1
|
Kapetanou M, Athanasopoulou S, Goutas A, Makatsori D, Trachana V, Gonos E. α-Terpineol Induces Shelterin Components TRF1 and TRF2 to Mitigate Senescence and Telomere Integrity Loss via A Telomerase-Independent Pathway. Antioxidants (Basel) 2024; 13:1258. [PMID: 39456511 PMCID: PMC11504354 DOI: 10.3390/antiox13101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Cellular senescence is a hallmark of aging characterized by irreversible growth arrest and functional decline. Progressive telomeric DNA shortening in dividing somatic cells, programmed during development, leads to critically short telomeres that trigger replicative senescence and thereby contribute to aging. Therefore, protecting telomeres from DNA damage is essential in order to avoid entry into senescence and organismal aging. In several organisms, including mammals, telomeres are protected by a protein complex named shelterin that prevents DNA damage at the chromosome ends through the specific function of its subunits. Here, we reveal that the nuclear protein levels of shelterin components TRF1 and TRF2 decline in fibroblasts reaching senescence. Notably, we identify α-terpineol as an activator that effectively enhances TRF1 and TRF2 levels in a telomerase-independent manner, counteracting the senescence-associated decline in these crucial proteins. Moreover, α-terpineol ameliorates the cells' response to oxidative DNA damage, particularly at the telomeric regions, thus preserving telomere length and delaying senescence. More importantly, our findings reveal the significance of the PI3K/AKT pathway in the regulation of shelterin components responsible for preserving telomere integrity. In conclusion, this study deepens our understanding of the molecular pathways involved in senescence-associated telomere dysfunction and highlights the potential of shelterin components to serve as targets of therapeutic interventions, aimed at promoting healthy aging and combating age-related diseases.
Collapse
Affiliation(s)
- Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (M.K.); (S.A.)
- Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Sophia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (M.K.); (S.A.)
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece
| | | | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece
| | - Efstathios Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (M.K.); (S.A.)
- Hellenic Pasteur Institute, 11521 Athens, Greece;
| |
Collapse
|
2
|
Neto IVDS, Pinto AP, de Andrade RV, de Souza FHV, de Souza PEN, Assis V, Tibana RA, Neves RVP, Rosa TS, Prestes J, da Silva ASR, Marqueti RDC. Paternal exercise induces antioxidant defenses by α-Klotho/Keap1 pathways in the skeletal muscle of offspring exposed to a high fat-diet without changing telomere length. J Nutr Biochem 2024; 134:109747. [PMID: 39197728 DOI: 10.1016/j.jnutbio.2024.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Although previous studies demonstrated that the ancestral lifestyle can enhance the metabolic health of offspring exposed to an obesogenic diet, the specific connections between these positive effects in redox state and telomere length are unknown. We investigated the impact of paternal resistance training (RT) on stress-responsive signaling and the pathways involved in telomere homeostasis in skeletal muscle. This investigation encompassed both the fathers and first-generation litter exposed to a long-term standard diet (24 weeks) and high fat diet (HFD). Wistar rats were randomized into sedentary or trained fathers (8 weeks of resistance training). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups: offspring of sedentary or trained fathers exposed to either a control diet or HFD. The gastrocnemius was prepared for reverse transcription-quantitative polymerase chain reaction, immunoblotting, ELISA, and electron paramagnetic resonance spectroscopy. RT upregulated shelterin mRNA levels and antioxidant protein, preserving muscle telomere in fathers. Conversely, HFD induced a disturbance in the redox balance, which may have contributed to the offspring telomere shortening from sedentary fathers. Preconceptional paternal RT downregulates Kelch-like ECH-associated protein 1 (Keap1) mRNA levels in the skeletal muscle of progeny exposed to HFD, driving an increase in Glutathione reductase mRNA levels, Sod1 and Catalase protein levels to mitigate ROS production. Also, paternal exercise upregulates α-Klotho protein levels, mediating antioxidative responses without altering shelterin mRNA levels and telomere length. We provide the first in-depth analysis that the offspring's redox state seems to be directly associated with the beneficial effects of paternal exercise.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Pretsssso, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Pretsssso, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rosangela Vieira de Andrade
- Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Taguatinga, Distrito Federal, Brazil
| | | | - Paulo Eduardo Narcizo de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Victória Assis
- Molecular of Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília (UNB), Brasília, Distrito Federal, Brazil
| | - Ramires Alsamir Tibana
