1
|
Chen S, Rosin LF, Pegoraro G, Moshkovich N, Murphy PJ, Yu G, Lei EP. NURF301 contributes to gypsy chromatin insulator-mediated nuclear organization. Nucleic Acids Res 2022; 50:7906-7924. [PMID: 35819192 PMCID: PMC9371915 DOI: 10.1093/nar/gkac600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Chromatin insulators are DNA-protein complexes that can prevent the spread of repressive chromatin and block communication between enhancers and promoters to regulate gene expression. In Drosophila, the gypsy chromatin insulator complex consists of three core proteins: CP190, Su(Hw), and Mod(mdg4)67.2. These factors concentrate at nuclear foci termed insulator bodies, and changes in insulator body localization have been observed in mutants defective for insulator function. Here, we identified NURF301/E(bx), a nucleosome remodeling factor, as a novel regulator of gypsy insulator body localization through a high-throughput RNAi imaging screen. NURF301 promotes gypsy-dependent insulator barrier activity and physically interacts with gypsy insulator proteins. Using ChIP-seq, we found that NURF301 co-localizes with insulator proteins genome-wide, and NURF301 promotes chromatin association of Su(Hw) and CP190 at gypsy insulator binding sites. These effects correlate with NURF301-dependent nucleosome repositioning. At the same time, CP190 and Su(Hw) both facilitate recruitment of NURF301 to chromatin. Finally, Oligopaint FISH combined with immunofluorescence revealed that NURF301 promotes 3D contact between insulator bodies and gypsy insulator DNA binding sites, and NURF301 is required for proper nuclear positioning of gypsy binding sites. Our data provide new insights into how a nucleosome remodeling factor and insulator proteins cooperatively contribute to nuclear organization.
Collapse
Affiliation(s)
- Shue Chen
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leah F Rosin
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nellie Moshkovich
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Murphy
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guoyun Yu
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Banho CA, Oliveira DS, Haudry A, Fablet M, Vieira C, Carareto CMA. Transposable Element Expression and Regulation Profile in Gonads of Interspecific Hybrids of Drosophila arizonae and Drosophila mojavensis wrigleyi. Cells 2021; 10:cells10123574. [PMID: 34944084 PMCID: PMC8700503 DOI: 10.3390/cells10123574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Interspecific hybridization may lead to sterility and/or inviability through differential expression of genes and transposable elements (TEs). In Drosophila, studies have reported massive TE mobilization in hybrids from interspecific crosses of species presenting high divergence times. However, few studies have examined the consequences of TE mobilization upon hybridization in recently diverged species, such as Drosophila arizonae and D. mojavensis. We have sequenced transcriptomes of D. arizonae and the subspecies D. m. wrigleyi and their reciprocal hybrids, as well as piRNAs, to analyze the impact of genomic stress on TE regulation. Our results revealed that the differential expression in both gonadal tissues of parental species was similar. Globally, ovaries and testes showed few deregulated TEs compared with both parental lines. Analyses of small RNA data showed that in ovaries, the TE upregulation is likely due to divergence of copies inherited from parental genomes and lack of piRNAs mapping to them. Nevertheless, in testes, the divergent expression of genes associated with chromatin state and piRNA pathway potentially indicates that TE differential expression is related to the divergence of regulatory genes that play a role in modulating transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (C.A.B.); (D.S.O.)
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
| | - Daniel Siqueira Oliveira
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (C.A.B.); (D.S.O.)
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
| | - Annabelle Haudry
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
- Correspondence: (C.V.); (C.M.A.C.)
| | - Claudia Marcia Aparecida Carareto
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (C.A.B.); (D.S.O.)
- Correspondence: (C.V.); (C.M.A.C.)
| |
Collapse
|
3
|
Mojarrad M, Saburi E, Golshan A, Moghbeli M. Genetics and molecular biology of male infertility among Iranian population: an update. Am J Transl Res 2021; 13:5767-5785. [PMID: 34306325 PMCID: PMC8290737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Infertility is one of the main social and health problems among young couples. Although a noticeable ratio of infertilities are asymptomatic, about half of the cases are observed among males. Various environmental factors such as life style, dietary patterns, and pathogens are associated with male infertility. Mutations and chromosomal abnormalities are also the most important genetic risk factors of male infertility. Similar to other populations, there is a dramatically rising trend of male infertility among Iranian. Regarding the high ratio of asymptomatic cases, it is required to clarify the molecular biology and cellular processes involved in male infertility in this population to suggest an efficient panel of diagnostic markers. In this review, we have summarized all of the cellular and molecular processes which have been reported among Iranian infertile males to clarify the molecular biology of male infertility in this population. It was observed that the stress response, cellular detoxification, and DNA repair processes were the most common aberrant cellular mechanisms among Iranian infertile males. This review paves the way of introducing a population-based diagnostic panel of genetic markers among Iranian infertile males.
Collapse
Affiliation(s)
- Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| | - Alireza Golshan
- Department of Urology, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| |
Collapse
|
4
|
Saha P, Mishra RK. Heterochromatic hues of transcription-the diverse roles of noncoding transcripts from constitutive heterochromatin. FEBS J 2019; 286:4626-4641. [PMID: 31644838 DOI: 10.1111/febs.15104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023]
Abstract
Constitutive heterochromatin has been canonically considered as transcriptionally inert chromosomal regions, which silences the repeats and transposable elements (TEs), to preserve genomic integrity. However, several studies from the last few decades show that centromeric and pericentromeric regions also get transcribed and these transcripts are involved in multiple cellular processes. Regulation of such spatially and temporally controlled transcription and their relevance to heterochromatin function have emerged as an active area of research in chromatin biology. Here, we review the myriad of roles of noncoding transcripts from the constitutive heterochromatin in the establishment and maintenance of heterochromatin, kinetochore assembly, germline epigenome maintenance, early development, and diseases. Contrary to general expectations, there are active protein-coding genes in the heterochromatin although the regulatory mechanisms of their expression are largely unknown. We propose plausible hypotheses to explain heterochromatic gene expression using Drosophila melanogaster as a model, and discuss the evolutionary significance of these transcripts in the context of Drosophilid speciation. Such analyses offer insights into the regulatory pathways and functions of heterochromatic transcripts which open new avenues for further investigation.
Collapse
Affiliation(s)
- Parna Saha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Bag I, Dale RK, Palmer C, Lei EP. The zinc-finger protein CLAMP promotes gypsy chromatin insulator function in Drosophila. J Cell Sci 2019; 132:jcs.226092. [PMID: 30718365 DOI: 10.1242/jcs.226092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 01/31/2023] Open
Abstract
Chromatin insulators are DNA-protein complexes that establish independent higher-order DNA domains to influence transcription. Insulators are functionally defined by two properties: they can block communication between an enhancer and a promoter, and also act as a barrier between heterochromatin and euchromatin. In Drosophila, the gypsy insulator complex contains three core components; Su(Hw), CP190 and Mod(mdg4)67.2. Here, we identify a novel role for Chromatin-linked adaptor for MSL proteins (CLAMP) in promoting gypsy chromatin insulator function. When clamp is knocked down, gypsy-dependent enhancer-blocking and barrier activities are strongly reduced. CLAMP associates physically with the core gypsy insulator complex, and ChIP-seq analysis reveals extensive overlap, particularly with promoter-bound CP190 on chromatin. Depletion of CLAMP disrupts CP190 binding at a minority of shared sites, whereas depletion of CP190 results in extensive loss of CLAMP chromatin association. Finally, reduction of CLAMP disrupts CP190 localization within the nucleus. Our results support a positive functional relationship between CLAMP and CP190 to promote gypsy chromatin insulator activity.
