1
|
Nanda B, Bhowmick J, Varadarajan R, Sarma SP. Backbone assignment of CcdB_G100T toxin from E.coli in complex with the toxin binding C-terminal domain of its cognate antitoxin CcdA. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:285-292. [PMID: 39276296 DOI: 10.1007/s12104-024-10201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
The CcdAB system expressed in the E.coli cells is a prototypical example of the bacterial toxin-antitoxin (TA) systems that ensure the survival of the bacterial population under adverse environmental conditions. The solution and crystal structures of CcdA, CcdB and of CcdB in complex with the toxin-binding C-terminal domain of CcdA have been reported. Our interest lies in the dynamics of CcdB-CcdA complex formation. Solution NMR studies have shown that CcdB_G100T, in presence of saturating concentrations of CcdA-c, a truncated C-terminal fragment of CcdA exists in equilibrium between two major populations. Sequence specific backbone resonance assignments of both equilibrium forms of the ~ 27 kDa complex, have been obtained from a suite of triple resonance NMR experiments acquired on 2H, 13C, 15N enriched samples of CcdB_G100T. Analysis of 1H, 13Cα, 13Cβ secondary chemical shifts, shows that both equilibrium forms of CcdB_G100T have five beta-strands and one alpha-helix as the major secondary structural elements in the tertiary structure. The results of these studies are presented below.
Collapse
Affiliation(s)
- Bahnikana Nanda
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Jayantika Bhowmick
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| |
Collapse
|
2
|
Liu S, Yang X, Li R, Wang S, Han Z, Yang M, Zhang Y. IS6 family insertion sequences promote optrA dissemination between plasmids varying in transfer abilities. Appl Microbiol Biotechnol 2024; 108:132. [PMID: 38229329 DOI: 10.1007/s00253-023-12858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 01/18/2024]
Abstract
Plasmids are the primary vectors for intercellular transfer of the oxazolidinone and phenicol cross-resistance gene optrA, while insertion sequences (ISs) are mobile genetic elements that can mobilize plasmid-borne optrA intracellularly. However, little is known about how the IS-mediated intracellular mobility facilitates the dissemination of the optrA gene between plasmid categories that vary in transfer abilities, including non-mobilizable, mobilizable, and conjugative plasmids. Here, we performed a holistic genomic study of 52 optrA-carrying plasmids obtained from searches guided by the Comprehensive Antibiotic Resistance Database. Among the 132 ISs identified within 10 kbp from the optrA gene in the plasmids, IS6 family genes were the most prevalent (86/132). Homologous gene arrays containing IS6 family genes were shared between different plasmids, especially between mobilizable and conjugative plasmids. All these indicated the central role of IS6 family genes in disseminating plasmid-borne optrA. Thirty-three of the 52 plasmids were harbored by Enterococcus faecalis found mainly in humans and animals. By Nanopore sequencing and inverse PCR, the potential of the enterococcal optrA to be transmitted from a mobilizable plasmid to a conjugative plasmid mediated by IS6 family genes was further confirmed in Enterococcus faecalis strains recovered from the effluents of anaerobic digestion systems for treating chicken manure. Our findings highlight the increased intercellular transfer abilities and dissemination risk of plasmid-borne optrA gene caused by IS-mediated intracellular mobility, and underscore the importance of routinely monitoring the dynamic genetic contexts of clinically important antibiotic resistance genes to effectively control this critical public health threat. KEY POINTS: • IS6 was prevalent in optrA-plasmids varying in intercellular transfer abilities. • Enterococcal optrA-plasmids were widespread among human, animal, and the environment. • IS6 elevated the dissemination risk of enterococcal optrA-plasmids.
Collapse
Affiliation(s)
- Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shaolin Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Hatakeyama S, Mino S, Mizobata M, Takada M, Tsuchiya J, Yamaki S, Ando Y, Sawabe T, Takai K. Hydrogenimonas leucolamina sp. nov., a hydrogen- and sulphur-oxidizing mesophilic chemolithoautotroph isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Western Pacific Ocean. Int J Syst Evol Microbiol 2024; 74. [PMID: 39436681 DOI: 10.1099/ijsem.0.006553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
A novel mesophilic bacterium, strain SS33T, was isolated from a deep-sea hydrothermal vent chimney at Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean. The cells of strain SS33T were motile short rods with a single polar flagellum. The growth of strain SS33T was observed at the temperature range between 33 and 55 °C (optimum growth at 45 °C), at the pH range between 5.0 and 7.1 (optimum growth at pH 6.0) and in the presence of between 2.0 and 4.5% (w/v) NaCl [optimum growth at 3.5% (w/v)]. Strain SS33T was a facultative anaerobic chemolithoautotroph using molecular hydrogen and elemental sulphur as the sole electron donor. Nitrate, nitrous oxide, sulphate, elemental sulphur and molecular oxygen were capable of serving as the sole electron acceptor. Phylogenetic analysis based on 16S rRNA gene sequences placed strain SS33T in the genus Hydrogenimonas belonging to the class Epsilonproteobacteria. The closely related species of strain SS33T were Hydrogenimonas urashimensis SSM-Sur55T (95.96%), Hydrogenimonas thermophila EP1-55-1%T (95.75%) and Hydrogenimonas cancrithermarum ISO32T (95.24%). According to the taxonomic and physiological characteristics, it is proposed that strain SS33T was classified into a novel species of genus Hydrogenimonas, Hydrogenimonas leucolamina sp. nov., with SS33T (=JCM 39184T =KCTC 25253T) as the type strain. Furthermore, the genome comparison of Epsilonproteobacteria revealed that their [NiFe] hydrogenase genes belonging to Group 1b could be divided into two phylogenetic lineages and suggested that the reverse gyrase gene has been lost after division to the genus Hydrogenimonas.
Collapse
Affiliation(s)
- Shuya Hatakeyama
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mana Mizobata
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mako Takada
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Jiro Tsuchiya
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shogo Yamaki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Ando
- Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
4
|
Gory R, Personnic N, Blaha D. Unravelling the Roles of Bacterial Nanomachines Bistability in Pathogens' Life Cycle. Microorganisms 2024; 12:1930. [PMID: 39338604 PMCID: PMC11434070 DOI: 10.3390/microorganisms12091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial nanomachines represent remarkable feats of evolutionary engineering, showcasing intricate molecular mechanisms that enable bacteria to perform a diverse array of functions essential to persist, thrive, and evolve within ecological and pathological niches. Injectosomes and bacterial flagella represent two categories of bacterial nanomachines that have been particularly well studied both at the molecular and functional levels. Among the diverse functionalities of these nanomachines, bistability emerges as a fascinating phenomenon, underscoring their dynamic and complex regulation as well as their contribution to shaping the bacterial community behavior during the infection process. In this review, we examine two closely related bacterial nanomachines, the type 3 secretion system, and the flagellum, to explore how the bistability of molecular-scale devices shapes the bacterial eco-pathological life cycle.