- Graduate Program in Health Sciences, Faculdade de Medicine, Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | | | - Thiago Santos Rosa
- Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Taguatinga, Distrito Federal, Brazil; Graduate Program in Physical Education, Universidade Católica de Brasilia, Brasília, Distrito Federal, Brazil
| | - Jonato Prestes
- Graduate Program in Physical Education, Universidade Católica de Brasilia, Brasília, Distrito Federal, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Pretsssso, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rita de Cassia Marqueti
- Molecular of Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília (UNB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
3
|
Arellano MYG, VanHeest M, Emmadi S, Abdul-Hafez A, Ibrahim SA, Thiruvenkataramani RP, Teleb RS, Omar H, Kesaraju T, Mohamed T, Madhukar BV, Omar SA. Role of Mesenchymal Stem/Stromal Cells (MSCs) and MSC-Derived Extracellular Vesicles (EVs) in Prevention of Telomere Length Shortening, Cellular Senescence, and Accelerated Biological Aging. Bioengineering (Basel) 2024; 11:524. [PMID: 38927760 PMCID: PMC11200821 DOI: 10.3390/bioengineering11060524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Biological aging is defined as a progressive decline in tissue function that eventually results in cell death. Accelerated biologic aging results when the telomere length is shortened prematurely secondary to damage from biological or environmental stressors, leading to a defective reparative mechanism. Stem cells therapy may have a potential role in influencing (counteract/ameliorate) biological aging and maintaining the function of the organism. Mesenchymal stem cells, also called mesenchymal stromal cells (MSCs) are multipotent stem cells of mesodermal origin that can differentiate into other types of cells, such as adipocytes, chondrocytes, and osteocytes. MSCs influence resident cells through the secretion of paracrine bioactive components such as cytokines and extracellular vesicles (EVs). This review examines the changes in telomere length, cellular senescence, and normal biological age, as well as the factors contributing to telomere shortening and accelerated biological aging. The role of MSCs-especially those derived from gestational tissues-in prevention of telomere shortening (TS) and accelerated biological aging is explored. In addition, the strategies to prevent MSC senescence and improve the antiaging therapeutic application of MSCs and MSC-derived EVs in influencing telomere length and cellular senescence are reviewed.
Collapse
Affiliation(s)
- Myrna Y. Gonzalez Arellano
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA
| | - Matthew VanHeest
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
| | - Sravya Emmadi
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
| | - Sherif Abdelfattah Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ranga P. Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA
| | - Rasha S. Teleb
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Department of Pediatrics and Neonatology, Qena Faculty of Medicine, South Valley University, Qena 83523, Egypt
| | - Hady Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
| | - Tulasi Kesaraju
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
| | - Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA
| |
Collapse
|
4
|
Pili MP, Cagliero L, Panichi V, Bordoni M, Pansarasa O, Cremaschi G, Tonga EB, Cappelletti F, Provenzi L. Exposure to pollution during the first thousand days and telomere length regulation: A literature review. ENVIRONMENTAL RESEARCH 2024; 249:118323. [PMID: 38336161 DOI: 10.1016/j.envres.2024.118323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Telomere length (TL) is a biomarker for cellular senescence and TL erosion is predictive of the risk for age-related diseases. Despite being genetically determined at birth, TL may be susceptible to modifications through epigenetic mechanisms. Pollutant agents are considered one of the major threats to both human and planetary health. Their ability to cross the placental barrier and induce oxidative stress in fetal cells is particularly concerning and it may be associated with early TL erosion. In consideration of the timely relevance of this topic, we conducted a literature review on the impact of prenatal exposure to pollutant agents on newborn TL. The search yielded a total of 1099 records, of which only 32 met the inclusion criteria for the review. These criteria included the participation of human subjects, a longitudinal design or collection of longitudinal data, reporting of original TL data, and a focus on exposure to pollutant agents. The majority of the studies reported a significant inverse association between prenatal exposure to pollutant agents and TL. Furthermore, the second trimester of pregnancy emerged as a special sensitive period for the occurrence of pollutant agent-driven TL modifications. Sex differences were inconsistently reported across studies. This review contributes to highlighting biochemical pathways for the threats of environmental pollution to human health. Future research is warranted to further highlight potential buffering mechanisms.