Collapse
Affiliation(s)
- Indira Bag
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cameron Palmer
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA .,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Chang TH, Mattei E, Gainetdinov I, Colpan C, Weng Z, Zamore PD. Maelstrom Represses Canonical Polymerase II Transcription within Bi-directional piRNA Clusters in Drosophila melanogaster. Mol Cell 2019; 73:291-303.e6. [PMID: 30527661 PMCID: PMC6551610 DOI: 10.1016/j.molcel.2018.10.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022]
Abstract
In Drosophila, 23-30 nt long PIWI-interacting RNAs (piRNAs) direct the protein Piwi to silence germline transposon transcription. Most germline piRNAs derive from dual-strand piRNA clusters, heterochromatic transposon graveyards that are transcribed from both genomic strands. These piRNA sources are marked by the heterochromatin protein 1 homolog Rhino (Rhi), which facilitates their promoter-independent transcription, suppresses splicing, and inhibits transcriptional termination. Here, we report that the protein Maelstrom (Mael) represses canonical, promoter-dependent transcription in dual-strand clusters, allowing Rhi to initiate piRNA precursor transcription. Mael also represses promoter-dependent transcription at sites outside clusters. At some loci, Mael repression requires the piRNA pathway, while at others, piRNAs play no role. We propose that by repressing canonical transcription of individual transposon mRNAs, Mael helps Rhi drive non-canonical transcription of piRNA precursors without generating mRNAs encoding transposon proteins.
Collapse
MESH Headings
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Binding Sites
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Transposable Elements
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Gene Expression Regulation
- Promoter Regions, Genetic
- Protein Binding
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- Transcription, Genetic
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Timothy H Chang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Eugenio Mattei
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA.
| |
Collapse
|
7
|
Investigation of piwi-interacting RNA pathway genes role in idiopathic non-obstructive azoospermia. Sci Rep 2018; 8:142. [PMID: 29317647 PMCID: PMC5760646 DOI: 10.1038/s41598-017-17518-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023] Open
Abstract
Genes involved in piwi-interacting RNAs (piRNAs) pathway have an essential role in spermatogenesis. HIWI and TDRD proteins are critical for piRNA biogenesis and function. Therefore, Mutations and polymorphisms in HIWI and TDRD genes may play role in male infertility. The aim of the present study was to investigate the role of HIWI2 rs508485 (T>C) and HIWI3 rs11703684 (C>T) polymorphisms and mutational analysis of TDRD5 gene in idiopathic non-obstructive azoospermia in a case-control study including 226 non-obstructive azoospermia patients and 200 fertile males. Genotyping for both polymorphisms was performed using Tetra-Primer ARMS PCR. Mutation analysis of TDRD5 gene was done using multi-temperature single strand conformation polymorphism technique (MSSCP). The frequency of rs508485TC genotype was significantly different in the studied groups (P = 0.0032; OR = 2.12; 95% CI, 1.29-3.48). In addition, the genotype frequencies showed a significant difference under dominant model (P = 0.005; OR = 2.79; 95% CI, 1.22-3.13). No mutation was detected in the Tudor domain of the TDRD5 in the studied patients. In conclusion, we provide evidence for association between genetic variation in the HIWI2 gene and idiopathic non-obstructive azoospermia in Iranian patients. Therefore, piRNA pathway genes variants can be considered as risk factors for male infertility.
Collapse
|
8
|
Ilyin AA, Ryazansky SS, Doronin SA, Olenkina OM, Mikhaleva EA, Yakushev EY, Abramov YA, Belyakin SN, Ivankin AV, Pindyurin AV, Gvozdev VA, Klenov MS, Shevelyov YY. Piwi interacts with chromatin at nuclear pores and promiscuously binds nuclear transcripts in Drosophila ovarian somatic cells. Nucleic Acids Res 2017; 45:7666-7680. [PMID: 28472469 PMCID: PMC5570135 DOI: 10.1093/nar/gkx355] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/20/2017] [Indexed: 12/26/2022] Open
Abstract
Piwi in a complex with Piwi-interacting RNAs (piRNAs) triggers transcriptional silencing of transposable elements (TEs) in Drosophila ovaries, thus ensuring genome stability. To do this, Piwi must scan the nascent transcripts of genes and TEs for complementarity to piRNAs. The mechanism of this scanning is currently unknown. Here we report the DamID-seq mapping of multiple Piwi-interacting chromosomal domains in somatic cells of Drosophila ovaries. These domains significantly overlap with genomic regions tethered to Nuclear Pore Complexes (NPCs). Accordingly, Piwi was coimmunoprecipitated with the component of NPCs Elys and with the Xmas-2 subunit of RNA transcription and export complex, known to interact with NPCs. However, only a small Piwi fraction has transient access to DNA at nuclear pores. Importantly, although 36% of the protein-coding genes overlap with Piwi-interacting domains and RNA-immunoprecipitation results demonstrate promiscuous Piwi binding to numerous genic and TE nuclear transcripts, according to available data Piwi does not silence these genes, likely due to the absence of perfect base-pairing between piRNAs and their transcripts.
Collapse
Affiliation(s)
- Artem A Ilyin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergei S Ryazansky
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Semen A Doronin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Oxana M Olenkina
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Evgeny Y Yakushev
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Yuri A Abramov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Stepan N Belyakin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton V Ivankin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey V Pindyurin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
9
|
Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:164-176. [PMID: 28602845 PMCID: PMC5487533 DOI: 10.1016/j.gpb.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in Drosophila melanogaster, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established “transposition-selection” population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in Drosophila. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the I-R and P-M systems in Drosophila, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms.
Collapse
|
10
|
Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing. Genetics 2017; 203:1513-31. [PMID: 27516614 DOI: 10.1534/genetics.115.184119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression.
Collapse
|
11
|
Kamaliyan Z, Pouriamanesh S, Amin-beidokhti M, Rezagholizadeh A, Mirfakhraie R. HIWI2 rs508485 Polymorphism Is Associated with Non-obstructive Azoospermia in Iranian Patients. Rep Biochem Mol Biol 2017; 5:108-111. [PMID: 28367472 PMCID: PMC5346278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/22/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND The PIWI-interacting RNA (piRNA) pathway has an essential role in transposon silencing, meiosis progression, spermatogenesis, and germline maintenance. HIWI genes are critical for piRNA biogenesis and function. Therefore, polymorphisms in HIWI genes contribute to spermatogenesis defects and can be considered as risk factors for male infertility. The aim of the present study was to investigate the association between the HIWI2 gene rs508485 polymorphism and non-obstructive azoospermia. METHODS A total of 121 Iranian men with idiopathic azoospermia and 100 fertile controls were genotyped for HIWI2 rs508485 (T>C) polymorphism using Tetra-ARMS PCR. The presence of eight sequence-tagged site (STS) markers from the Y chromosome AZF region was also investigated by Multiplex PCR (M-PCR). RESULTS Thirteen (10.74%) patients showed Y chromosome microdeletions and therefore were excluded from the study. rs508485 in the 3'UTR of HIWI2 was associated with increased risk of azoospermia in our studied population with a P-value of 0.035 and odds ratio of 2.00 (CI 95%: 1.04-3.86). CONCLUSIONS We provide evidence for an association between genetic variation in the HIWI2 gene involved in the piRNA pathway and idiopathic non-obstructive azoospermia in Iranian patients. Therefore, piRNA pathway gene variants can be considered as risk factors for male infertility.
Collapse
Affiliation(s)
- Zeeba Kamaliyan
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sara Pouriamanesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mona Amin-beidokhti
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Rezagholizadeh
- Biology Department, Islamic Azad University, East Tehran Branch, Tehran, Iran.