Collapse
Affiliation(s)
- Romain Gory
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| | - Nicolas Personnic
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| | - Didier Blaha
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
5
|
Thakur Z, Chaudhary R, Mehta PK. MazEF toxin-antitoxin systems: their role in Mycobacterium tuberculosis stress response and drug resistance. Expert Rev Anti Infect Ther 2024:1-4. [PMID: 39249131 DOI: 10.1080/14787210.2024.2403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/10/2024]
Affiliation(s)
- Zoozeal Thakur
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Ambala, India
| | - Renu Chaudhary
- Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Promod K Mehta
- Microbiology Department, Faculty of Allied Health Sciences, Sri Guru Gobind Singh, Tricentenary University, Gurugram, India
| |
Collapse
|
6
|
Tang Z, Jiang P, Xie W. Long Dynamic β1-β2 Loops in M. tb MazF Toxins Affect the Interaction Modes and Strengths of the Toxin-Antitoxin Pairs. Int J Mol Sci 2024; 25:9630. [PMID: 39273577 PMCID: PMC11394972 DOI: 10.3390/ijms25179630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Tuberculosis is a worldwide plague caused by the pathogen Mycobacterium tuberculosis (M. tb). Toxin-antitoxin (TA) systems are genetic elements abundantly present in prokaryotic organisms and regulate important cellular processes. MazEF is a TA system implicated in the formation of "persisters cells" of M. tb, which contain more than 10 such members. However, the exact function and inhibition mode of each MazF are not fully understood. Here we report crystal structures of MazF-mt3 in its apo form and in complex with the C-terminal half of MazE-mt3. Structural analysis suggested that two long but disordered β1-β2 loops would interfere with the binding of the cognate MazE-mt3 antitoxin. Similar loops are also present in the MazF-mt1 and -mt9 but are sustainably shortened in other M. tb MazF members, and these TA pairs behave distinctly in terms of their binding modes and their RNase activities. Systematic crystallographic and biochemical studies further revealed that the biochemical activities of M. tb toxins were combined results between the interferences from the characteristic loops and the electrostatic interactions between the cognate TA pairs. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F TA pairs, which facilitate the structure-based peptide designs.
Collapse
Affiliation(s)
- Ziyun Tang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pengcheng Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Johannesman A, Carlson NA, LeRoux M. Phages carry orphan antitoxin-like enzymes to neutralize the DarTG1 toxin-antitoxin defense system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602962. [PMID: 39026772 PMCID: PMC11257639 DOI: 10.1101/2024.07.11.602962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The astounding number of anti-phage defenses encoded by bacteria is countered by an elaborate set of phage counter-defenses, though their evolutionary origins are often unknown. Here, we discover an orphan antitoxin counter-defense element in T4-like phages that can overcome the bacterial toxin-antitoxin phage defense system, DarTG1. The DarT1 toxin, an ADP-ribosyltransferase, modifies phage DNA to prevent replication while its cognate antitoxin, DarG1, is an ADP-ribosylglycohydrolase that reverses these modifications in uninfected bacteria. The orphan phage DarG1-like protein, which we term anti-DarT factor NADAR (AdfN), removes ADP-ribose modifications from phage DNA during infection thereby enabling replication in DarTG1-containing bacteria. AdfN, like DarG1, is in the NADAR superfamily of ADP-ribosylglycohydrolases found across domains of life. We find divergent NADAR proteins in unrelated phages that likewise exhibit anti-DarTG1 activity, underscoring the importance of ADP-ribosylation in bacterial-phage interactions, and revealing the function of a substantial subset of the NADAR superfamily.
Collapse
Affiliation(s)
- Anna Johannesman
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Nico A. Carlson
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Michele LeRoux
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
8
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024:eesp00252022. [PMID: 38767346 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F H Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
9
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
10
|
Kopf A, Bunk B, Riedel T, Schröttner P. The zoonotic pathogen Wohlfahrtiimonas chitiniclastica - current findings from a clinical and genomic perspective. BMC Microbiol 2024; 24:3. [PMID: 38172653 PMCID: PMC10763324 DOI: 10.1186/s12866-023-03139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiotics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it from both a clinical and a genomic perspective.
Collapse
Affiliation(s)
- Anna Kopf
- Clinic for Cardiology, Sana Heart Center, Leipziger Str. 50, 03048, Cottbus, Germany
- 2nd Medical Clinic for Hematology, Oncology, Pneumology and Nephrology, Carl-Thiem Hospital Cottbus gGmbH, Cottbus, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Institute for Medical Microbiology and Virology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Nielsen MR, Brodersen DE. Structural Variations and Rearrangements in Bacterial Type II Toxin-Antitoxin Systems. Subcell Biochem 2024; 104:245-267. [PMID: 38963490 DOI: 10.1007/978-3-031-58843-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Bacteria encode a wide range of survival and immunity systems, including CRISPR-Cas, restriction-modification systems, and toxin-antitoxin systems involved in defence against bacteriophages, as well as survival during challenging growth conditions or exposure to antibiotics. Toxin-antitoxin (TA) systems are small two- or three-gene cassettes consisting of a metabolic regulator (the "toxin") and its associated antidote (the "antitoxin"), which also often functions as a transcriptional regulator. TA systems are widespread in the genomes of pathogens but are also present in commensal bacterial species and on plasmids. For mobile elements such as plasmids, TA systems play a role in maintenance, and increasing evidence now points to roles of chromosomal toxin-antitoxin systems in anti-phage defence. Moreover, the widespread occurrence of toxin-antitoxin systems in the genomes of pathogens has been suggested to relate to survival during host infection as well as in persistence during antibiotic treatment. Upon repeated exposure to antibiotics, TA systems have been shown to acquire point mutations as well as more dramatic rearrangements such as in-frame deletions with potential relevance for bacterial survival and pathogenesis. In this review, we present an overview of the known functional and structural consequences of mutations and rearrangements arising in bacterial toxin-antitoxin systems and discuss their relevance for survival and persistence of pathogenic species.
Collapse
Affiliation(s)
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
12
|
Obolski U, Swarthout TD, Kalizang'oma A, Mwalukomo TS, Chan JM, Weight CM, Brown C, Cave R, Cornick J, Kamng'ona AW, Msefula J, Ercoli G, Brown JS, Lourenço J, Maiden MC, French N, Gupta S, Heyderman RS. The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi. Nat Commun 2023; 14:7477. [PMID: 37978177 PMCID: PMC10656543 DOI: 10.1038/s41467-023-43160-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into "Metabolic genotypes" (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR.
Collapse
Affiliation(s)
- Uri Obolski
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Todd D Swarthout
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Akuzike Kalizang'oma
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | | | - Jia Mun Chan
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | - Caroline M Weight
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
- Faculty of Health and Medicine, Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Comfort Brown
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Rory Cave
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | - Jen Cornick
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Giuseppe Ercoli
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Universidade Católica Portuguesa, Faculty of Medicine, Biomedical Research Centre, Lisbon, Portugal
| | - Martin C Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Neil French
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom.
| |
Collapse
|
13
|
Lin JD, Stogios PJ, Abe KT, Wang A, MacPherson J, Skarina T, Gingras AC, Savchenko A, Ensminger AW. Functional diversification despite structural congruence in the HipBST toxin-antitoxin system of Legionella pneumophila. mBio 2023; 14:e0151023. [PMID: 37819088 PMCID: PMC10653801 DOI: 10.1128/mbio.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Toxin-antitoxin (TA) systems are parasitic genetic elements found in almost all bacterial genomes. They are exchanged horizontally between cells and are typically poorly conserved across closely related strains and species. Here, we report the characterization of a tripartite TA system in the bacterial pathogen Legionella pneumophila that is highly conserved across Legionella species genomes. This system (denoted HipBSTLp) is a distant homolog of the recently discovered split-HipA system in Escherichia coli (HipBSTEc). We present bioinformatic, molecular, and structural analyses of the divergence between these two systems and the functionality of this newly described TA system family. Furthermore, we provide evidence to refute previous claims that the toxin in this system (HipTLp) possesses bifunctionality as an L. pneumophila virulence protein. Overall, this work expands our understanding of the split-HipA system architecture and illustrates the potential for undiscovered biology in these abundant genetic elements.