Collapse
Affiliation(s)
- Miriam Paola Pili
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy.
| | - Lucia Cagliero
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Virginia Panichi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| | - Giacomo Cremaschi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Elgin Bilge Tonga
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | | | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy; Developmental Psychobiology Lab, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| |
Collapse
|
5
|
Moustakli E, Zikopoulos A, Skentou C, Dafopoulos S, Stavros S, Dafopoulos K, Drakakis P, Georgiou I, Zachariou A. Association of Obesity with Telomere Length in Human Sperm. J Clin Med 2024; 13:2150. [PMID: 38610915 PMCID: PMC11012429 DOI: 10.3390/jcm13072150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Telomere attrition and mitochondrial dysfunction are two fundamental aspects of aging. Calorie restriction (CR) is the best strategy to postpone aging since it can enhance telomere attrition, boost antioxidant capacity, and lower the generation of reactive oxygen species (ROS). Since ROS is produced by mitochondria and can readily travel to cell nuclei, it is thought to be a crucial molecule for information transfer between mitochondria and cell nuclei. Important variables that affect the quality and functionality of sperm and may affect male reproductive health and fertility include telomere length, mitochondrial content, and the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA). Telomere damage results from mitochondrial failure, whereas nuclear DNA remains unaffected. This research aims to investigate potential associations between these three variables and how they might relate to body mass index. Methods: Data were collected from 82 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. Evaluations included sperm morphology, sperm count, sperm motility, and participant history. To address this, male participants who were categorized into three body mass index (ΒΜΙ) groups-normal, overweight, and obese-had their sperm samples tested. Results: For both the normal and overweight groups, our results show a negative connection between relative telomere length and ΒΜI. As an illustration of a potential connection between mitochondrial health and telomere maintenance, a positive correlation was found for the obese group. Only the obese group's results were statistically significant (p < 0.05). More evidence that longer telomeres are associated with lower mitochondrial content can be found in the negative connection between telomere length and mitochondrial content in both the normal and overweight groups. However, the obese group showed a positive association. The data did not reach statistical significance for any of the three groups. These associations may affect sperm quality since telomere length and mitochondrial concentration are indicators of cellular integrity and health. Moreover, the ratio of mtDNA to nDNA was positively correlated with the relative telomere lengths of the obese group, but negatively correlated with the normal and overweight groups. In every group that was studied, the results were not statistically significant. According to this, male fertility may be negatively impacted by an imbalance in the copy number of the mitochondrial genome compared to the nuclear DNA in sperm. Conclusions: Essentially, the goal of our work is to determine whether mitochondria and telomere length in human sperm interact. Understanding these connections may aid in the explanation of some male infertility causes and possibly contribute to the creation of new treatment modalities for problems pertaining to reproductive health. The functional implications of these connections and their applications in therapeutic settings require further investigation.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd., Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (P.D.)