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Production of Small Noncoding RNAs from the flamenco Locus Is Regulated by the gypsy Retrotransposon of Drosophila melanogaster. Genetics 2016; 204:631-644. [PMID: 27558137 DOI: 10.1534/genetics.116.187922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/18/2016] [Indexed: 11/18/2022] Open
Abstract
Protective mechanisms based on RNA silencing directed against the propagation of transposable elements are highly conserved in eukaryotes. The control of transposable elements is mediated by small noncoding RNAs, which derive from transposon-rich heterochromatic regions that function as small RNA-generating loci. These clusters are transcribed and the precursor transcripts are processed to generate Piwi-interacting RNAs (piRNAs) and endogenous small interfering RNAs (endo-siRNAs), which silence transposable elements in gonads and somatic tissues. The flamenco locus is a Drosophila melanogaster small RNA cluster that controls gypsy and other transposable elements, and has played an important role in understanding how small noncoding RNAs repress transposable elements. In this study, we describe a cosuppression mechanism triggered by new euchromatic gypsy insertions in genetic backgrounds carrying flamenco alleles defective in gypsy suppression. We found that the silencing of gypsy is accompanied by the silencing of other transposons regulated by flamenco, and of specific flamenco sequences from which small RNAs against gypsy originate. This cosuppression mechanism seems to depend on a post-transcriptional regulation that involves both endo-siRNA and piRNA pathways and is associated with the occurrence of developmental defects. In conclusion, we propose that new gypsy euchromatic insertions trigger a post-transcriptional silencing of gypsy sense and antisense sequences, which modifies the flamenco activity. This cosuppression mechanism interferes with some developmental processes, presumably by influencing the expression of specific genes.
Collapse
|
13
|
Abstract
Large quantities of DNA, RNA, proteins and other cellular components are often required for biochemistry and molecular biology experiments. The short life cycle of Drosophila enables collection of large quantities of material from embryos, larvae, pupae and adult flies, in a synchronized way, at a low economic cost. A major strategy for propagating large numbers of flies is the use of a fly population cage. This useful and common tool in the Drososphila community is an efficient way to regularly produce milligrams to tens of grams of embryos, depending on uniformity of developmental stage desired. While a population cage can be time consuming to set up, maintaining a cage over months takes much less time and enables rapid collection of biological material in a short period. This paper describes a detailed and flexible protocol for the maintenance of a Drosophila melanogaster population cage, starting with 1.5 g of harvested material from the previous cycle.
Collapse
Affiliation(s)
- Juan Manuel Caravaca
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health
| | - Elissa P Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health;
| |
Collapse
|
14
|
Targeting of P-Element Reporters to Heterochromatic Domains by Transposable Element 1360 in Drosophila melanogaster. Genetics 2015; 202:565-82. [PMID: 26680659 DOI: 10.1534/genetics.115.183228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin is a common DNA packaging form employed by eukaryotes to constitutively silence transposable elements. Determining which sequences to package as heterochromatin is vital for an organism. Here, we use Drosophila melanogaster to study heterochromatin formation, exploiting position-effect variegation, a process whereby a transgene is silenced stochastically if inserted in proximity to heterochromatin, leading to a variegating phenotype. Previous studies identified the transposable element 1360 as a target for heterochromatin formation. We use transgene reporters with either one or four copies of 1360 to determine if increasing local repeat density can alter the fraction of the genome supporting heterochromatin formation. We find that including 1360 in the reporter increases the frequency with which variegating phenotypes are observed. This increase is due to a greater recovery of insertions at the telomere-associated sequences (∼50% of variegating inserts). In contrast to variegating insertions elsewhere, the phenotype of telomere-associated sequence insertions is largely independent of the presence of 1360 in the reporter. We find that variegating and fully expressed transgenes are located in different types of chromatin and that variegating reporters in the telomere-associated sequences differ from those in pericentric heterochromatin. Indeed, chromatin marks at the transgene insertion site can be used to predict the eye phenotype. Our analysis reveals that increasing the local repeat density (via the transgene reporter) does not enlarge the fraction of the genome supporting heterochromatin formation. Rather, additional copies of 1360 appear to target the reporter to the telomere-associated sequences with greater efficiency, thus leading to an increased recovery of variegating insertions.
Collapse
|
15
|
George P, Jensen S, Pogorelcnik R, Lee J, Xing Y, Brasset E, Vaury C, Sharakhov IV. Increased production of piRNAs from euchromatic clusters and genes in Anopheles gambiae compared with Drosophila melanogaster. Epigenetics Chromatin 2015; 8:50. [PMID: 26617674 PMCID: PMC4662822 DOI: 10.1186/s13072-015-0041-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Specific genomic loci, termed Piwi-interacting RNA (piRNA) clusters, manufacture piRNAs that serve as guides for the inactivation of complementary transposable elements (TEs). The piRNA pathway has been accurately detailed in Drosophila melanogaster, while it remains poorly examined in other insects. This pathway is increasingly recognized as critical for germline development and reproduction. Understanding of the piRNA functions in mosquitoes could offer an opportunity for disease vector control by the reduction of their reproductive potential. RESULTS To analyze the similarities and differences in this pathway between Drosophila and mosquito, we performed an in-depth analysis of the genomic loci producing piRNAs and their targets in the African malaria vector Anopheles gambiae. We identified 187 piRNA clusters in the An. gambiae genome and 155 piRNA clusters in the D. melanogaster genome. We demonstrate that many more piRNA clusters in the mosquito compared with the fruit fly are uni-directionally transcribed and are located outside pericentromeric heterochromatin. About 11 % of the An. gambiae piRNA population map to gene transcripts. This is a noticeable increase compared with the ~6 % of the piRNA population mapped to genes in D. melanogaster. A subset of the piRNA-enriched genes in An. gambiae has functions related to reproduction and development. At least 24 and 65 % of the mapped piRNAs correspond to genomic TE sequences in An. gambiae and D. melanogaster, respectively. DNA transposons and non-LTR retrotransposons are more abundant in An. gambiae, while LTR retrotransposons are more abundant in D. melanogaster. Yet, piRNAs predominantly target LTR retrotransposons in both species, which may point to a distinct feature of these elements compared to the other classes of TEs concerning their silencing by the piRNA pathway. CONCLUSIONS Here, we demonstrate that piRNA-producing loci have more ubiquitous distribution in the An. gambiae genome than in the genome of D. melanogaster. Also, protein-coding genes have an increased role in production of piRNAs in the germline of this mosquito. Genes involved in germline and embryonic development of An. gambiae generate a substantial portion of piRNAs, suggesting a role of the piRNA pathway in the epigenetic regulation of the reproductive processes in the African malaria vector.
Collapse
Affiliation(s)
- Phillip George
- />Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Silke Jensen
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Romain Pogorelcnik
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Jiyoung Lee
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Yi Xing
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Emilie Brasset
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Chantal Vaury
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Igor V. Sharakhov
- />Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| |
Collapse
|
16
|
Lavrenov AR, Nefedova LN, Romanova NI, Kim AI. Expression of hp1 family genes and their plausible role in formation of flamenco phenotype in D. melanogaster. BIOCHEMISTRY (MOSCOW) 2014; 79:1267-72. [PMID: 25540013 DOI: 10.1134/s0006297914110157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Results of expression analysis of transcription of the flamenco locus that controls transposition of the mobile genetic element gypsy, RNA interference system genes ago3, zuc, aub, and HP1 heterochromatin protein family genes hp1a, hp1b, hp1c, hp1d (rhino), and hp1e in D. melanogaster SS strain mutant on the flamenco gene are presented. We show that the number of transcripts in the SS strain that are formed in the flamenco locus is unchanged in some freely chosen points, and this is different from the wild-type strain where a decreased number of transcripts is observed, which clearly is a result of processing of the flamenco locus primary transcript, a predecessor of piRNA. At the same time, expression of genes of the RNA interference system is not affected, but there is a reduced level of hp1d gene expression in ovary tissue. We suggest that the hp1d gene product is directly or indirectly involved in the flamenco locus primary transcript processing.
Collapse
Affiliation(s)
- A R Lavrenov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | | | | |
Collapse
|
17
|
Le Thomas A, Stuwe E, Li S, Du J, Marinov G, Rozhkov N, Chen YCA, Luo Y, Sachidanandam R, Toth KF, Patel D, Aravin AA. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes Dev 2014; 28:1667-80. [PMID: 25085419 PMCID: PMC4117942 DOI: 10.1101/gad.245514.114] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
piRNAs guide the repression of diverse transposable elements in metazoan germ cells. Le Thomas et al. show that piRNA biogenesis in Drosophila germ cells depends on the inheritance of homologous piRNAs from the previous generation. Transgenerationally inherited piRNAs trigger piRNA biogenesis in the progeny by two different mechanisms. First, inherited piRNAs guide post-transcriptional processing of precursors into mature piRNAs. Second, inherited piRNAs direct the modification of the chromatin state of cluster sequences. This study provides key insights into the transgenerational mechanism that specifies piRNA biogenesis in the germline. Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors.
