of the Ash2l subunit of histone H3K4 methyltransferase complexes reduces chromatin accessibility at promoters. Sci Rep 2022; 12:21506. [PMID: 36513698 PMCID: PMC9747801 DOI: 10.1038/s41598-022-25881-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression programs are intimately linked to cell fate decisions. Post-translational modifications of core histones contribute to control gene expression. Methylation of lysine 4 of histone H3 (H3K4) correlates with active promoters and gene transcription. This modification is catalyzed by KMT2 methyltransferases, which require interaction with 4 core subunits, WDR5, RBBP5, ASH2L and DPY30, for catalytic activity. Ash2l is necessary for organismal development and for tissue homeostasis. In mouse embryo fibroblasts (MEFs), Ash2l loss results in gene repression, provoking a senescence phenotype. We now find that upon knockout of Ash2l both H3K4 mono- and tri-methylation (H3K4me1 and me3, respectively) were deregulated. In particular, loss of H3K4me3 at promoters correlated with gene repression, especially at CpG island promoters. Ash2l loss resulted in increased loading of histone H3 and reduced chromatin accessibility at promoters, accompanied by an increase of repressing and a decrease of activating histone marks. Moreover, we observed altered binding of CTCF upon Ash2l loss. Lost and gained binding was noticed at promoter-associated and intergenic sites, respectively. Thus, Ash2l loss and reduction of H3K4me3 correlate with altered chromatin accessibility and transcription factor binding. These findings contribute to a more detailed understanding of mechanistic consequences of H3K4me3 loss and associated repression of gene transcription and thus of the observed cellular consequences.
Collapse
Affiliation(s)
- Mirna Barsoum
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander T. Stenzel
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Agnieszka Bochyńska
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInterdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander Tsompanidis
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Roksaneh Sayadi-Boroujeni
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Philip Bussmann
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
24
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
25
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
26
|
Rao S, Han AL, Zukowski A, Kopin E, Sartorius CA, Kabos P, Ramachandran S. Transcription factor-nucleosome dynamics from plasma cfDNA identifies ER-driven states in breast cancer. SCIENCE ADVANCES 2022; 8:eabm4358. [PMID: 36001652 PMCID: PMC9401618 DOI: 10.1126/sciadv.abm4358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/12/2022] [Indexed: 06/09/2023]
Abstract
Genome-wide binding profiles of estrogen receptor (ER) and FOXA1 reflect cancer state in ER+ breast cancer. However, routine profiling of tumor transcription factor (TF) binding is impractical in the clinic. Here, we show that plasma cell-free DNA (cfDNA) contains high-resolution ER and FOXA1 tumor binding profiles for breast cancer. Enrichment of TF footprints in plasma reflects the binding strength of the TF in originating tissue. We defined pure in vivo tumor TF signatures in plasma using ER+ breast cancer xenografts, which can distinguish xenografts with distinct ER states. Furthermore, state-specific ER-binding signatures can partition human breast tumors into groups with significantly different ER expression and mortality. Last, TF footprints in human plasma samples can identify the presence of ER+ breast cancer. Thus, plasma TF footprints enable minimally invasive mapping of the regulatory landscape of breast cancer in humans and open vast possibilities for clinical applications across multiple tumor types.
Collapse
Affiliation(s)
- Satyanarayan Rao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amy L. Han
- Department of Medicine/Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Etana Kopin
- Department of Medicine/Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter Kabos
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine/Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
27
|
Chen S, Rosin LF, Pegoraro G, Moshkovich N, Murphy PJ, Yu G, Lei EP. NURF301 contributes to gypsy chromatin insulator-mediated nuclear organization. Nucleic Acids Res 2022; 50:7906-7924. [PMID: 35819192 PMCID: PMC9371915 DOI: 10.1093/nar/gkac600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Chromatin insulators are DNA-protein complexes that can prevent the spread of repressive chromatin and block communication between enhancers and promoters to regulate gene expression. In Drosophila, the gypsy chromatin insulator complex consists of three core proteins: CP190, Su(Hw), and Mod(mdg4)67.2. These factors concentrate at nuclear foci termed insulator bodies, and changes in insulator body localization have been observed in mutants defective for insulator function. Here, we identified NURF301/E(bx), a nucleosome remodeling factor, as a novel regulator of gypsy insulator body localization through a high-throughput RNAi imaging screen. NURF301 promotes gypsy-dependent insulator barrier activity and physically interacts with gypsy insulator proteins. Using ChIP-seq, we found that NURF301 co-localizes with insulator proteins genome-wide, and NURF301 promotes chromatin association of Su(Hw) and CP190 at gypsy insulator binding sites. These effects correlate with NURF301-dependent nucleosome repositioning. At the same time, CP190 and Su(Hw) both facilitate recruitment of NURF301 to chromatin. Finally, Oligopaint FISH combined with immunofluorescence revealed that NURF301 promotes 3D contact between insulator bodies and gypsy insulator DNA binding sites, and NURF301 is required for proper nuclear positioning of gypsy binding sites. Our data provide new insights into how a nucleosome remodeling factor and insulator proteins cooperatively contribute to nuclear organization.