| | - Konstantinos Dafopoulos
- IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (P.D.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece;
| |
Collapse
|
6
|
Muoio D, Laspata N, Dannenberg RL, Curry C, Darkoa-Larbi S, Hedglin M, Uttam S, Fouquerel E. PARP2 promotes Break Induced Replication-mediated telomere fragility in response to replication stress. Nat Commun 2024; 15:2857. [PMID: 38565848 PMCID: PMC10987537 DOI: 10.1038/s41467-024-47222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University park, State College, PA, 16802, USA
| | - Caroline Curry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Simone Darkoa-Larbi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University park, State College, PA, 16802, USA
| | - Shikhar Uttam
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Ozturk S. The close relationship between oocyte aging and telomere shortening, and possible interventions for telomere protection. Mech Ageing Dev 2024; 218:111913. [PMID: 38307343 DOI: 10.1016/j.mad.2024.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
As women delay childbearing due to socioeconomic reasons, understanding molecular mechanisms decreasing oocyte quantity and quality during ovarian aging becomes increasingly important. The ovary undergoes biological aging at a higher pace when compared to other organs. As is known, telomeres play crucial roles in maintaining genomic integrity, and their shortening owing to increased reactive oxygen species, consecutive cellular divisions, genetic and epigenetic alterations is associated with loss of developmental competence of oocytes. Novel interventions such as antioxidant treatments and regulation of gene expression are being investigated to prevent or rescue telomere attrition and thereby oocyte aging. Herein, potential factors and molecular mechanisms causing telomere shortening in aging oocytes were comprehensively reviewed. For the purpose of extending reproductive lifespan, possible therapeutic interventions to protect telomere length were also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| |
Collapse
|
8
|
Barcenilla BB, Kundel I, Hall E, Hilty N, Ulianich P, Cook J, Turley J, Yerram M, Min JH, Castillo-González C, Shippen DE. Telomere dynamics and oxidative stress in Arabidopsis grown in lunar regolith simulant. FRONTIERS IN PLANT SCIENCE 2024; 15:1351613. [PMID: 38434436 PMCID: PMC10908177 DOI: 10.3389/fpls.2024.1351613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Tire B, Talibova G, Ozturk S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 2024; 41:277-291. [PMID: 38165506 PMCID: PMC10894803 DOI: 10.1007/s10815-023-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
10
|
Thosar SA, Barnes RP, Detwiler A, Bhargava R, Wondisford A, O'Sullivan RJ, Opresko PL. Oxidative guanine base damage plays a dual role in regulating productive ALT-associated homology-directed repair. Cell Rep 2024; 43:113656. [PMID: 38194346 PMCID: PMC10851105 DOI: 10.1016/j.celrep.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer cells maintain telomeres by upregulating telomerase or alternative lengthening of telomeres (ALT) via homology-directed repair at telomeric DNA breaks. 8-Oxoguanine (8oxoG) is a highly prevalent endogenous DNA lesion in telomeric sequences, altering telomere structure and telomerase activity, but its impact on ALT is unclear. Here, we demonstrate that targeted 8oxoG formation at telomeres stimulates ALT activity and homologous recombination specifically in ALT cancer cells. Mechanistically, an acute 8oxoG induction increases replication stress, as evidenced by increased telomere fragility and ATR kinase activation at ALT telomeres. Furthermore, ALT cells are more sensitive to chronic telomeric 8oxoG damage than telomerase-positive cancer cells, consistent with increased 8oxoG-induced replication stress. However, telomeric 8oxoG production in G2 phase, when ALT telomere elongation occurs, impairs telomeric DNA synthesis. Our study demonstrates that a common oxidative base lesion has a dual role in regulating ALT depending on when the damage arises in the cell cycle.