Collapse
Affiliation(s)
- Adrien Le Thomas
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA; Ecole Doctorale Complexité du Vivant, Université Pierre et Marie Curie, 75005 Paris, France
| | - Evelyn Stuwe
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA; Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Sisi Li
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Jiamu Du
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA;
| | - Georgi Marinov
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Nikolay Rozhkov
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yung-Chia Ariel Chen
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Ravi Sachidanandam
- Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Katalin Fejes Toth
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Dinshaw Patel
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Alexei A Aravin
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
18
|
A transgenerational process defines piRNA biogenesis in Drosophila virilis. Cell Rep 2014; 8:1617-1623. [PMID: 25199836 DOI: 10.1016/j.celrep.2014.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/22/2014] [Accepted: 08/06/2014] [Indexed: 11/23/2022] Open
Abstract
Piwi-interacting (pi)RNAs repress diverse transposable elements in germ cells of Metazoa and are essential for fertility in both invertebrates and vertebrates. The precursors of piRNAs are transcribed from distinct genomic regions, the so-called piRNA clusters; however, how piRNA clusters are differentiated from the rest of the genome is not known. To address this question, we studied piRNA biogenesis in two D. virilis strains that show differential ability to generate piRNAs from several genomic regions. We found that active piRNA biogenesis correlates with high levels of histone 3 lysine 9 trimethylation (H3K9me3) over genomic regions that give rise to piRNAs. Furthermore, piRNA biogenesis in the progeny requires the transgenerational inheritance of an epigenetic signal, presumably in the form of homologous piRNAs that are generated in the maternal germline and deposited into the oocyte. The inherited piRNAs enhance piRNA biogenesis through the installment of H3K9me3 on piRNA clusters.
Collapse
|
19
|
Chambeyron S, Seitz H. Insect small non-coding RNA involved in epigenetic regulations. CURRENT OPINION IN INSECT SCIENCE 2014; 1:1-9. [PMID: 32846724 DOI: 10.1016/j.cois.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/01/2014] [Accepted: 05/01/2014] [Indexed: 06/11/2023]
Abstract
Small regulatory RNAs can not only guide post-transcriptional repression of target genes, but some of them can also direct heterochromatin formation of specific genomic loci. Here we review the published literature on small RNA-guided epigenetic regulation in insects. The recent development of novel analytical technologies (deep sequencing and RNAi screens) has led to the identification of some of the factors involved in these processes, as well as their molecular mechanism and subcellular localization. Other findings uncovered an additional mode of epigenetic control, where maternally inherited small RNAs can affect phenotypes in a stable, transgenerational manner. The evolutive history of small RNA effector proteins in insects suggests that these two modes of regulation are variably conserved among species.
Collapse
Affiliation(s)
- Séverine Chambeyron
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), UPR 1142, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Hervé Seitz
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), UPR 1142, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
20
|
Joh RI, Palmieri CM, Hill IT, Motamedi M. Regulation of histone methylation by noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1385-94. [PMID: 24954181 DOI: 10.1016/j.bbagrm.2014.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022]
Abstract
Cells can adapt to their environment and develop distinct identities by rewiring their transcriptional networks to regulate the output of key biological pathways without concomitant mutations to the underlying genes. These alterations, called epigenetic changes, persist stably through mitotic or, in some instances, meiotic cell divisions. In eukaryotes, heritable changes to chromatin structure are a prominent, but not exclusive, mechanism by which epigenetic changes are mediated. These changes are initiated by sequence-specific events, which trigger a cascade of molecular interactions resulting in feedback mechanisms, alterations in chromatin structure, histone posttranslational modifications (PTMs), and ultimately establishment of distinct transcriptional states. In recent years, advances in next generation sequencing have led to the discovery of several novel classes of noncoding RNAs (ncRNAs). In addition to their well-established cytoplasmic roles in posttranscriptional regulation of gene expression, ncRNAs have emerged as key regulators of epigenetic changes via chromatin-dependent mechanisms in organisms ranging from yeast to man. They function by affecting chromatin structure, histone PTMs, and the recruitment of transcriptional activating or repressing complexes. Among histone PTMs, lysine methylation serves as the binding substrate for the recruitment of key protein complexes involved in the regulation of genome architecture, stability, and gene expression. In this review, we will outline the known mechanisms by which ncRNAs of different origins regulate histone methylation, and in doing so contribute to a variety of genome regulatory functions in eukaryotes.
Collapse
Affiliation(s)
- Richard I Joh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA
| | - Ian T Hill
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
21
|
Basquin D, Spierer A, Begeot F, Koryakov DE, Todeschini AL, Ronsseray S, Vieira C, Spierer P, Delattre M. The Drosophila Su(var)3-7 gene is required for oogenesis and female fertility, genetically interacts with piwi and aubergine, but impacts only weakly transposon silencing. PLoS One 2014; 9:e96802. [PMID: 24820312 PMCID: PMC4018442 DOI: 10.1371/journal.pone.0096802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin is made of repetitive sequences, mainly transposable elements (TEs), the regulation of which is critical for genome stability. We have analyzed the role of the heterochromatin-associated Su(var)3-7 protein in Drosophila ovaries. We present evidences that Su(var)3-7 is required for correct oogenesis and female fertility. It accumulates in heterochromatic domains of ovarian germline and somatic cells nuclei, where it co-localizes with HP1. Homozygous mutant females display ovaries with frequent degenerating egg-chambers. Absence of Su(var)3-7 in embryos leads to defects in meiosis and first mitotic divisions due to chromatin fragmentation or chromosome loss, showing that Su(var)3-7 is required for genome integrity. Females homozygous for Su(var)3-7 mutations strongly impair repression of P-transposable element induced gonadal dysgenesis but have minor effects on other TEs. Su(var)3-7 mutations reduce piRNA cluster transcription and slightly impact ovarian piRNA production. However, this modest piRNA reduction does not correlate with transposon de-silencing, suggesting that the moderate effect of Su(var)3-7 on some TE repression is not linked to piRNA production. Strikingly, Su(var)3-7 genetically interacts with the piwi and aubergine genes, key components of the piRNA pathway, by strongly impacting female fertility without impairing transposon silencing. These results lead us to propose that the interaction between Su(var)3-7 and piwi or aubergine controls important developmental processes independently of transposon silencing.
Collapse
Affiliation(s)
- Denis Basquin
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Anne Spierer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Flora Begeot
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Anne-Laure Todeschini
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | - Stéphane Ronsseray
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Pierre Spierer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Marion Delattre
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Olovnikov IA, Kalmykova AI. piRNA clusters as a main source of small RNAs in the animal germline. BIOCHEMISTRY (MOSCOW) 2014; 78:572-84. [PMID: 23980884 DOI: 10.1134/s0006297913060035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PIWI subfamily Argonaute proteins and small RNAs bound to them (PIWI interacting RNA, piRNA) control mobilization of transposable elements (TE) in the animal germline. piRNAs are generated by distinct genomic regions termed piRNA clusters. piRNA clusters are often extensive loci enriched in damaged fragments of TEs. New TE integration into piRNA clusters causes production of TE-specific piRNAs and repression of cognate sequences. piRNAs are thought to be generated from long single-stranded precursors encoded by piRNA clusters. Special chromatin structures might be essential to distinguish these genomic loci as a source for piRNAs. In this review, we present recent findings on the structural organization of piRNA clusters and piRNA biogenesis in Drosophila and other organisms, which are important for understanding a key epigenetic mechanism that provides defense against TE expansion.
Collapse
Affiliation(s)
- I A Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | | |
Collapse
|
23
|
King MR, Matzat LH, Dale RK, Lim SJ, Lei EP. The RNA-binding protein Rumpelstiltskin antagonizes gypsy chromatin insulator function in a tissue-specific manner. J Cell Sci 2014; 127:2956-66. [PMID: 24706949 DOI: 10.1242/jcs.151126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chromatin insulators are DNA-protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity.