Collapse
Affiliation(s)
- Shue Chen
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leah F Rosin
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nellie Moshkovich
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Murphy
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guoyun Yu
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Isbel L, Grand RS, Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022; 23:728-740. [PMID: 35831531 DOI: 10.1038/s41576-022-00512-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Baranasic D, Hörtenhuber M, Balwierz PJ, Zehnder T, Mukarram AK, Nepal C, Várnai C, Hadzhiev Y, Jimenez-Gonzalez A, Li N, Wragg J, D'Orazio FM, Relic D, Pachkov M, Díaz N, Hernández-Rodríguez B, Chen Z, Stoiber M, Dong M, Stevens I, Ross SE, Eagle A, Martin R, Obasaju O, Rastegar S, McGarvey AC, Kopp W, Chambers E, Wang D, Kim HR, Acemel RD, Naranjo S, Łapiński M, Chong V, Mathavan S, Peers B, Sauka-Spengler T, Vingron M, Carninci P, Ohler U, Lacadie SA, Burgess SM, Winata C, van Eeden F, Vaquerizas JM, Gómez-Skarmeta JL, Onichtchouk D, Brown BJ, Bogdanovic O, van Nimwegen E, Westerfield M, Wardle FC, Daub CO, Lenhard B, Müller F. Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nat Genet 2022; 54:1037-1050. [PMID: 35789323 PMCID: PMC9279159 DOI: 10.1038/s41588-022-01089-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.
Collapse
Affiliation(s)
- Damir Baranasic
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Matthias Hörtenhuber
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Piotr J Balwierz
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tobias Zehnder
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany
| | - Abdul Kadir Mukarram
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Chirag Nepal
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ada Jimenez-Gonzalez
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nan Li
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joseph Wragg
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Fabio M D'Orazio
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dorde Relic
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Mikhail Pachkov
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Institute of Marine Sciences, Barcelona, Spain
| | | | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Marcus Stoiber
- Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michaël Dong
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Irene Stevens
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Samuel E Ross
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anne Eagle
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Ryan Martin
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Oluwapelumi Obasaju
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alison C McGarvey
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Wolfgang Kopp
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Emily Chambers
- Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Dennis Wang
- Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Hyejeong R Kim
- Bateson Centre/Biomedical Science, University of Sheffield, Sheffield, UK
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Vanessa Chong
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Liège, Belgium
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Fondazione Human Technopole, Milano, Italy
| | - Uwe Ohler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Scott Allen Lacadie
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Shawn M Burgess
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Freek van Eeden
- Bateson Centre/Biomedical Science, University of Sheffield, Sheffield, UK
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Daria Onichtchouk
- Department of Developmental Biology, Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ben James Brown
- Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Erik van Nimwegen
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Fiona C Wardle
- Randall Centre for Cell & Molecular Biophysics, Guy's Campus, King's College London, London, UK
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden.
- Science for Life Laboratory, Solna, Sweden.
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
30
|
Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nat Struct Mol Biol 2022; 29:549-562. [PMID: 35606517 DOI: 10.1038/s41594-022-00777-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.