Collapse
Affiliation(s)
- Jordan D. Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kento T. Abe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John MacPherson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, Alberta, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Drummond IY, DePaolo A, Krieger M, Driscoll H, Eckstrom K, Spatafora GA. Small regulatory RNAs are mediators of the Streptococcus mutans SloR regulon. J Bacteriol 2023; 205:e0017223. [PMID: 37695854 PMCID: PMC10521355 DOI: 10.1128/jb.00172-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Dental caries is among the most prevalent chronic diseases worldwide. Streptococcus mutans, the chief causative agent of caries, uses a 25-kDa manganese-dependent SloR protein to coordinate the uptake of essential manganese with the transcription of its virulence attributes. Small non-coding RNAs (sRNAs) can either enhance or repress gene expression, and reports in the literature ascribe an emerging role for sRNAs in the environmental stress response. Herein, we focused our attention on 18-50 nt sRNAs as mediators of the S. mutans SloR and manganese regulons. Specifically, the results of RNA sequencing revealed 19 sRNAs in S. mutans, which were differentially transcribed in the SloR-proficient UA159 and SloR-deficient GMS584 strains, and 10 sRNAs that were differentially expressed in UA159 cells grown in the presence of low vs high manganese. We describe SmsR1532 and SmsR1785 as SloR- and manganese-responsive sRNAs that are processed from large transcripts and that bind SloR directly in their promoter regions. The predicted targets of these sRNAs include regulators of metal ion transport, growth management via a toxin-antitoxin operon, and oxidative stress tolerance. These findings support a role for sRNAs in coordinating intracellular metal ion homeostasis with virulence gene control in an important oral cariogen. IMPORTANCE Small regulatory RNAs (sRNAs) are critical mediators of environmental signaling, particularly in bacterial cells under stress, but their role in Streptococcus mutans is poorly understood. S. mutans, the principal causative agent of dental caries, uses a 25-kDa manganese-dependent protein, called SloR, to coordinate the regulated uptake of essential metal ions with the transcription of its virulence genes. In the present study, we identified and characterized sRNAs that are both SloR and manganese responsive. Taken together, this research can elucidate the details of regulatory networks that engage sRNAs in an important oral pathogen and that can enable the development of an effective anti-caries therapeutic.
Collapse
Affiliation(s)
| | | | - Madeline Krieger
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Heather Driscoll
- Department of Biology, Vermont Biomedical Research Network, Norwich University, Northfield, Vermont, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | |
Collapse
|
15
|
Travers-Cook TJ, Jokela J, Buser CC. The evolutionary ecology of fungal killer phenotypes. Proc Biol Sci 2023; 290:20231108. [PMID: 37583325 PMCID: PMC10427833 DOI: 10.1098/rspb.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.
Collapse
Affiliation(s)
- Thomas J. Travers-Cook
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jukka Jokela
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Claudia C. Buser
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
16
|
Wagner A. Evolvability-enhancing mutations in the fitness landscapes of an RNA and a protein. Nat Commun 2023; 14:3624. [PMID: 37336901 PMCID: PMC10279741 DOI: 10.1038/s41467-023-39321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Can evolvability-the ability to produce adaptive heritable variation-itself evolve through adaptive Darwinian evolution? If so, then Darwinian evolution may help create the conditions that enable Darwinian evolution. Here I propose a framework that is suitable to address this question with available experimental data on adaptive landscapes. I introduce the notion of an evolvability-enhancing mutation, which increases the likelihood that subsequent mutations in an evolving organism, protein, or RNA molecule are adaptive. I search for such mutations in the experimentally characterized and combinatorially complete fitness landscapes of a protein and an RNA molecule. I find that such evolvability-enhancing mutations indeed exist. They constitute a small fraction of all mutations, which shift the distribution of fitness effects of subsequent mutations towards less deleterious mutations, and increase the incidence of beneficial mutations. Evolving populations which experience such mutations can evolve significantly higher fitness. The study of evolvability-enhancing mutations opens many avenues of investigation into the evolution of evolvability.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
17
|
Boss L, Kędzierska B. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Toxins (Basel) 2023; 15:380. [PMID: 37368681 DOI: 10.3390/toxins15060380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. They consist of stable toxins and unstable antitoxins that are classified into distinct groups based on their structure and biological activity. TA systems are mostly related to mobile genetic elements and can be easily acquired through horizontal gene transfer. The ubiquity of different homologous and non-homologous TA systems within a single bacterial genome raises questions about their potential cross-interactions. Unspecific cross-talk between toxins and antitoxins of non-cognate modules may unbalance the ratio of the interacting partners and cause an increase in the free toxin level, which can be deleterious to the cell. Moreover, TA systems can be involved in broadly understood molecular networks as transcriptional regulators of other genes' expression or modulators of cellular mRNA stability. In nature, multiple copies of highly similar or identical TA systems are rather infrequent and probably represent a transition stage during evolution to complete insulation or decay of one of them. Nevertheless, several types of cross-interactions have been described in the literature to date. This implies a question of the possibility and consequences of the TA system cross-interactions, especially in the context of the practical application of the TA-based biotechnological and medical strategies, in which such TAs will be used outside their natural context, will be artificially introduced and induced in the new hosts. Thus, in this review, we discuss the prospective challenges of system cross-talks in the safety and effectiveness of TA system usage.
Collapse
Affiliation(s)
- Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| |
Collapse
|
18
|
Drummond IY, DePaolo A, Krieger M, Driscoll H, Eckstrom K, Spatafora GA. Small regulatory RNAs are mediators of the Streptococcus mutans SloR regulon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543485. [PMID: 37398324 PMCID: PMC10312646 DOI: 10.1101/2023.06.02.543485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Dental caries is among the most prevalent chronic infectious diseases worldwide. Streptococcus mutans , the chief causative agent of caries, uses a 25 kDa manganese dependent SloR protein to coordinate the uptake of essential manganese with the transcription of its virulence attributes. Small non-coding RNAs (sRNAs) can either enhance or repress gene expression and reports in the literature ascribe an emerging role for sRNAs in the environmental stress response. Herein, we identify 18-50 nt sRNAs as mediators of the S. mutans SloR and manganese regulons. Specifically, the results of sRNA-seq revealed 56 sRNAs in S. mutans that were differentially transcribed in the SloR-proficient UA159 and SloR-deficient GMS584 strains, and 109 sRNAs that were differentially expressed in UA159 cells grown in the presence of low versus high manganese. We describe SmsR1532 and SmsR1785 as SloR- and/or manganese-responsive sRNAs that are processed from large transcripts, and that bind SloR directly in their promoter regions. The predicted targets of these sRNAs include regulators of metal ion transport, growth management via a toxin-antitoxin operon, and oxidative stress tolerance. These findings support a role for sRNAs in coordinating intracellular metal ion homeostasis with virulence gene control in an important oral cariogen. IMPORTANCE Small regulatory RNAs (sRNAs) are critical mediators of environmental signaling, particularly in bacterial cells under stress, but their role in Streptococcus mutans is poorly understood. S. mutans, the principal causative agent of dental caries, uses a 25 kDa manganese-dependent protein, called SloR, to coordinate the regulated uptake of essential metal ions with the transcription of its virulence genes. In the present study, we identified and characterize sRNAs that are both SloR- and manganese-responsive. Taken together, this research can elucidate the details of regulatory networks that engage sRNAs in an important oral pathogen, and that can enable the development of an effective anti-caries therapeutic.