Collapse
Affiliation(s)
- Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan P Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ariana Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ragini Bhargava
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Wondisford
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roderick J O'Sullivan
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Pendina AA, Krapivin MI, Sagurova YM, Mekina ID, Komarova EM, Tikhonov AV, Golubeva AV, Gzgzyan AM, Kogan IY, Efimova OA. Telomere Length in Human Spermatogenic Cells as a New Potential Predictor of Clinical Outcomes in ART Treatment with Intracytoplasmic Injection of Testicular Spermatozoa. Int J Mol Sci 2023; 24:10427. [PMID: 37445605 DOI: 10.3390/ijms241310427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Predicting the clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles that use the testicular spermatozoa of azoospermic patients presents a challenge. Thus, the development of additional approaches to assessing the competence of a testicular-sperm-derived embryo without causing damage to gametes or the embryo is necessary. One of the key parameters in determining such developmental competence is telomere length (TL). We aimed to analyze TLs in spermatogenic cells from the testicular biopsy samples of azoospermic patients and determine how this parameter influences embryo competence for pre- and post-implantation development. Using Q-FISH, we studied the TL of the chromosomes in spermatogonia and spermatocytes I from the TESE biopsy samples of 30 azoospermic patients. An increase in TL was detected during the differentiation from spermatogonia to spermatocytes I. The patients' testicular spermatozoa were used in 37 ICSI cycles that resulted in 22 embryo transfers. Nine pregnancies resulted, of which, one was ectopic and eight ended in birth. The analysis of embryological outcomes revealed a dependence between embryo competence for development to the blastocyst stage and the TL in spermatogenic cells. The TLs in spermatogonia and spermatocytes I in the testicular biopsy samples were found to be higher in patients whose testicular sperm ICSI cycles resulted in a birth. Therefore, the length of telomeres in spermatogenic cells can be considered as a potential prognostic criterion in assessing the competence of testicular-sperm-derived embryos for pre- and post-implantation development. The results of this study provide the basis for the development of a laboratory test for the prediction of testicular sperm ICSI cycle outcomes.
Collapse
Affiliation(s)
- Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Mikhail I Krapivin
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Yanina M Sagurova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Irina D Mekina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Evgeniia M Komarova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Andrei V Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Arina V Golubeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Alexander M Gzgzyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| |
Collapse
|
12
|
Robertson CM, Xue Y, Chowdhury S, Maringele L. A CDK-Dependent Phosphorylation of a Novel Domain of Rif1 Regulates its Function during Telomere Damage and Other Types of Stress. Mol Cell Biol 2023; 43:185-199. [PMID: 37140180 PMCID: PMC10184589 DOI: 10.1080/10985549.2023.2193768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Rif1 mediates telomere length, DNA replication, and DNA damage responses in budding yeast. Previous work identified several posttranslational modifications of Rif1, however none of these was shown to mediate the molecular or cellular responses to DNA damage, including telomere damage. We searched for such modifications using immunoblotting methods and the cdc13-1 and tlc1Δ models of telomere damage. We found that Rif1 is phosphorylated during telomere damage, and that serines 57 and 110 within a novel phospho-gate domain (PGD) of Rif1 are important for this modification, in cdc13-1 cells. The phosphorylation of Rif1 appeared to inhibit its accumulation on damaged chromosomes and the proliferation of cells with telomere damage. Moreover, we found that checkpoint kinases were upstream of this Rif1 phosphorylation and that the Cdk1 activity was essential for maintaining it. Apart from telomere damage, S57 and S110 were essential for Rif1 phosphorylation during the treatment of cells with genotoxic agents or during mitotic stress. We propose a speculative "Pliers" model to explain the role of the PGD phosphorylation during telomere and other types of damage.