Collapse
|
31
|
Bedi YS, Wang H, Thomas KN, Basel A, Prunier J, Robert C, Golding MC. Alcohol induced increases in sperm Histone H3 lysine 4 trimethylation correlate with increased placental CTCF occupancy and altered developmental programming. Sci Rep 2022; 12:8839. [PMID: 35614060 PMCID: PMC9130987 DOI: 10.1038/s41598-022-12188-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Using a mouse model, studies by our group reveal that paternal preconception alcohol intake affects offspring fetal-placental growth, with long-lasting consequences on adult metabolism. Here, we tested the hypothesis that chronic preconception male alcohol exposure impacts histone enrichment in sperm and that these changes are associated with altered developmental programming in the placenta. Using chromatin immunoprecipitation, we find alcohol-induced increases in sperm histone H3 lysine 4 trimethylation (H3K4me3) that map to promoters and presumptive enhancer regions enriched in genes driving neurogenesis and craniofacial development. Given the colocalization of H3K4me3 with the chromatin binding factor CTCF across both sperm and embryos, we next examined CTCF localization in the placenta. We find global changes in CTCF binding within placentae derived from the male offspring of alcohol-exposed sires. Furthermore, altered CTCF localization correlates with dysregulated gene expression across multiple gene clusters; however, these transcriptional changes only occur in male offspring. Finally, we identified a correlation between genomic regions exhibiting alcohol-induced increases in sperm H3K4me3 and increased CTCF binding in male placentae. Collectively, our analysis demonstrates that the chromatin landscape of sperm is sensitive to chronic alcohol exposure and that a subset of these affected regions exhibits increased placental CTCF enrichment.
Collapse
Affiliation(s)
- Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Haiqing Wang
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Julien Prunier
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Claude Robert
- Département des Sciences Animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
32
|
Segueni J, Noordermeer D. CTCF: a misguided jack-of-all-trades in cancer cells. Comput Struct Biotechnol J 2022; 20:2685-2698. [PMID: 35685367 PMCID: PMC9166472 DOI: 10.1016/j.csbj.2022.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence and progression of cancers is accompanied by a dysregulation of transcriptional programs. The three-dimensional (3D) organization of the human genome has emerged as an important multi-level mediator of gene transcription and regulation. In cancer cells, this organization can be restructured, providing a framework for the deregulation of gene activity. The CTCF protein, initially identified as the product from a tumor suppressor gene, is a jack-of-all-trades for the formation of 3D genome organization in normal cells. Here, we summarize how CTCF is involved in the multi-level organization of the human genome and we discuss emerging insights into how perturbed CTCF function and DNA binding causes the activation of oncogenes in cancer cells, mostly through a process of enhancer hijacking. Moreover, we highlight non-canonical functions of CTCF that can be relevant for the emergence of cancers as well. Finally, we provide guidelines for the computational identification of perturbed CTCF binding and reorganized 3D genome structure in cancer cells.
Collapse
|
33
|
Larsen BD, Benada J, Yung PYK, Bell RAV, Pappas G, Urban V, Ahlskog JK, Kuo TT, Janscak P, Megeney LA, Elsässer SJ, Bartek J, Sørensen CS. Cancer cells use self-inflicted DNA breaks to evade growth limits imposed by genotoxic stress. Science 2022; 376:476-483. [PMID: 35482866 DOI: 10.1126/science.abi6378] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genotoxic therapy such as radiation serves as a frontline cancer treatment, yet acquired resistance that leads to tumor reoccurrence is frequent. We found that cancer cells maintain viability during irradiation by reversibly increasing genome-wide DNA breaks, thereby limiting premature mitotic progression. We identify caspase-activated DNase (CAD) as the nuclease inflicting these de novo DNA lesions at defined loci, which are in proximity to chromatin-modifying CCCTC-binding factor (CTCF) sites. CAD nuclease activity is governed through phosphorylation by DNA damage response kinases, independent of caspase activity. In turn, loss of CAD activity impairs cell fate decisions, rendering cancer cells vulnerable to radiation-induced DNA double-strand breaks. Our observations highlight a cancer-selective survival adaptation, whereby tumor cells deploy regulated DNA breaks to delimit the detrimental effects of therapy-evoked DNA damage.
Collapse
Affiliation(s)
- Brian D Larsen
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Jan Benada
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Philip Yuk Kwong Yung
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Ryan A V Bell
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - George Pappas
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Vaclav Urban
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
| | - Johanna K Ahlskog
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Tia T Kuo
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic.,Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Lynn A Megeney
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Simon J Elsässer
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden.,Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N Copenhagen, Denmark
| |
Collapse
|
34
|
Rejano-Gordillo C, Ordiales-Talavero A, Nacarino-Palma A, Merino JM, González-Rico FJ, Fernández-Salguero PM. Aryl Hydrocarbon Receptor: From Homeostasis to Tumor Progression. Front Cell Dev Biol 2022; 10:884004. [PMID: 35465323 PMCID: PMC9022225 DOI: 10.3389/fcell.2022.884004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main regulators involved both in different homeostatic cell functions and tumor progression. Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional regulators, this intracellular receptor has become a key member in differentiation, pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of new targets identified in the last decade. Besides this role in tissue homeostasis, one enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor depending on the specific organ, tissue and cell type. Together with its well-known modulation of cell adhesion and migration in a cell-type specific manner in epithelial-mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role in contributing to physiological and homeostatic failures, tumor progression and dissemination. With that firmly in mind, this review will address the remarkable capability of AHR to exert a different function influenced by the phenotype of the target cell and its potential consequences.