Collapse
Affiliation(s)
- Matthew R King
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leah H Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Su Jun Lim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elissa P Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
24
|
Le Thomas A, Tóth KF, Aravin AA. To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol 2014; 15:204. [PMID: 24467990 PMCID: PMC4053809 DOI: 10.1186/gb4154] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) originate from genomic regions dubbed piRNA clusters. How cluster transcripts are selected for processing into piRNAs is not understood. We discuss evidence for the involvement of chromatin structure and maternally inherited piRNAs in determining their fate.
Collapse
|
25
|
Clark JP, Lau NC. Piwi Proteins and piRNAs step onto the systems biology stage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:159-97. [PMID: 25201106 PMCID: PMC4248790 DOI: 10.1007/978-1-4939-1221-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal germ cells are totipotent because they maintain a highly unique and specialized epigenetic state for its genome. To accomplish this, germ cells express a rich repertoire of specialized RNA-binding protein complexes such as the Piwi proteins and Piwi-interacting RNAs (piRNAs): a germ-cell branch of the RNA interference (RNAi) phenomenon which includes microRNA and endogenous small interfering RNA pathways. Piwi proteins and piRNAs are deeply conserved in animal evolution and play essential roles in fertility and regeneration. Molecular mechanisms for how these ribonucleoproteins act upon the transcriptome and genome are only now coming to light with the application of systems-wide approaches in both invertebrates and vertebrates. Systems biology studies on invertebrates have revealed that transcriptional and heritable silencing is a main mechanism driven by Piwi proteins and piRNA complexes. In vertebrates, Piwi-targeting mechanisms and piRNA biogenesis have progressed, while the discovery that the nuclease activity of Piwi protein is essential for vertebrate germ cell development but not completely required in invertebrates highlights the many complexities of this pathway in different animals. This review recounts how recent systems-wide approaches have rapidly accelerated our appreciation for the broad reach of the Piwi pathway on germline genome regulation and what questions facing the field await to be unraveled.
Collapse
Affiliation(s)
- Josef P. Clark
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
26
|
Cecere G, Grishok A. A nuclear perspective on RNAi pathways in metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:223-33. [PMID: 24361586 DOI: 10.1016/j.bbagrm.2013.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 12/27/2022]
Abstract
The role of RNA interference (RNAi) in post-transcriptional regulation of complementary targets is well known. However, less is known about transcriptional silencing mechanisms mediated by RNAi. Such mechanisms have been characterized in yeast and plants, which suggests that similar RNA silencing mechanisms might operate in animals. A growing amount of experimental evidence indicates that short RNAs and their co-factor Argonaute proteins can regulate many nuclear processes in metazoans. PIWI-interacting RNAs (piRNAs) initiate transcriptional silencing of transposable elements, which leads to heterochromatin formation and/or DNA methylation. In addition, Argonaute proteins and short RNAs directly regulate Pol II transcription and splicing of euchromatic protein-coding genes and also affect genome architecture. Therefore, RNAi pathways can have a profound global impact on the transcriptional programs in cells during animal development. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Alla Grishok
- Department of Biochemistry and Molecular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
Pek JW, Patil VS, Kai T. piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Dev Growth Differ 2013; 54:66-77. [PMID: 23741748 DOI: 10.1111/j.1440-169x.2011.01316.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accurate transfer of genetic material in germline cells during the formation of gametes is important for the continuity of the species. However, animal germline cells face challenges from transposons, which seek to spread themselves in the genome. This review focuses on studies in Drosophila melanogaster on how the genome protects itself from such a mutational burden via a class of gonad-specific small interfering RNAs, known as piRNAs (Piwi-interacting RNAs). In addition to silencing transposons, piRNAs also regulate other processes, such as chromosome segregation, mRNA degradation and germline differentiation. Recent studies revealed two modes of piRNA processing – primary processing and secondary processing (also known as ping-pong amplification). The primary processing pathway functions in both germline and somatic cells in the Drosophila ovaries by processing precursor piRNAs into 23–29 nt piRNAs. In contrast, the secondary processing pathway functions only in the germline cells where piRNAs are amplified in a feed-forward loop and require the Piwi-family proteins Aubergine and Argonaute3. Aubergine and Argonaute3 localize to a unique structure found in animal germline cells, the nuage, which has been proposed to function as a compartmentalized site for the ping-pong cycle. The nuage and the localized proteins are well-conserved, implying the importance of the piRNA amplification loop in animal germline cells. Nuage components include various types of proteins that are known to interact both physically and genetically, and therefore appear to be assembled in a sequential order to exert their function, resulting in a macromolecular RNA-protein complex dedicated to the silencing of transposons.
Collapse
Affiliation(s)
- Jun Wei Pek
- Department of Biological Sciences and Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
28
|
Abstract
Several recent studies demonstrate that piRNAs guide Piwi protein to repress transposon transcription in fly ovaries, much as fission yeast use siRNAs to silence repeat sequences. Still mysterious though is how Piwi targets euchromatic transposons for silencing, but not the specialized heterochromatic loci that produce piRNA precursors.
Collapse
|
29
|
Gu T, Elgin SCR. Maternal depletion of Piwi, a component of the RNAi system, impacts heterochromatin formation in Drosophila. PLoS Genet 2013; 9:e1003780. [PMID: 24068954 PMCID: PMC3777992 DOI: 10.1371/journal.pgen.1003780] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 07/25/2013] [Indexed: 02/05/2023] Open
Abstract
A persistent question in epigenetics is how heterochromatin is targeted for assembly at specific domains, and how that chromatin state is faithfully transmitted. Stable heterochromatin is necessary to silence transposable elements (TEs) and maintain genome integrity. Both the RNAi system and heterochromatin components HP1 (Swi6) and H3K9me2/3 are required for initial establishment of heterochromatin structures in S. pombe. Here we utilize both loss of function alleles and the newly developed Drosophila melanogaster transgenic shRNA lines to deplete proteins of interest at specific development stages to dissect their roles in heterochromatin assembly in early zygotes and in maintenance of the silencing chromatin state during development. Using reporters subject to Position Effect Variegation (PEV), we find that depletion of key proteins in the early embryo can lead to loss of silencing assayed at adult stages. The piRNA component Piwi is required in the early embryo for reporter silencing in non-gonadal somatic cells, but knock-down during larval stages has no impact. This implies that Piwi is involved in targeting HP1a when heterochromatin is established at the late blastoderm stage and possibly also during embryogenesis, but that the silent chromatin state created is transmitted through cell division independent of the piRNA system. In contrast, heterochromatin structural protein HP1a is required for both initial heterochromatin assembly and the following mitotic inheritance. HP1a profiles in piwi mutant animals confirm that Piwi depletion leads to decreased HP1a levels in pericentric heterochromatin, particularly in TEs. The results suggest that the major role of the piRNA system in assembly of heterochromatin in non-gonadal somatic cells occurs in the early embryo during heterochromatin formation, and further demonstrate that failure of heterochromatin formation in the early embryo impacts the phenotype of the adult.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | | |
Collapse
|
30
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
31
|
RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 2013; 8:e65740. [PMID: 23785447 PMCID: PMC3681981 DOI: 10.1371/journal.pone.0065740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/26/2013] [Indexed: 02/02/2023] Open
Abstract
Background Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated. Principal Findings Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins. Conclusions We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila.
Collapse
|
32
|
Akkouche A, Grentzinger T, Fablet M, Armenise C, Burlet N, Braman V, Chambeyron S, Vieira C. Maternally deposited germline piRNAs silence the tirant retrotransposon in somatic cells. EMBO Rep 2013; 14:458-64. [PMID: 23559065 DOI: 10.1038/embor.2013.38] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 01/17/2023] Open
Abstract
Transposable elements (TEs), whose propagation can result in severe damage to the host genome, are silenced in the animal gonad by Piwi-interacting RNAs (piRNAs). piRNAs produced in the ovaries are deposited in the embryonic germline and initiate TE repression in the germline progeny. Whether the maternally transmitted piRNAs play a role in the silencing of somatic TEs is however unknown. Here we show that maternally transmitted piRNAs from the tirant retrotransposon in Drosophila are required for the somatic silencing of the TE and correlate with an increase in histone H3K9 trimethylation an active tirant copy.