Collapse
|
19
|
Chen X, Molenda O, Brown CT, Toth CRA, Guo S, Luo F, Howe J, Nesbø CL, He C, Montabana EA, Cate JHD, Banfield JF, Edwards EA. " Candidatus Nealsonbacteria" Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture. Appl Environ Microbiol 2023; 89:e0002523. [PMID: 37098974 PMCID: PMC10231131 DOI: 10.1128/aem.00025-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/27/2023] Open
Abstract
The Candidate Phyla Radiation (CPR), also referred to as superphylum Patescibacteria, is a very large group of bacteria with no pure culture representatives discovered by 16S rRNA sequencing or genome-resolved metagenomic analyses of environmental samples. Within the CPR, candidate phylum Parcubacteria, previously referred to as OD1, is prevalent in anoxic sediments and groundwater. Previously, we had identified a specific member of the Parcubacteria (referred to as DGGOD1a) as an important member of a methanogenic benzene-degrading consortium. Phylogenetic analyses herein place DGGOD1a within the clade "Candidatus Nealsonbacteria." Because of its persistence over many years, we hypothesized that "Ca. Nealsonbacteria" DGGOD1a must play an important role in sustaining anaerobic benzene metabolism in the consortium. To try to identify its growth substrate, we amended the culture with a variety of defined compounds (pyruvate, acetate, hydrogen, DNA, and phospholipid), as well as crude culture lysate and three subfractions thereof. We observed the greatest (10-fold) increase in the absolute abundance of "Ca. Nealsonbacteria" DGGOD1a only when the consortium was amended with crude cell lysate. These results implicate "Ca. Nealsonbacteria" in biomass recycling. Fluorescence in situ hybridization and cryogenic transmission electron microscope images revealed that "Ca. Nealsonbacteria" DGGOD1a cells were attached to larger archaeal Methanothrix cells. This apparent epibiont lifestyle was supported by metabolic predictions from a manually curated complete genome. This is one of the first examples of bacterial-archaeal episymbiosis and may be a feature of other "Ca. Nealsonbacteria" found in anoxic environments. IMPORTANCE An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny "Candidatus Nealsonbacteria" cells attached to a large Methanothrix cell, revealing a novel episymbiosis.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher T. Brown
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
| | - Courtney R. A. Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Shen Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fei Luo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jane Howe
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Camilla L. Nesbø
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christine He
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Elizabeth A. Montabana
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Riffaud CM, Rucks EA, Ouellette SP. Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses. Front Cell Infect Microbiol 2023; 13:1185571. [PMID: 37284502 PMCID: PMC10239878 DOI: 10.3389/fcimb.2023.1185571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms. However, highlighting an area of vulnerability, these pathogens are dependent on the host cell for nutrients and are very sensitive to conditions that limit nutrient availability. Persistence is a common response shared by evolutionarily divergent bacteria to survive adverse conditions like nutrient deprivation. Development of persistence usually compromises successful antibiotic therapy of bacterial infections and is associated with chronic infections and long-term sequelae for the patients. During persistence, obligate intracellular pathogens are viable but not growing inside their host cell. They can survive for a long period of time such that, when the inducing stress is removed, reactivation of their growth cycles resumes. Given their reduced coding capacity, intracellular bacteria have adapted different response mechanisms. This review gives an overview of the strategies used by the obligate intracellular bacteria, where known, which, unlike model organisms such as E. coli, often lack toxin-antitoxin systems and the stringent response that have been linked to a persister phenotype and amino acid starvation states, respectively.
Collapse
|
21
|
Yee WX, Yasir M, Turner AK, Baker DJ, Cehovin A, Tang CM. Evolution, persistence, and host adaption of a gonococcal AMR plasmid that emerged in the pre-antibiotic era. PLoS Genet 2023; 19:e1010743. [PMID: 37186602 DOI: 10.1371/journal.pgen.1010743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Plasmids are diverse extrachromosomal elements significantly contributing to interspecies dissemination of antimicrobial resistance (AMR) genes. However, within clinically important bacteria, plasmids can exhibit unexpected narrow host ranges, a phenomenon that has scarcely been examined. Here we show that pConj is largely restricted to the human-specific pathogen, Neisseria gonorrhoeae. pConj can confer tetracycline resistance and is central to the dissemination of other AMR plasmids. We tracked pConj evolution from the pre-antibiotic era 80 years ago to the modern day and demonstrate that, aside from limited gene acquisition and loss events, pConj is remarkably conserved. Notably, pConj has remained prevalent in gonococcal populations despite cessation of tetracycline use, thereby demonstrating pConj adaptation to its host. Equally, pConj imposes no measurable fitness costs and is stably inherited by the gonococcus. Its maintenance depends on the co-operative activity of plasmid-encoded Toxin:Antitoxin (TA) and partitioning systems rather than host factors. An orphan VapD toxin encoded on pConj forms a split TA with antitoxins expressed from an ancestral co-resident plasmid or a horizontally-acquired chromosomal island, potentially explaining pConj's limited distribution. Finally, ciprofloxacin can induce loss of this highly stable plasmid, reflecting epidemiological evidence of transient local falls in pConj prevalence when fluoroquinolones were introduced to treat gonorrhoea.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, OXFORD, United Kingdom
| | | | | | | | - Ana Cehovin
- Sir William Dunn School of Pathology, University of Oxford, OXFORD, United Kingdom
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, OXFORD, United Kingdom
| |
Collapse
|
22
|
Pulido S, Rückert H, Falsone SF, Göbl C, Meyer NH, Zangger K. The membrane-binding bacterial toxin long direct repeat D inhibits protein translation. Biophys Chem 2023; 298:107040. [PMID: 37229877 DOI: 10.1016/j.bpc.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Bacterial plasmids and chromosomes widely contain toxin-antitoxin (TA) loci, which are implicated in stress response, growth regulation and even tolerance to antibiotics and environmental stress. Type I TA systems consist of a stable toxin-expressing mRNA, which is counteracted by an unstable RNA antitoxin. The Long Direct Repeat (LDR-) D locus, a type I TA system of Escherichia Coli (E. coli) K12, encodes a 35 amino acid toxic peptide, LdrD. Despite being characterized as a bacterial toxin, causing rapid killing and nucleoid condensation, little was known about its function and its mechanism of toxicity. Here, we show that LdrD specifically interacts with ribosomes which potentially blocks translation. Indeed, in vitro translation of LdrD-coding mRNA greatly reduces translation efficiency. The structure of LdrD in a hydrophobic environment, similar to the one found in the interior of ribosomes was determined by NMR spectroscopy in 100% trifluoroethanol solution. A single compact α-helix was found which would fit nicely into the ribosomal exit tunnel. Therefore, we conclude that rather than destroying bacterial membranes, LdrD exerts its toxic activity by inhibiting protein synthesis through binding to the ribosomes.
Collapse
Affiliation(s)
- Sergio Pulido
- Institute of Chemistry, University of Graz, Graz, Austria; LifeFactors ZF S.A.S., Zona France Rionegro, Rionegro, Colombia
| | - Hanna Rückert
- Institute of Chemistry, University of Graz, Graz, Austria
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Christoph Göbl
- Dept. of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - N Helge Meyer
- Institute of Chemistry, University of Graz, Graz, Austria; Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Germany.
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
23
|
Zhang Y, Song X, Chen C, Liu L, Xu Y, Zhang N, Huang W, Zheng J, Yuan W, Tang L, Lin Z. Structural insights of the toxin-antitoxin system VPA0770-VPA0769 in Vibrio parahaemolyticus. Int J Biol Macromol 2023:124755. [PMID: 37164131 DOI: 10.1016/j.ijbiomac.2023.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Toxin-antitoxin (TA) systems are involved in both normal bacterial physiology and pathogenicity, including gene regulation, antibiotic resistance, and bacteria persistence under stressful environments. In pathogenic Vibrio parahaemolyticus, however, TA interaction and assembly remain largely unknown. In this work, we identified a new RES-Xre type II TA module, encoded by gene cluster vpa0770-vpa0769 on chromosome II of V. parahaemolyticus. Ectopic expression of the VPA0770 toxin rapidly arrests the growth of E. coli cells, which can be neutralized by co-expression of the VPA0769 antitoxin. To decipher the action mechanism, we determined the crystal structure of the VPA0770-VPA0769 TA complex. VPA0770 and VPA0769 proteins can assemble into two types of large complexes, a W-shaped hetero-hexamer and a donut-like hetero-dodecamer, in a concentration-dependent manner in solution. Disruption of the TA interface results in a loss of the antitoxic phenotype. The toxicity of the VPA0770 toxin, which harbors a NAD+-binding pocket, may be largely ascribed to its highly effective capability to degrade intracellular NAD+. Our study provides a structural basis for a better understanding of diverse molecular mechanisms employed by human pathogens.