Collapse
Affiliation(s)
- Claudia Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Nacarino-Palma
- Chronic Diseases Research Centre (CEDOC), Rua Do Instituto Bacteriológico, Lisboa, Portugal
| | - Jaime M. Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco J. González-Rico
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| |
Collapse
|
35
|
de Pontual L, Tomé S. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:ijms23073477. [PMID: 35408837 PMCID: PMC8998570 DOI: 10.3390/ijms23073477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.
Collapse
Affiliation(s)
| | - Stéphanie Tomé
- Correspondence: ; Tel.: +33-1-42-16-57-16; Fax: +33-1-42-16-57-00
| |
Collapse
|
36
|
Oiwa NN, Li K, Cordeiro CE, Heermann DW. Prediction and comparative analysis of CTCF binding sites based on a first principle approach. Phys Biol 2022; 19. [PMID: 35290214 DOI: 10.1088/1478-3975/ac5dca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
We calculated the patterns for the CCCTC transcription factor (CTCF) binding sites across many genomes on a first principle approach. The validation of the first principle method was done on the human as well as on the mouse genome. The predicted human CTCF binding sites are consistent with the consensus sequence, ChIP-seq data for the K562 cell, nucleosome positions for IMR90 cell as well as the CTCF binding sites in the mouse HOXA gene. The analysis of Homo sapiens, Mus musculus, Sus scrofa, Capra hircus and Drosophila melanogaster whole genomes shows: binding sites are organized in cluster-like groups, where two consecutive sites obey a power-law with coefficient ranging from to 0.3292 0.0068 to 0.5409 0.0064; the distance between these groups varies from 18.08 0.52kbp to 42.1 2.0kbp. The genome of Aedes aegypti does not show a power law, but 19.9% of binding sites are 144 4 and 287 5bp distant of each other. We run negative tests, confirming the under-representation of CTCF binding sites in Caenorhabditis elegans, Plasmodium falciparum and Arabidopsis thaliana complete genomes.
Collapse
Affiliation(s)
- Nestor Norio Oiwa
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, Baden-Württemberg, 69120, GERMANY
| | - Kunhe Li
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69117, GERMANY
| | - Claudette E Cordeiro
- Department of Physics, Universidade Federal Fluminense, Avenida Atlantica s/n, Gragoatal, Niteroi, Rio de Janeiro, 24220-900, BRAZIL
| | - Dieter W Heermann
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69120, GERMANY
| |
Collapse
|
37
|
Karl LA, Peritore M, Galanti L, Pfander B. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Front Genet 2022; 12:821543. [PMID: 35096025 PMCID: PMC8790285 DOI: 10.3389/fgene.2021.821543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates single-stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes-the fundamental unit of chromatin-influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision.
Collapse
Affiliation(s)
- Leonhard Andreas Karl
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Peritore
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
38
|
Marinov GK, Shipony Z, Kundaje A, Greenleaf WJ. Single-Molecule Multikilobase-Scale Profiling of Chromatin Accessibility Using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq. Methods Mol Biol 2022; 2458:269-298. [PMID: 35103973 PMCID: PMC9531602 DOI: 10.1007/978-1-0716-2140-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A hallmark feature of active cis-regulatory elements (CREs) in eukaryotes is their nucleosomal depletion and, accordingly, higher accessibility to enzymatic treatment. This property has been the basis of a number of sequencing-based assays for genome-wide identification and tracking the activity of CREs across different biological conditions, such as DNAse-seq, ATAC-seq , NOMeseq, and others. However, the fragmentation of DNA inherent to many of these assays and the limited read length of short-read sequencing platforms have so far not allowed the simultaneous measurement of the chromatin accessibility state of CREs located distally from each other. The combination of labeling accessible DNA with DNA modifications and nanopore sequencing has made it possible to develop such assays. Here, we provide a detailed protocol for carrying out the SMAC-seq assay (Single-Molecule long-read Accessible Chromatin mapping sequencing), in its m6A-SMAC-seq and m6A-CpG-GpC-SMAC-seq variants, together with methods for data processing and analysis, and discuss key experimental and analytical considerations for working with SMAC-seq datasets.