Collapse
Affiliation(s)
- Abdou Akkouche
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang XA, Yin H, Sweeney S, Raha D, Snyder M, Lin H. A major epigenetic programming mechanism guided by piRNAs. Dev Cell 2013; 24:502-16. [PMID: 23434410 DOI: 10.1016/j.devcel.2013.01.023] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 01/10/2013] [Accepted: 01/30/2013] [Indexed: 11/29/2022]
Abstract
A central enigma in epigenetics is how epigenetic factors are guided to specific genomic sites for their function. Previously, we reported that a Piwi-piRNA complex associates with the piRNA-complementary site in the Drosophila genome and regulates its epigenetic state. Here, we report that Piwi-piRNA complexes bind to numerous piRNA-complementary sequences throughout the genome, implicating piRNAs as a major mechanism that guides Piwi and Piwi-associated epigenetic factors to program the genome. To test this hypothesis, we demonstrate that inserting piRNA-complementary sequences to an ectopic site leads to Piwi, HP1a, and Su(var)3-9 recruitment to the site as well as H3K9me2/3 enrichment and reduced RNA polymerase II association, indicating that piRNA is both necessary and sufficient to recruit Piwi and epigenetic factors to specific genomic sites. Piwi deficiency drastically changed the epigenetic landscape and polymerase II profile throughout the genome, revealing the Piwi-piRNA mechanism as a major epigenetic programming mechanism in Drosophila.
Collapse
Affiliation(s)
- Xiao A Huang
- Yale Stem Cell Center and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
34
|
Rozhkov NV, Hammell M, Hannon GJ. Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev 2013; 27:400-12. [PMID: 23392609 DOI: 10.1101/gad.209767.112] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Silencing of transposons in the Drosophila ovary relies on three Piwi family proteins--Piwi, Aubergine (Aub), and Ago3--acting in concert with their small RNA guides, the Piwi-interacting RNAs (piRNAs). Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell type-specific knockdowns with measurements of steady-state transposon mRNA levels, nascent RNA synthesis, chromatin state, and small RNA abundance. In somatic cells, Piwi loss led to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady-state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on local chromatin states and transcription but also participating in germ cell piRNA biogenesis.
Collapse
Affiliation(s)
- Nikolay V Rozhkov
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
35
|
Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin AA, Tóth KF. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev 2013; 27:390-9. [PMID: 23392610 DOI: 10.1101/gad.209841.112] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the metazoan germline, piwi proteins and associated piwi-interacting RNAs (piRNAs) provide a defense system against the expression of transposable elements. In the cytoplasm, piRNA sequences guide piwi complexes to destroy complementary transposon transcripts by endonucleolytic cleavage. However, some piwi family members are nuclear, raising the possibility of alternative pathways for piRNA-mediated regulation of gene expression. We found that Drosophila Piwi is recruited to chromatin, colocalizing with RNA polymerase II (Pol II) on polytene chromosomes. Knockdown of Piwi in the germline increases expression of transposable elements that are targeted by piRNAs, whereas protein-coding genes remain largely unaffected. Derepression of transposons upon Piwi depletion correlates with increased occupancy of Pol II on their promoters. Expression of piRNAs that target a reporter construct results in a decrease in Pol II occupancy and an increase in repressive H3K9me3 marks and heterochromatin protein 1 (HP1) on the reporter locus. Our results indicate that Piwi identifies targets complementary to the associated piRNA and induces transcriptional repression by establishing a repressive chromatin state when correct targets are found.
Collapse
Affiliation(s)
- Adrien Le Thomas
- California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lim SJ, Boyle PJ, Chinen M, Dale RK, Lei EP. Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila. Nucleic Acids Res 2013; 41:2963-80. [PMID: 23358822 PMCID: PMC3597698 DOI: 10.1093/nar/gkt037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin insulators are functionally conserved DNA-protein complexes situated throughout the genome that organize independent transcriptional domains. Previous work implicated RNA as an important cofactor in chromatin insulator activity, although the precise mechanisms are not yet understood. Here we identify the exosome, the highly conserved major cellular 3' to 5' RNA degradation machinery, as a physical interactor of CP190-dependent chromatin insulator complexes in Drosophila. Genome-wide profiling of exosome by ChIP-seq in two different embryonic cell lines reveals extensive and specific overlap with the CP190, BEAF-32 and CTCF insulator proteins. Colocalization occurs mainly at promoters but also boundary elements such as Mcp, Fab-8, scs and scs', which overlaps with a promoter. Surprisingly, exosome associates primarily with promoters but not gene bodies of active genes, arguing against simple cotranscriptional recruitment to RNA substrates. Similar to insulator proteins, exosome is also significantly enriched at divergently transcribed promoters. Directed ChIP of exosome in cell lines depleted of insulator proteins shows that CTCF is required specifically for exosome association at Mcp and Fab-8 but not other sites, suggesting that alternate mechanisms must also contribute to exosome chromatin recruitment. Taken together, our results reveal a novel positive relationship between exosome and chromatin insulators throughout the genome.
Collapse
Affiliation(s)
- Su Jun Lim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Simkin A, Wong A, Poh YP, Theurkauf WE, Jensen JD. Recurrent and recent selective sweeps in the piRNA pathway. Evolution 2013; 67:1081-90. [PMID: 23550757 DOI: 10.1111/evo.12011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uncontrolled transposable element (TE) insertions and excisions can cause chromosome breaks and mutations with dramatic deleterious effects. The PIWI interacting RNA (piRNA) pathway functions as an adaptive TE silencing system during germline development. Several essential piRNA pathway proteins appear to be rapidly evolving, suggesting that TEs and the silencing machinery may be engaged in a classical "evolutionary arms race." Using a variety of molecular evolutionary and population genetic approaches, we find that the piRNA pathway genes rhino, krimper, and aubergine show patterns suggestive of extensive recurrent positive selection across Drosophila species. We speculate that selection on these proteins reflects crucial roles in silencing unfamiliar elements during vertical and horizontal transmission of TEs into naïve populations and species, respectively.
Collapse
Affiliation(s)
- Alfred Simkin
- Program in Bioinformatics & Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
38
|
Kawaoka S, Hara K, Shoji K, Kobayashi M, Shimada T, Sugano S, Tomari Y, Suzuki Y, Katsuma S. The comprehensive epigenome map of piRNA clusters. Nucleic Acids Res 2012; 41:1581-90. [PMID: 23258708 PMCID: PMC3561999 DOI: 10.1093/nar/gks1275] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PIWI-interacting RNA (piRNA) clusters act as anti-transposon/retrovirus centers. Integration of selfish jumping elements into piRNA clusters generates de novo piRNAs, which in turn exert trans-silencing activity against these elements in animal gonads. To date, neither genome-wide chromatin modification states of piRNA clusters nor a mode for piRNA precursor transcription have been well understood. Here, to understand the chromatin landscape of piRNA clusters and how piRNA precursors are generated, we analyzed the transcriptome, transcription start sites (TSSs) and the chromatin landscape of the BmN4 cell line, which harbors the germ-line piRNA pathway. Notably, our epigenomic map demonstrated the highly euchromatic nature of unique piRNA clusters. RNA polymerase II was enriched for TSSs that transcribe piRNA precursors. piRNA precursors possessed 5'-cap structures as well as 3'-poly A-tails. Collectively, we envision that the euchromatic, opened nature of unique piRNA clusters or piRNA cluster-associated TSSs allows piRNA clusters to capture new insertions efficiently.