Collapse
Affiliation(s)
- Yan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Xiaojie Song
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yangyang Xu
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Ning Zhang
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, 750004, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macao
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300073, China.
| | - Le Tang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300073, China.
| |
Collapse
|
24
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Sonika S, Singh S, Mishra S, Verma S. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon 2023; 9:e14220. [PMID: 37101643 PMCID: PMC10123168 DOI: 10.1016/j.heliyon.2023.e14220] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Toxin-Antitoxin (TA) systems are abundant in prokaryotes and play an important role in various biological processes such as plasmid maintenance, phage inhibition, stress response, biofilm formation, and dormant persister cell generation. TA loci are abundant in pathogenic intracellular micro-organisms and help in their adaptation to the harsh host environment such as nutrient deprivation, oxidation, immune response, and antimicrobials. Several studies have reported the involvement of TA loci in establishing successful infection, intracellular survival, better colonization, adaptation to host stresses, and chronic infection. Overall, the TA loci play a crucial role in bacterial virulence and pathogenesis. Nonetheless, there are some controversies about the role of TA system in stress response, biofilm and persister formation. In this review, we describe the role of the TA systems in bacterial virulence. We discuss the important features of each type of TA system and the recent discoveries identifying key contributions of TA loci in bacterial pathogenesis.
Collapse
|
26
|
Dávalos A, García-de los Santos A. Five copper homeostasis gene clusters encode the Cu-efflux resistome of the highly copper-tolerant Methylorubrum extorquens AM1. PeerJ 2023; 11:e14925. [PMID: 36846457 PMCID: PMC9948745 DOI: 10.7717/peerj.14925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Background In the last decade, the use of copper has reemerged as a potential strategy to limit healthcare-associated infections and to control the spread of multidrug-resistant pathogens. Numerous environmental studies have proposed that most opportunistic pathogens have acquired antimicrobial resistance in their nonclinical primary habitat. Thus, it can be presumed that copper-resistant bacteria inhabiting a primary commensal niche might potentially colonize clinical environments and negatively affect the bactericidal efficacy of Cu-based treatments. The use of copper in agricultural fields is one of the most important sources of Cu pollution that may exert selection pressure for the increase of copper resistance in soil and plant-associated bacteria. To assess the emergence of copper-resistant bacteria in natural habitats, we surveyed a laboratory collection of bacterial strains belonging to the order Rhizobiales. This study proposes that Methylorubrum extorquens AM1 is an environmental isolate well adapted to thrive in copper-rich environments that could act as a reservoir of copper resistance genes. Methods The minimal inhibitory concentrations (MICs) of CuCl2 were used to estimate the copper tolerance of eight plant-associated facultative diazotrophs (PAFD) and five pink-pigmented facultative methylotrophs (PPFM) belonging to the order Rhizobiales presumed to come from nonclinical and nonmetal-polluted natural habitats based on their reported source of isolation. Their sequenced genomes were used to infer the occurrence and diversity of Cu-ATPases and the copper efflux resistome of Mr. extorquens AM1. Results These bacteria exhibited minimal inhibitory concentrations (MICs) of CuCl2 ranging between 0.020 and 1.9 mM. The presence of multiple and quite divergent Cu-ATPases per genome was a prevalent characteristic. The highest copper tolerance exhibited by Mr. extorquens AM1 (highest MIC of 1.9 mM) was similar to that found in the multimetal-resistant model bacterium Cupriavidus metallidurans CH34 and in clinical isolates of Acinetobacter baumannii. The genome-predicted copper efflux resistome of Mr. extorquens AM1 consists of five large (6.7 to 25.7 kb) Cu homeostasis gene clusters, three clusters share genes encoding Cu-ATPases, CusAB transporters, numerous CopZ chaperones, and enzymes involved in DNA transfer and persistence. The high copper tolerance and the presence of a complex Cu efflux resistome suggest the presence of relatively high copper tolerance in environmental isolates of Mr. extorquens.
Collapse
|
27
|
Song Y, Zhang S, Ye Z, Song Y, Chen L, Tong A, He Y, Bao R. The novel type II toxin-antitoxin PacTA modulates Pseudomonas aeruginosa iron homeostasis by obstructing the DNA-binding activity of Fur. Nucleic Acids Res 2022; 50:10586-10600. [PMID: 36200834 PMCID: PMC9561280 DOI: 10.1093/nar/gkac867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Type II toxin–antitoxin (TA) systems are widely distributed in bacterial and archaeal genomes and are involved in diverse critical cellular functions such as defense against phages, biofilm formation, persistence, and virulence. GCN5-related N-acetyltransferase (GNAT) toxin, with an acetyltransferase activity-dependent mechanism of translation inhibition, represents a relatively new and expanding family of type II TA toxins. We here describe a group of GNAT-Xre TA modules widely distributed among Pseudomonas species. We investigated PacTA (one of its members encoded by PA3270/PA3269) from Pseudomonas aeruginosa and demonstrated that the PacT toxin positively regulates iron acquisition in P. aeruginosa. Notably, other than arresting translation through acetylating aminoacyl-tRNAs, PacT can directly bind to Fur, a key ferric uptake regulator, to attenuate its DNA-binding affinity and thus permit the expression of downstream iron-acquisition-related genes. We further showed that the expression of the pacTA locus is upregulated in response to iron starvation and the absence of PacT causes biofilm formation defect, thereby attenuating pathogenesis. Overall, these findings reveal a novel regulatory mechanism of GNAT toxin that controls iron-uptake-related genes and contributes to bacterial virulence.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China.,Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zirui Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Lin Chen
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China
| |
Collapse
|
28
|
Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis. Microorganisms 2022; 10:microorganisms10081590. [PMID: 36014008 PMCID: PMC9414953 DOI: 10.3390/microorganisms10081590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that poses a serious health concern to humans and cattle worldwide. Although it has been proven that lytic phages may successfully kill S. aureus, the interaction between the host and the phage has yet to be thoroughly investigated, which will likely limit the clinical application of phage. Here, RNA sequencing (RNA-seq) was used to examine the transcriptomics of jumbo phage SA1 and Staphylococcus JTB1-3 during a high multiplicity of infection (MOI) and RT-qPCR was used to confirm the results. The RNA-seq analysis revealed that phage SA1 took over the transcriptional resources of the host cells and that the genes were categorized as early, middle, and late, based on the expression levels during infection. A minor portion of the resources of the host was employed to enable phage replication after infection because only 35.73% (997/2790) of the host genes were identified as differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the phage infection mainly affected the nucleotide metabolism, protein metabolism, and energy-related metabolism of the host. Moreover, the expression of the host genes involved in anti-phage systems, virulence, and drug resistance significantly changed during infection. This research gives a fresh understanding of the relationship between jumbo phages and their Gram-positive bacteria hosts and provides a reference for studying phage treatment and antibiotics.