Collapse
Affiliation(s)
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
39
|
Xu B, Li X, Gao X, Jia Y, Liu J, Li F, Zhang Z. DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data. Brief Bioinform 2021; 23:6454261. [PMID: 34875002 DOI: 10.1093/bib/bbab469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
As the basal bricks, the dynamics and arrangement of nucleosomes orchestrate the higher architecture of chromatin in a fundamental way, thereby affecting almost all nuclear biology processes. Thanks to its rather simple protocol, assay for transposase-accessible chromatin using sequencing (ATAC)-seq has been rapidly adopted as a major tool for chromatin-accessible profiling at both bulk and single-cell levels; however, to picture the arrangement of nucleosomes per se remains a challenge with ATAC-seq. In the present work, we introduce a novel ATAC-seq analysis toolkit, named decoding nucleosome organization profile based on ATAC-seq data (deNOPA), to predict nucleosome positions. Assessments showed that deNOPA outperformed state-of-the-art tools with ultra-sparse ATAC-seq data, e.g. no more than 0.5 fragment per base pair. The remarkable performance of deNOPA was fueled by the short fragment reads, which compose nearly half of sequenced reads in the ATAC-seq libraries and are commonly discarded by state-of-the-art nucleosome positioning tools. However, we found that the short fragment reads enrich information on nucleosome positions and that the linker regions were predicted by reads from both short and long fragments using Gaussian smoothing. Last, using deNOPA, we showed that the dynamics of nucleosome organization may not directly couple with chromatin accessibility in the cis-regulatory regions when human cells respond to heat shock stimulation. Our deNOPA provides a powerful tool with which to analyze the dynamics of chromatin at nucleosome position level with ultra-sparse ATAC-seq data.
Collapse
Affiliation(s)
- Bingxiang Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoli Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaomeng Gao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yan Jia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Feifei Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
40
|
Atkin ND, Raimer HM, Wang Z, Zang C, Wang YH. Assessing acute myeloid leukemia susceptibility in rearrangement-driven patients by DNA breakage at topoisomerase II and CCCTC-binding factor/cohesin binding sites. Genes Chromosomes Cancer 2021; 60:808-821. [PMID: 34405474 PMCID: PMC8511143 DOI: 10.1002/gcc.22993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
An initiating DNA double strand break (DSB) event precedes the formation of cancer-driven chromosomal abnormalities, such as gene rearrangements. Therefore, measuring DNA breaks at rearrangement-participating regions can provide a unique tool to identify and characterize susceptible individuals. Here, we developed a highly sensitive and low-input DNA break mapping method, the first of its kind for patient samples. We then measured genome-wide DNA breakage in normal cells of acute myeloid leukemia (AML) patients with KMT2A (previously MLL) rearrangements, compared to that of nonfusion AML individuals, as a means to evaluate individual susceptibility to gene rearrangements. DNA breakage at the KMT2A gene region was significantly greater in fusion-driven remission individuals, as compared to nonfusion individuals. Moreover, we identified select topoisomerase II (TOP2)-sensitive and CCCTC-binding factor (CTCF)/cohesin-binding sites with preferential DNA breakage in fusion-driven patients. Importantly, measuring DSBs at these sites, in addition to the KMT2A gene region, provided greater predictive power when assessing individual break susceptibility. We also demonstrated that low-dose etoposide exposure further elevated DNA breakage at these regions in fusion-driven AML patients, but not in nonfusion patients, indicating that these sites are preferentially sensitive to TOP2 activity in fusion-driven AML patients. These results support that mapping of DSBs in patients enables discovery of novel break-prone regions and monitoring of individuals susceptible to chromosomal abnormalities, and thus cancer. This will build the foundation for early detection of cancer-susceptible individuals, as well as those preferentially susceptible to therapy-related malignancies caused by treatment with TOP2 poisons.