Collapse
Affiliation(s)
- Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matzat LH, Dale RK, Moshkovich N, Lei EP. Tissue-specific regulation of chromatin insulator function. PLoS Genet 2012; 8:e1003069. [PMID: 23209434 PMCID: PMC3510032 DOI: 10.1371/journal.pgen.1003069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. Mounting evidence in human, mouse, and Drosophila demonstrates a role for the DNA–protein complexes known as chromatin insulators in orchestrating three-dimensional genome organization. Several genes that are only expressed in specific cell types display distinct chromatin configurations correlated with expression status. Recent evidence shows that chromatin insulators play a role in defining tissue-specific chromatin conformation; however, tissue-specific factors that may modulate insulator activity remain unknown. Here we identify a putative RNA–binding protein, Shep, which is expressed most highly in the CNS and interacts directly with insulator complexes. We developed a novel quantitative, tissue-specific insulator assay and found that Shep negatively regulates insulator activity in the CNS. We also find that mutation of shep alters insulator complex nuclear localization in the brain but not other tissues. Finally, we mapped Shep and gypsy insulator protein localization throughout the genome and found that Shep colocalizes with one individual insulator protein but less often than expected with an intact insulator complex. These data suggest that Shep negatively influences insulator activity in a tissue-specific manner.
Collapse
Affiliation(s)
- Leah H. Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryan K. Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nellie Moshkovich
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Graduate Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland, United States of America
| | - Elissa P. Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 2012; 151:964-80. [PMID: 23159368 PMCID: PMC3504300 DOI: 10.1016/j.cell.2012.10.040] [Citation(s) in RCA: 457] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/27/2012] [Accepted: 10/25/2012] [Indexed: 11/01/2022]
Abstract
Eukaryotic genomes are colonized by transposons whose uncontrolled activity causes genomic instability. The piRNA pathway silences transposons in animal gonads, yet how this is achieved molecularly remains controversial. Here, we show that the HMG protein Maelstrom is essential for Piwi-mediated silencing in Drosophila. Genome-wide assays revealed highly correlated changes in RNA polymerase II recruitment, nascent RNA output, and steady-state RNA levels of transposons upon loss of Piwi or Maelstrom. Our data demonstrate piRNA-mediated trans-silencing of hundreds of transposon copies at the transcriptional level. We show that Piwi is required to establish heterochromatic H3K9me3 marks on transposons and their genomic surroundings. In contrast, loss of Maelstrom affects transposon H3K9me3 patterns only mildly yet leads to increased heterochromatin spreading, suggesting that Maelstrom acts downstream of or in parallel to H3K9me3. Our work illustrates the widespread influence of transposons and the piRNA pathway on chromatin patterns and gene expression.
Collapse
Affiliation(s)
- Grzegorz Sienski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
41
|
Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements. Proc Natl Acad Sci U S A 2012; 109:14104-9. [PMID: 22891327 DOI: 10.1073/pnas.1207036109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A persistent question in biology is how cis-acting sequence elements influence trans-acting factors and the local chromatin environment to modulate gene expression. We reported previously that the DNA transposon 1360 can enhance silencing of a reporter in a heterochromatic domain of Drosophila melanogaster. We have now generated a collection of variegating phiC31 landing-pad insertion lines containing 1360 and a heat-shock protein 70 (hsp70)-driven white reporter to explore the mechanism of 1360-sensitive silencing. Many 1360-sensitive sites were identified, some in apparently euchromatic domains, although all are close to heterochromatic masses. One such site (line 1198; insertion near the base of chromosome arm 2L) has been investigated in detail. ChIP analysis shows 1360-dependent Heterochromatin Protein 1a (HP1a) accumulation at this otherwise euchromatic site. The phiC31 landing pad system allows different 1360 constructs to be swapped with the full-length element at the same genomic site to identify the sequences that mediate 1360-sensitive silencing. Short deletions over sites with homology to PIWI-interacting RNAs (piRNAs) are sufficient to compromise 1360-sensitive silencing. Similar results were obtained on replacing 1360 with Invader4 (a retrotransposon), suggesting that this phenomenon likely applies to a broader set of transposable elements. Our results suggest a model in which piRNA sequence elements behave as cis-acting targets for heterochromatin assembly, likely in the early embryo, where piRNA pathway components are abundant, with the heterochromatic state subsequently propagated by chromatin modifiers present in somatic tissue.
Collapse
|
42
|
Michalik KM, Böttcher R, Förstemann K. A small RNA response at DNA ends in Drosophila. Nucleic Acids Res 2012; 40:9596-603. [PMID: 22848104 PMCID: PMC3479179 DOI: 10.1093/nar/gks711] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs have been implicated in numerous cellular processes, including effects on chromatin structure and the repression of transposons. We describe the generation of a small RNA response at DNA ends in Drosophila that is analogous to the recently reported double-strand break (DSB)-induced RNAs or Dicer- and Drosha-dependent small RNAs in Arabidopsis and vertebrates. Active transcription in the vicinity of the break amplifies this small RNA response, demonstrating that the normal messenger RNA contributes to the endogenous small interfering RNAs precursor. The double-stranded RNA precursor forms with an antisense transcript that initiates at the DNA break. Breaks are thus sites of transcription initiation, a novel aspect of the cellular DSB response. This response is specific to a double-strand break since nicked DNA structures do not trigger small RNA production. The small RNAs are generated independently of the exact end structure (blunt, 3'- or 5'-overhang), can repress homologous sequences in trans and may therefore--in addition to putative roles in repair--exert a quality control function by clearing potentially truncated messages from genes in the vicinity of the break.
Collapse
Affiliation(s)
- Katharina M Michalik
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, München, Germany
| | | | | |
Collapse
|
43
|
Abstract
Sex-chromosome dosage compensation requires selective identification of X chromatin. How this occurs is not fully understood. We show that small interfering RNA (siRNA) mutations enhance the lethality of Drosophila males deficient in X recognition and partially rescue females that inappropriately dosage-compensate. Our findings are consistent with a role for siRNA in selective recognition of X chromatin.
Collapse
|
44
|
Pushpavalli SNCVL, Bag I, Pal-Bhadra M, Bhadra U. Drosophila Argonaute-1 is critical for transcriptional cosuppression and heterochromatin formation. Chromosome Res 2012; 20:333-51. [PMID: 22476395 PMCID: PMC3323821 DOI: 10.1007/s10577-012-9279-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 01/03/2023]
Abstract
Argonaute-1 (Ago-1) plays a crucial role in gene regulation and genome stability via biogenesis of small non-coding RNAs. Two "Argonaute" family genes, piwi and Ago-2 in Drosophila are involved in multiple silencing mechanisms in the nucleus, transgene cosuppression, long-distant chromosome interaction, nuclear organization and heterochromatin formation. To investigate whether Ago-1 also plays a similar role, we have generated a series of Ago-1 mutations by excising P element, inserted in the Ago-1 promoter (Ago-1k08121). AGO-1 protein is distributed uniformly in the nucleus and cytosol in early embryos but accumulated predominantly in the cytoplasm during the gastrulation stage. Repeat induced silencing produced by the mini-white (mw) array and transcriptional cosuppression of non-homologous transgenes Adh-w/w-Adh was disrupted by Ago-1 mutation. These effects of Ago-1 are distict from its role in microRNA processing because Dicer-1, a critical enzyme for miRNA biogenesis, has no role on the above silencing. Reduction of AGO-1 protein dislodged the POLYCOMB, EZ (enhancer of zeste) and H3me3K27 binding at the cosuppressed Adh-w transgene insertion sites suggesting its role in Polycomb dependent cosuppression. An overall reduction of methylated histone H3me2K9 and H3me3K27 from the polytene nuclei precisely from the mw promoters was also found that leads to concomitant changes in the chromatin structure. These results suggest a prominent role of Ago-1 in chromatin organization and transgene silencing and demonstrate a critical link between transcriptional transgene cosuppression, heterochromatin formation and chromatin organization. We propose Drosophila Ago-1 as a multifunctional RNAi component that interconnects at least two unrelated events, chromatin organization in the nucleus and microRNA processing in the cytoplasm, which may be extended to the other systems.