Collapse
|
29
|
Richard D, Roumagnac P, Pruvost O, Lefeuvre P. A network approach to decipher the dynamics of Lysobacteraceae plasmid gene sharing. Mol Ecol 2022; 32:2660-2673. [PMID: 35593155 DOI: 10.1111/mec.16536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Plasmids provide an efficient vehicle for gene sharing among bacterial populations, playing a key role in bacterial evolution. Network approaches are particularly suitable to represent multipartite relationships and are useful tools to characterize plasmid-mediated gene sharing events. The Lysobacteraceae bacterial family gathers plant commensal, plant pathogenic and opportunistic human pathogens for which plasmid mediated adaptation was reported. We searched for homologues of plasmid gene sequences from this family in all the diversity of available bacterial genome sequences and built a network of plasmid gene sharing from the results. While plasmid genes are openly shared between the bacteria of the Lysobacteraceae family, taxonomy strongly defined the boundaries of these exchanges, that only barely reached other families. Most inferred plasmid gene sharing events involved a few genes only, and evidence of full plasmid transfers were restricted to taxonomically close taxon. We detected multiple plasmid-chromosome gene transfers, among which the otherwise known sharing of a heavy metal resistance transposon. In the network, bacterial lifestyles shaped sub-structures of isolates colonizing specific ecological niches and harboring specific types of resistance genes. Genes associated to pathogenicity or antibiotic and metal resistance were among those that most importantly structured the network, highlighting the imprints of human-mediated selective pressure on pathogenic populations. A massive sequencing effort on environmental Lysobacteraceae is therefore required to refine our understanding on how this reservoir fuels the emergence and the spread of genes amongst this family and its potential impact on plant, animal and human health.
Collapse
Affiliation(s)
- D Richard
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France.,ANSES, Plant Health Laboratory, F-97410 St Pierre, Réunion, France.,Université de La Réunion, La Réunion, France
| | - P Roumagnac
- Montpellier, France.,PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - O Pruvost
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| | - P Lefeuvre
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| |
Collapse
|
30
|
Regulation of Mannitol Metabolism in Enterococcus faecalis and Association with parEF0409 Toxin-Antitoxin Locus Function. J Bacteriol 2022; 204:e0004722. [PMID: 35404112 DOI: 10.1128/jb.00047-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parEF0409 type I toxin-antitoxin locus is situated between genes for two paralogous mannitol family phosphoenolpyruvate phosphotransferase systems (PTSs). In order to address the possibility that parEF0409 function was associated with sugar metabolism, genetic and phenotypic analyses were performed on the flanking genes. It was found that the genes were transcribed as two operons: the downstream operon essential for mannitol transport and metabolism and the upstream operon performing a regulatory function. In addition to genes for the PTS components, the upstream operon harbors a gene similar to mtlR, the key regulator of mannitol metabolism in other Gram-positive bacteria. We confirmed that this gene is essential for the regulation of the downstream operon and identified putative phosphorylation sites required for carbon catabolite repression and mannitol-specific regulation. Genomic comparisons revealed that this dual-operon organization of mannitol utilization genes is uncommon in enterococci and that the association with a toxin-antitoxin system is unique to Enterococcus faecalis. Finally, we consider possible links between parEF0409 function and mannitol utilization. IMPORTANCE Enterococcus faecalis is both a common member of the human gut microbiota and an opportunistic pathogen. Its evolutionary success is partially due to its metabolic flexibility, in particular its ability to import and metabolize a wide variety of sugars. While a large number of phosphoenolpyruvate phosphotransferase sugar transport systems have been identified in the E. faecalis genome bioinformatically, the specificity and regulation of most of these systems remain undetermined. Here, we characterize a complex system of two operons flanking a type I toxin-antitoxin system required for the transport and metabolism of the common dietary sugar mannitol. We also determine the phylogenetic distribution of mannitol utilization genes in the enterococcal genus and discuss the significance of the association with toxin-antitoxin systems.
Collapse
|
31
|
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacteria that consist of a growth-inhibiting toxin and its cognate antitoxin. These systems are prevalent in bacterial chromosomes, plasmids, and phage genomes, but individual systems are not highly conserved, even among closely related strains. The biological functions of TA systems have been controversial and enigmatic, although a handful of these systems have been shown to defend bacteria against their viral predators, bacteriophages. Additionally, their patterns of conservation-ubiquitous, but rapidly acquired and lost from genomes-as well as the co-occurrence of some TA systems with known phage defense elements are suggestive of a broader role in mediating phage defense. Here, we review the existing evidence for phage defense mediated by TA systems, highlighting how toxins are activated by phage infection and how toxins disrupt phage replication. We also discuss phage-encoded systems that counteract TA systems, underscoring the ongoing coevolutionary battle between bacteria and phage. We anticipate that TA systems will continue to emerge as central players in the innate immunity of bacteria against phage. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP, Orakov A, Forslund SK, Hildebrand F, Luetge M, Schmidt TSB, Barabas O, Bork P. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res 2022; 50:3155-3168. [PMID: 35323968 PMCID: PMC8989519 DOI: 10.1093/nar/gkac163] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.
Collapse
Affiliation(s)
- Supriya Khedkar
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Georgy Smyshlyaev
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr 142, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Sofia K Forslund
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Hildebrand
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Mechthild Luetge
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Orsolya Barabas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Yonsei Frontier Lab (YFL), Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
33
|
Sudhakari PA, Ramisetty BCM. Modeling endonuclease colicin-like bacteriocin operons as 'genetic arms' in plasmid-genome conflicts. Mol Genet Genomics 2022; 297:763-777. [PMID: 35320397 DOI: 10.1007/s00438-022-01884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
Plasmids are acellular propagating entities that depend on bacteria, as molecular parasites, for propagation. A 'tussle' between bacteria and plasmid ensues; bacteria for riddance of the plasmid and plasmid for persistence within a live host. Plasmid-maintenance systems such as endonuclease Colicin-Like Bacteriocins (CLBs) ensure plasmid propagation within the population; (i) the plasmid-cured cells are killed by the CLBs; (ii) damaged cells lyse and release the CLBs that eliminate the competitors, and (iii) the released plasmids invade new bacteria. Surprisingly, endonuclease CLB operons occur on bacterial genomes whose significance is unknown. Here, we study genetics, eco-evolutionary drive, and physiological relevance of genomic endonuclease CLB operons. We investigated plasmidic and genomic endonuclease CLB operons using sequence analyses from an eco-evolutionary perspective. We found 1266 genomic and plasmidic endonuclease CLB operons across 30 bacterial genera. Although 51% of the genomes harbor endonuclease CLB operons, the majority of the genomic endonuclease CLB operons lacked a functional lysis gene, suggesting the negative selection of lethal genes. The immunity gene of the endonuclease CLB operon protects the plasmid-cured host, eliminating the metabolic burden. We show mutual exclusivity of endonuclease CLB operons on genomes and plasmids. We propose an anti-addiction hypothesis for genomic endonuclease CLB operons. Using a stochastic hybrid agent-based model, we show that the endonuclease CLB operons on genomes confer an advantage to the host genome in terms of immunity to the toxin and elimination of plasmid burden. The conflict between bacterial genome and plasmids allows the emergence of 'genetic arms' such as CLB operons that regulate the ecological interplay of bacterial genomes and plasmids.
Collapse
Affiliation(s)
- Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, 312@ASK1, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, 312@ASK1, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
34
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
35
|
Choi E, Huh A, Oh C, Oh JI, Kang HY, Hwang J. Functional characterization of HigBA toxin-antitoxin system in an Arctic bacterium, Bosea sp. PAMC 26642. J Microbiol 2022; 60:192-206. [PMID: 35102526 DOI: 10.1007/s12275-022-1619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Changmin Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
36
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
37
|
Ethanol as additive enhances expression of Ranibizumab in Escherichia coli: Impact on cellular physiology and transcriptome. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
39
|
Jeon H, Choi E, Hwang J. Identification and characterization of VapBC toxin-antitoxin system in Bosea sp. PAMC 26642 isolated from Arctic lichens. RNA (NEW YORK, N.Y.) 2021; 27:1374-1389. [PMID: 34429367 PMCID: PMC8522696 DOI: 10.1261/rna.078786.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.