Collapse
MESH Headings
- Binding Sites/genetics
- CCCTC-Binding Factor/blood
- CCCTC-Binding Factor/genetics
- Cell Cycle Proteins/blood
- Cell Cycle Proteins/genetics
- Chondroitin Sulfate Proteoglycans/blood
- Chondroitin Sulfate Proteoglycans/genetics
- Chromosomal Proteins, Non-Histone/blood
- Chromosomal Proteins, Non-Histone/genetics
- Chromosome Aberrations
- DNA Breaks, Double-Stranded/drug effects
- DNA Repair/genetics
- DNA Topoisomerases, Type II/blood
- DNA Topoisomerases, Type II/genetics
- DNA-Binding Proteins/blood
- DNA-Binding Proteins/genetics
- Etoposide/pharmacology
- Female
- Gene Rearrangement/genetics
- Genome, Human/genetics
- HeLa Cells
- Histone-Lysine N-Methyltransferase/blood
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Myeloid-Lymphoid Leukemia Protein/blood
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Poly-ADP-Ribose Binding Proteins/blood
- Poly-ADP-Ribose Binding Proteins/genetics
- Cohesins
Collapse
Affiliation(s)
- Naomi D. Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Heather M. Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| |
Collapse
|
41
|
Patel ZM, Hughes TR. Global properties of regulatory sequences are predicted by transcription factor recognition mechanisms. Genome Biol 2021; 22:285. [PMID: 34620190 PMCID: PMC8496038 DOI: 10.1186/s13059-021-02503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background Mammalian genomes contain millions of putative regulatory sequences, which are delineated by binding of multiple transcription factors. The degree to which spacing and orientation constraints among transcription factor binding sites contribute to the recognition and identity of regulatory sequence is an unresolved but important question that impacts our understanding of genome function and evolution. Global mechanisms that underlie phenomena including the size of regulatory sequences, their uniqueness, and their evolutionary turnover remain poorly described. Results Here, we ask whether models incorporating different degrees of spacing and orientation constraints among transcription factor binding sites are broadly consistent with several global properties of regulatory sequence. These properties include length, sequence diversity, turnover rate, and dominance of specific TFs in regulatory site identity and cell type specification. Models with and without spacing and orientation constraints are generally consistent with all observed properties of regulatory sequence, and with regulatory sequences being fundamentally small (~ 1 nucleosome). Uniqueness of regulatory regions and their rapid evolutionary turnover are expected under all models examined. An intriguing issue we identify is that the complexity of eukaryotic regulatory sites must scale with the number of active transcription factors, in order to accomplish observed specificity. Conclusions Models of transcription factor binding with or without spacing and orientation constraints predict that regulatory sequences should be fundamentally short, unique, and turn over rapidly. We posit that the existence of master regulators may be, in part, a consequence of evolutionary pressure to limit the complexity and increase evolvability of regulatory sites. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02503-y.
Collapse
Affiliation(s)
- Zain M Patel
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
42
|
Han DSC, Ni M, Chan RWY, Wong DKL, Hiraki LT, Volpi S, Jiang P, Lui KO, Chan KCA, Chiu RWK, Lo YMD. Nuclease deficiencies alter plasma cell-free DNA methylation profiles. Genome Res 2021; 31:2008-2021. [PMID: 34470801 PMCID: PMC8559716 DOI: 10.1101/gr.275426.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
The effects of DNASE1L3 or DNASE1 deficiency on cell-free DNA (cfDNA) methylation were explored in plasma of mice deficient in these nucleases and in DNASE1L3-deficient humans. Compared to wild-type cfDNA, cfDNA in DNASE1L3-deficient mice was significantly hypomethylated, while cfDNA in DNASE1-deficient mice was hypermethylated. The cfDNA hypomethylation in DNASE1L3-deficient mice was due to increased fragmentation and representation from open chromatin regions (OCRs) and CpG islands (CGIs). These findings were absent in DNASE1-deficient mice, demonstrating the preference of DNASE1 to cleave in hypomethylated OCRs and CGIs. We also observed a substantial decrease of fragment ends at methylated CpGs in the absence of DNASE1L3, thereby demonstrating that DNASE1L3 prefers to cleave at methylated CpGs. Furthermore, we found that methylation levels of cfDNA varied by fragment size in a periodic pattern, with cfDNA of specific sizes being more hypomethylated and enriched for OCRs and CGIs. These findings were confirmed in DNASE1L3-deficient human cfDNA. Thus, we have found that nuclease-mediated cfDNA fragmentation markedly affects cfDNA methylation level on a genome-wide scale. This work provides a foundational understanding of the relationship between methylation, nuclease biology, and cfDNA fragmentation.