Collapse
Affiliation(s)
| | - Indira Bag
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, 500007 India
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, 500007 India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| |
Collapse
|
45
|
Olovnikov I, Aravin AA, Toth KF. Small RNA in the nucleus: the RNA-chromatin ping-pong. Curr Opin Genet Dev 2012; 22:164-71. [PMID: 22349141 PMCID: PMC3345048 DOI: 10.1016/j.gde.2012.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/23/2022]
Abstract
Eukaryotes use several classes of small RNA molecules to guide diverse protein machineries to target messenger RNA. The role of small RNA in post-transcriptional regulation of mRNA stability and translation is now well established. Small RNAs can also guide sequence-specific modification of chromatin structure and thus contribute to establishment and maintenance of distinct chromatin domains. In this review we summarize the model for the inter-dependent interaction between small RNA and chromatin that has emerged from studies on fission yeast and plants. We focus on recent results that link a distinct class of small RNAs, the piRNAs, to chromatin regulation in animals.
Collapse
Affiliation(s)
- Ivan Olovnikov
- California Institute of Technology Division of Biology, 147-75 1200E California Blvd. Pasadena, CA 91125, USA
- Institute of Molecular Genetics Russian Academy of Sciences Kurchatov sq. 2 Moscow, 123182, Russia
| | - Alexei A. Aravin
- California Institute of Technology Division of Biology, 147-75 1200E California Blvd. Pasadena, CA 91125, USA
| | - Katalin Fejes Toth
- California Institute of Technology Division of Biology, 147-75 1200E California Blvd. Pasadena, CA 91125, USA
| |
Collapse
|
46
|
The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline. EMBO J 2012; 30:4601-15. [PMID: 21952049 PMCID: PMC3243597 DOI: 10.1038/emboj.2011.334] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 08/08/2011] [Indexed: 12/14/2022] Open
Abstract
The identity and function of many factors involved in the piRNA pathway remain unknown. Here, in Drosophila, cutoff plays a role in regulating piRNA cluster transcript levels and biogenesis together with the heterochromatin protein Rhino. In a broad range of organisms, Piwi-interacting RNAs (piRNAs) have emerged as core components of a surveillance system that protects the genome by silencing transposable and repetitive elements. A vast proportion of piRNAs is produced from discrete genomic loci, termed piRNA clusters, which are generally embedded in heterochromatic regions. The molecular mechanisms and the factors that govern their expression are largely unknown. Here, we show that Cutoff (Cuff), a Drosophila protein related to the yeast transcription termination factor Rai1, is essential for piRNA production in germline tissues. Cuff accumulates at centromeric/pericentromeric positions in germ-cell nuclei and strongly colocalizes with the major heterochromatic domains. Remarkably, we show that Cuff is enriched at the dual-strand piRNA cluster 1/42AB and is likely to be involved in regulation of transcript levels of similar loci dispersed in the genome. Consistent with this observation, Cuff physically interacts with the Heterochromatin Protein 1 (HP1) variant Rhino (Rhi). Our results unveil a link between Cuff activity, heterochromatin assembly and piRNA cluster expression, which is critical for stem-cell and germ-cell development in Drosophila.
Collapse
|
47
|
The tudor domain protein kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila. EMBO J 2011; 31:870-82. [PMID: 22157814 DOI: 10.1038/emboj.2011.449] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/17/2011] [Indexed: 12/29/2022] Open
Abstract
In Drosophila ovaries, distinct Piwi-interacting RNA (piRNA) pathways defend against transposons in somatic and germline cells. Germline piRNAs predominantly arise from bidirectional clusters and are amplified by the ping-pong cycle. In this study, we characterize a novel Drosophila gene, kumo and show that it encodes a conserved germline piRNA pathway component. Kumo contains five tudor domains and localizes to nuage, a unique structure present in animal germline cells, which is considered to be the processing site for germline piRNAs. Transposons targeted by the germline piRNA pathway are derepressed in kumo mutant females. Moreover, germline piRNA production is significantly reduced in mutant ovaries, thereby indicating that kumo is required to generate germline piRNAs. Kumo localizes to the nuage as well as to nucleus early female germ cells, where it is required to maintain cluster transcript levels. Our data suggest that kumo facilitates germline piRNA production by promoting piRNA cluster transcription in the nucleus and piRNA processing at the nuage.
Collapse
|
48
|
Abstract
A major role of the RNAi pathway in Schizosaccharomyces pombe is to nucleate heterochromatin, but it remains unclear whether this mechanism is conserved. To address this question in Drosophila, we performed genome-wide localization of Argonaute2 (AGO2) by chromatin immunoprecipitation (ChIP)-seq in two different embryonic cell lines and found that AGO2 localizes to euchromatin but not heterochromatin. This localization pattern is further supported by immunofluorescence staining of polytene chromosomes and cell lines, and these studies also indicate that a substantial fraction of AGO2 resides in the nucleus. Intriguingly, AGO2 colocalizes extensively with CTCF/CP190 chromatin insulators but not with genomic regions corresponding to endogenous siRNA production. Moreover, AGO2, but not its catalytic activity or Dicer-2, is required for CTCF/CP190-dependent Fab-8 insulator function. AGO2 interacts physically with CTCF and CP190, and depletion of either CTCF or CP190 results in genome-wide loss of AGO2 chromatin association. Finally, mutation of CTCF, CP190, or AGO2 leads to reduction of chromosomal looping interactions, thereby altering gene expression. We propose that RNAi-independent recruitment of AGO2 to chromatin by insulator proteins promotes the definition of transcriptional domains throughout the genome.
Collapse
|
49
|
Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc Natl Acad Sci U S A 2011; 108:18760-5. [PMID: 22065765 DOI: 10.1073/pnas.1106676108] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and Piwi proteins have the evolutionarily conserved function of silencing of repetitive genetic elements in germ lines. The founder of the Piwi subfamily, Drosophila nuclear Piwi protein, was also shown to be required for the maintenance of germ-line stem cells (GSCs). Hence, null mutant piwi females exhibit two types of abnormalities, overexpression of transposons and severely underdeveloped ovaries. It remained unknown whether the failure of GSC maintenance is related to transposon derepression or if GSC self-renewal and piRNA silencing are two distinct functions of the Piwi protein. We have revealed a mutation, piwi(Nt), removing the nuclear localization signal of the Piwi protein. piwi(Nt) females retain the ability of GSC self-renewal and a near-normal number of egg chambers in the ovarioles but display a drastic transposable element derepression and nuclear accumulation of their transcripts in the germ line. piwi(Nt) mutants are sterile most likely because of the disturbance of piRNA-mediated transposon silencing. Analysis of chromatin modifications in the piwi(Nt) ovaries indicated that Piwi causes chromatin silencing only of certain types of transposons, whereas others are repressed in the nuclei without their chromatin modification. Thus, Piwi nuclear localization that is required for its silencing function is not essential for the maintenance of GSCs. We suggest that the Piwi function in GSC self-renewal is independent of transposon repression and is normally realized in the cytoplasm of GSC niche cells.
Collapse
|
50
|
Tan H, Qurashi A, Poidevin M, Nelson DL, Li H, Jin P. Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration. Hum Mol Genet 2011; 21:57-65. [PMID: 21940752 DOI: 10.1093/hmg/ddr437] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with fragile X premutation carriers. Previous studies have shown that fragile X rCGG repeats are sufficient to cause neurodegeneration and that the rCGG-repeat-binding proteins Pur α and heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 could modulate rCGG-mediated neuronal toxicity. Mobile genetic elements or their remnants populate the genomes, and the activities of these elements are tightly controlled for the fitness of host genomes in different organisms. Here we provide both biochemical and genetic evidence to show that the activation of a specific retrotransposon, gypsy, can modulate rCGG-mediated neurodegeneration in an FXTAS Drosophila model. We find that one of the rCGG-repeat-binding proteins, hnRNP A2/B1, is involved in this process via interaction with heterochromatin protein 1. Knockdown of gypsy RNA by RNAi could suppress the neuronal toxicity caused by rCGG repeats. These data together point to a surprisingly active role for retrotransposition in neurodegeneration.
Collapse
Affiliation(s)
- Huiping Tan
- Division of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | | | | | | | | | | |
Collapse
|