Collapse
Affiliation(s)
- Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
40
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
41
|
Chen X, Hu A, Zou Q, Luo S, Wu H, Yan C, Liu T, He D, Li X, Cheng G. The Mesorhizobium huakuii transcriptional regulator AbiEi plays a critical role in nodulation and is important for bacterial stress response. BMC Microbiol 2021; 21:245. [PMID: 34511061 PMCID: PMC8436566 DOI: 10.1186/s12866-021-02304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Bacterial abortive infection (Abi) systems are type IV toxin–antitoxin (TA) system, which could elicit programmed cell death and constitute a native survival strategy of pathogenic bacteria under various stress conditions. However, no rhizobial AbiE family TA system has been reported so far. Here, a M. huakuii AbiE TA system was identified and characterized. Results A mutation in M. huakuii abiEi gene, encoding an adjacent GntR-type transcriptional regulator, was generated by homologous recombination. The abiEi mutant strain grew less well in rich TY medium, and displayed increased antioxidative capacity and enhanced gentamicin resistance, indicating the abiEi operon was negatively regulated by the antitoxin AbiEi in response to the oxidative stress and a particular antibiotic. The mRNA expression of abiEi gene was significantly up-regulated during Astragalus sinicus nodule development. The abiEi mutant was severely impaired in its competitive ability in rhizosphere colonization, and was defective in nodulation with 97% reduction in nitrogen-fixing capacity. The mutant infected nodule cells contained vacuolation and a small number of abnormal bacteroids with senescence character. RNA-seq experiment revealed it had 5 up-regulated and 111 down-regulated genes relative to wild type. Of these down-regulated genes, 21 are related to symbiosis nitrogen fixation and nitrogen mechanism, 16 are involved in the electron transport chain and antioxidant responses, and 12 belong to type VI secretion system (T6SS). Conclusions M. huakuii AbiEi behaves as a key transcriptional regulator mediating root nodule symbiosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02304-0.
Collapse
Affiliation(s)
- Xiaohong Chen
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Aiqi Hu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Chunlan Yan
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Tao Liu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
42
|
Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Front Microbiol 2021; 12:671706. [PMID: 34475853 PMCID: PMC8406773 DOI: 10.3389/fmicb.2021.671706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements that play an essential role in multidrug tolerance and virulence of bacteria. So far, little is known about the TA systems in Streptococcus suis. In this study, the Xress-MNTss TA system, composed of the MNTss toxin in the periplasmic space and its interacting Xress antitoxin, was identified in S. suis. β-galactosidase activity and electrophoretic mobility shift assay (EMSA) revealed that Xress and the Xress-MNTss complex could bind directly to the Xress-MNTss promoter as well as downregulate streptomycin adenylyltransferase ZY05719_RS04610. Interestingly, the Xress deletion mutant was less pathogenic in vivo following a challenge in mice. Transmission electron microscopy and adhesion assays pointed to a significantly thinner capsule but greater biofilm-formation capacity in ΔXress than in the wild-type strain. These results indicate that Xress-MNTss, a new type II TA system, plays an important role in antibiotic resistance and pathogenicity in S. suis.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
43
|
Lau MSH, Sheng L, Zhang Y, Minton NP. Development of a Suite of Tools for Genome Editing in Parageobacillus thermoglucosidasius and Their Use to Identify the Potential of a Native Plasmid in the Generation of Stable Engineered Strains. ACS Synth Biol 2021; 10:1739-1749. [PMID: 34197093 DOI: 10.1021/acssynbio.1c00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The relentless rise in the levels of atmospheric greenhouse gases caused by the exploitation of fossil fuel necessitates the development of more environmentally friendly routes to the manufacture of chemicals and fuels. The exploitation of a fermentative process that uses a thermophilic chassis represents an attractive option. Its use, however, is hindered by a dearth of genetic tools. Here we expand on those available for the engineering of the industrial chassis Parageobacillus thermoglucosidasius through the assembly and testing of a range of promoters, ribosome binding sites, reporter genes, and the implementation of CRISPR/Cas9 genome editing based on two different thermostable Cas9 nucleases. The latter were used to demonstrate that the deletion of the two native plasmids carried by P. thermoglucosidasius, pNCI001 and pNCI002, either singly or in combination, had no discernible effects on the overall phenotypic characteristics of the organism. Through the CRISPR/Cas9-mediated insertion of the gene encoding a novel fluorescent reporter, eCGP123, we showed that pNCI001 exhibited a high degree of segregational stability. As the relatively higher copy number of pNCI001 led to higher levels of eCGP123 expression than when the same gene was integrated into the chromosome, we propose that pNCI001 represents the preferred option for the integration of metabolic operons when stable commercial strains are required.
Collapse
Affiliation(s)
- Matthew S. H. Lau
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Lili Sheng
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
44
|
Nonin-Lecomte S, Fermon L, Felden B, Pinel-Marie ML. Bacterial Type I Toxins: Folding and Membrane Interactions. Toxins (Basel) 2021; 13:toxins13070490. [PMID: 34357962 PMCID: PMC8309996 DOI: 10.3390/toxins13070490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial type I toxin-antitoxin systems are two-component genetic modules that encode a stable toxic protein whose ectopic overexpression can lead to growth arrest or cell death, and an unstable RNA antitoxin that inhibits toxin translation during growth. These systems are widely spread among bacterial species. Type I antitoxins are cis- or trans-encoded antisense small RNAs that interact with toxin-encoding mRNAs by pairing, thereby inhibiting toxin mRNA translation and/or inducing its degradation. Under environmental stress conditions, the up-regulation of the toxin and/or the antitoxin degradation by specific RNases promote toxin translation. Most type I toxins are small hydrophobic peptides with a predicted α-helical transmembrane domain that induces membrane depolarization and/or permeabilization followed by a decrease of intracellular ATP, leading to plasmid maintenance, growth adaptation to environmental stresses, or persister cell formation. In this review, we describe the current state of the art on the folding and the membrane interactions of these membrane-associated type I toxins from either Gram-negative or Gram-positive bacteria and establish a chronology of their toxic effects on the bacterial cell. This review also includes novel structural results obtained by NMR concerning the sprG1-encoded membrane peptides that belong to the sprG1/SprF1 type I TA system expressed in Staphylococcus aureus and discusses the putative membrane interactions allowing the lysis of competing bacteria and host cells.