Collapse
Affiliation(s)
- Diana S C Han
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Meng Ni
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Danny K L Wong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario M5G 1X5, Canada
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, 16147 Genova, Italy.,Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, 16132 Genova, Italy
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kathy O Lui
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
43
|
Shareef SJ, Bevill SM, Raman AT, Aryee MJ, van Galen P, Hovestadt V, Bernstein BE. Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells. Nat Biotechnol 2021; 39:1086-1094. [PMID: 33958785 PMCID: PMC8434949 DOI: 10.1038/s41587-021-00910-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
The biological roles of DNA methylation have been elucidated by profiling methods based on whole-genome or reduced-representation bisulfite sequencing, but these approaches do not efficiently survey the vast numbers of non-coding regulatory elements in mammalian genomes. Here we present an extended-representation bisulfite sequencing (XRBS) method for targeted profiling of DNA methylation. Our design strikes a balance between expanding coverage of regulatory elements and reproducibly enriching informative CpG dinucleotides in promoters, enhancers and CTCF binding sites. Barcoded DNA fragments are pooled before bisulfite conversion, allowing multiplex processing and technical consistency in low-input samples. Application of XRBS to single leukemia cells enabled us to evaluate genetic copy number variations and methylation variability across individual cells. Our analysis highlights heterochromatic H3K9me3 regions as having the highest cell-to-cell variability in their methylation, likely reflecting inherent epigenetic instability of these late-replicating regions, compounded by differences in cell cycle stages among sampled cells.
Collapse
Affiliation(s)
- Sarah J. Shareef
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samantha M. Bevill
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ayush T. Raman
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Martin J. Aryee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter van Galen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Division of Hematology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Hovestadt
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA.,Co-corresponding (, )
| | - Bradley E. Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Co-corresponding (, )
| |
Collapse
|
44
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
45
|
Gu A, Cho HJ, Sheffield NC. Bedshift: perturbation of genomic interval sets. Genome Biol 2021; 22:238. [PMID: 34416909 PMCID: PMC8379854 DOI: 10.1186/s13059-021-02440-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Functional genomics experiments, like ChIP-Seq or ATAC-Seq, produce results that are summarized as a region set. There is no way to objectively evaluate the effectiveness of region set similarity metrics. We present Bedshift, a tool for perturbing BED files by randomly shifting, adding, and dropping regions from a reference file. The perturbed files can be used to benchmark similarity metrics, as well as for other applications. We highlight differences in behavior between metrics, such as that the Jaccard score is most sensitive to added or dropped regions, while coverage score is most sensitive to shifted regions.
Collapse
Affiliation(s)
- Aaron Gu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Computer Science, University of Virginia School of Engineering, Charlottesville, VA, USA
| | - Hyun Jae Cho
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Computer Science, University of Virginia School of Engineering, Charlottesville, VA, USA
| | - Nathan C Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
46
|
Grand RS, Burger L, Gräwe C, Michael AK, Isbel L, Hess D, Hoerner L, Iesmantavicius V, Durdu S, Pregnolato M, Krebs AR, Smallwood SA, Thomä N, Vermeulen M, Schübeler D. BANP opens chromatin and activates CpG-island-regulated genes. Nature 2021; 596:133-137. [PMID: 34234345 DOI: 10.1038/s41586-021-03689-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.