Collapse
Affiliation(s)
| | - Laurence Fermon
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
| | - Brice Felden
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
| | - Marie-Laure Pinel-Marie
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
- Correspondence:
| |
Collapse
|
45
|
Renoz F, Foray V, Ambroise J, Baa-Puyoulet P, Bearzatto B, Mendez GL, Grigorescu AS, Mahillon J, Mardulyn P, Gala JL, Calevro F, Hance T. At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont Serratia symbiotica. Front Cell Infect Microbiol 2021; 11:660007. [PMID: 34268133 PMCID: PMC8275996 DOI: 10.3389/fcimb.2021.660007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Mutualistic associations between insects and heritable bacterial symbionts are ubiquitous in nature. The aphid symbiont Serratia symbiotica is a valuable candidate for studying the evolution of bacterial symbiosis in insects because it includes a wide diversity of strains that reflect the diverse relationships in which bacteria can be engaged with insects, from pathogenic interactions to obligate intracellular mutualism. The recent discovery of culturable strains, which are hypothesized to resemble the ancestors of intracellular strains, provide an opportunity to study the mechanisms underlying bacterial symbiosis in its early stages. In this study, we analyzed the genomes of three of these culturable strains that are pathogenic to aphid hosts, and performed comparative genomic analyses including mutualistic host-dependent strains. All three genomes are larger than those of the host-restricted S. symbiotica strains described so far, and show significant enrichment in pseudogenes and mobile elements, suggesting that these three pathogenic strains are in the early stages of the adaptation to their host. Compared to their intracellular mutualistic relatives, the three strains harbor a greater diversity of genes coding for virulence factors and metabolic pathways, suggesting that they are likely adapted to infect new hosts and are a potential source of metabolic innovation for insects. The presence in their genomes of secondary metabolism gene clusters associated with the production of antimicrobial compounds and phytotoxins supports the hypothesis that S. symbiotia symbionts evolved from plant-associated strains and that plants may serve as intermediate hosts. Mutualistic associations between insects and bacteria are the result of independent transitions to endosymbiosis initiated by the acquisition of environmental progenitors. In this context, the genomes of free-living S. symbiotica strains provide a rare opportunity to study the inventory of genes held by bacterial associates of insects that are at the gateway to a host-dependent lifestyle.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Institut de Recherche sur la Biologie de l’insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | | | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Gipsi Lima Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Federica Calevro
- Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR203, F-69621, Villeurbanne, France
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
46
|
Identification and characterization of the type II toxin-antitoxin systems in the carbapenem-resistant Acinetobacterbaumannii. Microb Pathog 2021; 158:105052. [PMID: 34147586 DOI: 10.1016/j.micpath.2021.105052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/20/2022]
Abstract
Carbapenem -resistant A. baumannii (CRAB) is a major cause of both community-associated and nosocomial infections that are difficult to control and treat worldwide. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. The functional diversity and ubiquitous distribution in bacterial genomes are causing significant attention toward TA systems in bacteria. However, there is no enough information on the prevalence and identity of TA systems in CRAB clinical isolates. This study aimed to identify type II toxin-antitoxin systems in carbapenem-resistant A. baumannii (CRAB) isolates. A total of 80 A. baumannii isolates were collected from different clinical samples. Antibiotic resistance patterns of A. baumannii isolates were evaluated phenotypically and genetically. The frequency of type II TA genes was evaluated in CRAB isolates using PCR. Moreover, the expression level of the most prevalent TA encoding genes in some clinical isolates were evaluated by RT-qPCR. To determine whether the SplT and SplA are functional, the growth of E. coli BL21 cells (DE3/pLysS) harboring pET28a, pET28a-splTA, and pET28a-splT were analyzed by kill-rescue assay. All of the isolates were resistant to third generation of cephalosporins, ciprofloxacin and levofloxacin, whereas, 72%, 81% and 87% were resistant to amikacin, carbapenems and tetracycline, respectively. The cheTA in 47 isolates (72.5%) and splTA in 39 isolates (60%) of 65 isolates were the most common genes encoding type II TA among CRAB isolates. RT-qPCR demonstrated that cheTA and splTA transcripts are produced in the clinical isolates. There was a significant correlation between the presence of splTA genes and blaOXA-24 in CRAB isolates. Over-expression of the splT gene in E. coli results in inhibition of bacterial growth, whereas co-expression of splTA effectively restores the growth. This study presents the first identification of the type II TA systems among the carbapenem -resistant A. baumannii isolates, in Iran.
Collapse
|
47
|
Sheinman M, Arkhipova K, Arndt PF, Dutilh BE, Hermsen R, Massip F. Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain. eLife 2021; 10:62719. [PMID: 34121661 PMCID: PMC8270642 DOI: 10.7554/elife.62719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/13/2021] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer (HGT) is an essential force in microbial evolution. Despite detailed studies on a variety of systems, a global picture of HGT in the microbial world is still missing. Here, we exploit that HGT creates long identical DNA sequences in the genomes of distant species, which can be found efficiently using alignment-free methods. Our pairwise analysis of 93,481 bacterial genomes identified 138,273 HGT events. We developed a model to explain their statistical properties as well as estimate the transfer rate between pairs of taxa. This reveals that long-distance HGT is frequent: our results indicate that HGT between species from different phyla has occurred in at least 8% of the species. Finally, our results confirm that the function of sequences strongly impacts their transfer rate, which varies by more than three orders of magnitude between different functional categories. Overall, we provide a comprehensive view of HGT, illuminating a fundamental process driving bacterial evolution.
Collapse
Affiliation(s)
- Michael Sheinman
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands.,Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Peter F Arndt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Rutger Hermsen
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Florian Massip
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany.,Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villleurbanne, France
| |
Collapse
|
48
|
12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms 2021; 9:microorganisms9061112. [PMID: 34063935 PMCID: PMC8223999 DOI: 10.3390/microorganisms9061112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain responsible for a bloodstream infection in a parturient. This revealed a Restriction Modification system, suggesting a prophage maintenance strategy and five ORFs of interest for the host and encoding a type II toxin antitoxin system RelB/YafQ, an endonuclease, an S-adenosylmethionine synthetase MetK, and an StrP-like adhesin. Using the WT strain cured from 12/111phiA and constructing deleted mutants for the ORFs of interest, and their complemented mutants, we demonstrated an impact of prophage features on growth characteristics, cell morphology and biofilm formation. Our findings argue in favor of 12/111phiA domestication by the host and a role of prophage features in cell autoaggregation, glycocalyx and biofilm formation. We suggest that lysogeny may promote GBS adaptation to the acid environment of the vagina, consequently colonizing and infecting neonates.
Collapse
|
49
|
Charged Residues Flanking the Transmembrane Domain of Two Related Toxin-Antitoxin System Toxins Affect Host Response. Toxins (Basel) 2021; 13:toxins13050329. [PMID: 34062876 PMCID: PMC8147318 DOI: 10.3390/toxins13050329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
A majority of toxins produced by type I toxin–antitoxin (TA-1) systems are small membrane-localized proteins that were initially proposed to kill cells by forming non-specific pores in the cytoplasmic membrane. The examination of the effects of numerous TA-1 systems indicates that this is not the mechanism of action of many of these proteins. Enterococcus faecalis produces two toxins of the Fst/Ldr family, one encoded on pheromone-responsive conjugative plasmids (FstpAD1) and the other on the chromosome, FstEF0409. Previous results demonstrated that overexpression of the toxins produced a differential transcriptomic response in E. faecalis cells. In this report, we identify the specific amino acid differences between the two toxins responsible for the differential response of a gene highly induced by FstpAD1 but not FstEF0409. In addition, we demonstrate that a transporter protein that is genetically linked to the chromosomal version of the TA-1 system functions to limit the toxicity of the protein.
Collapse
|
50
|
He Z, Li T, Wang J, Luo D, Ning N, Li Z, Chen F, Wang H. AtaT Improves the Stability of Pore-Forming Protein EspB by Acetylating Lysine 206 to Enhance Strain Virulence. Front Microbiol 2021; 12:627141. [PMID: 33732222 PMCID: PMC7957018 DOI: 10.3389/fmicb.2021.627141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
A novel type II toxin of toxin–antitoxin systems (TAs), Gcn5-related N-acetyltransferase (GNAT) family, was reported recently. GNAT toxins are mainly present in pathogenic species, but studies of their involvement in pathogenicity are rare. This study discovered that the GANT toxin AtaT in enterohemorrhagic Escherichia coli (EHEC) can significantly enhance strain pathogenicity. First, we detected the virulence of ΔataT and ΔataR in cell and animal models. In the absence of ataT, strains showed a lower adhesion number, and host cells presented weaker attaching and effacing lesions, inflammatory response, and pathological injury. Next, we screened the acetylation substrate of AtaT to understand the underlying mechanism. Results showed that E. coli pore-forming protein EspB, which acts as a translocon in type III secretion system (T3SS) in strains, can be acetylated specifically by AtaT. The acetylation of K206 in EspB increases protein stability and maintains the efficiency of effectors translocating into host cells to cause close adhesion and tissue damage.
Collapse
Affiliation(s)
- Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fanghong Chen
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|