Collapse
Affiliation(s)
- Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Nicolas Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
47
|
Michael AK, Thomä NH. Reading the chromatinized genome. Cell 2021; 184:3599-3611. [PMID: 34146479 DOI: 10.1016/j.cell.2021.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Eukaryotic DNA-binding proteins operate in the context of chromatin, where nucleosomes are the elementary building blocks. Nucleosomal DNA is wrapped around a histone core, thereby rendering a large fraction of the DNA surface inaccessible to DNA-binding proteins. Nevertheless, first responders in DNA repair and sequence-specific transcription factors bind DNA target sites obstructed by chromatin. While early studies examined protein binding to histone-free DNA, it is only now beginning to emerge how DNA sequences are interrogated on nucleosomes. These readout strategies range from the release of nucleosomal DNA from histones, to rotational/translation register shifts of the DNA motif, and nucleosome-specific DNA binding modes that differ from those observed on naked DNA. Since DNA motif engagement on nucleosomes strongly depends on position and orientation, we argue that motif location and nucleosome positioning co-determine protein access to DNA in transcription and DNA repair.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
48
|
Quantification, Dynamic Visualization, and Validation of Bias in ATAC-Seq Data with ataqv. Cell Syst 2021; 10:298-306.e4. [PMID: 32213349 DOI: 10.1016/j.cels.2020.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/15/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
The assay for transposase-accessible chromatin using sequencing (ATAC-seq) has become the preferred method for mapping chromatin accessibility due to its time and input material efficiency. However, it can be difficult to evaluate data quality and identify sources of technical bias across samples. Here, we present ataqv, a computational toolkit for efficiently measuring, visualizing, and comparing quality control (QC) results across samples and experiments. We use ataqv to analyze 2,009 public ATAC-seq datasets; their QC metrics display a 10-fold range. Tn5 dosage experiments and statistical modeling show that technical variation in the ratio of Tn5 transposase to nuclei and sequencing flowcell density induces systematic bias in ATAC-seq data by changing the enrichment of reads across functional genomic annotations including promoters, enhancers, and transcription-factor-bound regions, with the notable exception of CTCF. ataqv can be integrated into existing computational pipelines and is freely available at https://github.com/ParkerLab/ataqv/.
Collapse
|
49
|
Hedley JG, Teif VB, Kornyshev AA. Nucleosome-induced homology recognition in chromatin. J R Soc Interface 2021; 18:20210147. [PMID: 34129789 PMCID: PMC8205524 DOI: 10.1098/rsif.2021.0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
One of the least understood properties of chromatin is the ability of its similar regions to recognize each other through weak interactions. Theories based on electrostatic interactions between helical macromolecules suggest that the ability to recognize sequence homology is an innate property of the non-ideal helical structure of DNA. However, this theory does not account for the nucleosomal packing of DNA. Can homologous DNA sequences recognize each other while wrapped up in the nucleosomes? Can structural homology arise at the level of nucleosome arrays? Here, we present a theoretical model for the recognition potential well between chromatin fibres sliding against each other. This well is different from the one predicted for bare DNA; the minima in energy do not correspond to literal juxtaposition, but are shifted by approximately half the nucleosome repeat length. The presence of this potential well suggests that nucleosome positioning may induce mutual sequence recognition between chromatin fibres and facilitate the formation of chromatin nanodomains. This has implications for nucleosome arrays enclosed between CTCF-cohesin boundaries, which may form stiffer stem-like structures instead of flexible entropically favourable loops. We also consider switches between chromatin states, e.g. through acetylation/deacetylation of histones, and discuss nucleosome-induced recognition as a precursory stage of genetic recombination.
Collapse
Affiliation(s)
- Jonathan G. Hedley
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Vladimir B. Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| |
Collapse
|
50
|
At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture. BIOLOGY 2021; 10:biology10040272. [PMID: 33801596 PMCID: PMC8066914 DOI: 10.3390/biology10040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The way DNA is packaged in the nucleus of a cell is important for when and how genes are expressed. There are many levels of packaging, and new techniques have revealed that long-range interactions are important for both promoting and restricting the transcription of genes. Some long-range interactions are mediated by physical loops in the genome where, like a rubber band, the ring-shaped cohesin complex loops sections of DNA bound by CCCTC-binding factor (CTCF). Both cohesin and CTCF act on DNA, and increasing evidence indicates that their function is inhibited by nucleosomes bound to the DNA. In this review, we summarize the current knowledge of how individual chromatin remodelers, which utilize ATP to move nucleosomes on DNA, facilitate or inhibit cohesin/CTCF-dependent looping interactions. Abstract In higher order organisms, the genome is assembled into a protein-dense structure called chromatin. Chromatin is spatially organized in the nucleus through hierarchical folding, which is tightly regulated both in cycling cells and quiescent cells. Assembly and folding are not one-time events in a cell’s lifetime; rather, they are subject to dynamic shifts to allow changes in transcription, DNA replication, or DNA damage repair. Chromatin is regulated at many levels, and recent tools have permitted the elucidation of specific factors involved in the maintenance and regulation of the three-dimensional (3D) genome organization. In this review/perspective, we aim to cover the potential, but relatively unelucidated, crosstalk between 3D genome architecture and the ATP-dependent chromatin remodelers with a specific focus on how the architectural proteins CTCF and cohesin are regulated by chromatin remodeling.
Collapse
|