Collapse
Affiliation(s)
- Cameron M Robertson
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yuan Xue
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Shobir Chowdhury
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Maringele
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Leng T, Guo Z, Sang Z, Xin Q, Chen F. Effect of COVID-19 on sperm parameters: pathologic alterations and underlying mechanisms. J Assist Reprod Genet 2023:10.1007/s10815-023-02795-y. [PMID: 37115332 PMCID: PMC10140716 DOI: 10.1007/s10815-023-02795-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The rapid outbreak of the coronavirus disease 2019 (COVID-19) pandemic has brought challenges to different medical fields, especially reproductive health. To date, most studies on the effects of COVID-19 on male reproduction have some limitations. In addition, there is little research on the mechanisms underlying by which severe acute respiratory syndrome coronavirus 2 infection affects semen quality. Here, we revealed the possible impact of COVID-19 on sperm parameters and the potential mechanisms. At present, it is still controversial whether COVID-19-induced fever adversely affects sperm parameters. Severe acute respiratory syndrome coronavirus 2 can induce up-regulation of pro-inflammatory cytokine, which leads to the destruction of blood-testis barrier and impairment of spermatogenesis. Moreover, severe viral infection of the respiratory system could induce systemic oxidative stress. Sperm are highly vulnerable to it due to their limited levels of antioxidant defense, unsophisticated DNA damage detection and repair mechanisms. Our review prompt medical staff and patients to consciously check the reproductive function of COVID-19 male patients. Moreover, opening our prospective beyond the direct infection could be the key to better understand the COVID-19 short and long-term effects and provide a new idea for future treatment of patients with reproductive function injury.
Collapse
Affiliation(s)
- Taiyang Leng
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Zhihui Guo
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Ziling Sang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Qing Xin
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Fei Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China.
| |
Collapse
|
14
|
Gong Y, Liu Y. R-Loops at Chromosome Ends: From Formation, Regulation, and Cellular Consequence. Cancers (Basel) 2023; 15:cancers15072178. [PMID: 37046839 PMCID: PMC10093737 DOI: 10.3390/cancers15072178] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Telomeric repeat containing RNA (TERRA) is transcribed from subtelomeric regions to telomeres. TERRA RNA can invade telomeric dsDNA and form telomeric R-loop structures. A growing body of evidence suggests that TERRA-mediated R-loops are critical players in telomere length homeostasis. Here, we will review current knowledge on the regulation of R-loop levels at telomeres. In particular, we will discuss how the central player TERRA and its binding proteins modulate R-loop levels through various mechanisms. We will further provide an overview of the consequences of TERRA-mediated persistent or unscheduled R-loops at telomeres in human ALT cancers and other organisms, with a focus on telomere length regulation after replication interference-induced damage and DNA homologous recombination-mediated repair.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Koller and the dawn of cancer cytogenetics. Br J Cancer 2023; 128:402-403. [PMID: 36229580 PMCID: PMC9938233 DOI: 10.1038/s41416-022-01996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Shortly before the DNA era began, PC Koller described lagging chromosomes and chromosome numerical abnormalities in human carcinomas. While present-day cancer geneticists would question some of Koller's conclusions, this study ultimately contributed to the realisation that chromosomal instability is a widespread feature of solid tumours.
Collapse
|
16
|
Wilson VC, McCormick SP, Kerr BJ. Feeding thermally processed spray-dried egg whites, singly or in combination with 15-acetyldeoxynivalenol or peroxidized soybean oil on growth performance, digestibility, intestinal morphology, and oxidative status in nursery pigs. J Anim Sci 2023; 101:skac429. [PMID: 36610406 PMCID: PMC9904174 DOI: 10.1093/jas/skac429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Two experiments (EXP) determined the susceptibility of spray-dried egg white (SDEW) to oxidation (heating at 100 °C for 72 h; thermally processed, TP) and whether feeding TP-SDEW, 15-acetyldeoxynivalenol (15-ADON), or peroxidized soybean oil (PSO), singularly or in combination, would affect pig performance, intestinal morphology, digestibility, and markers of oxidative stress in nursery pigs. In EXP 1, 32 pigs (7.14 kg body weight, BW) were placed individually into pens and fed diets containing either 12% SDEW, 6% TP-SDEW plus 6% SDEW, or 12% TP-SDEW. Performance was measured at the end of the 24-d feeding period with biological samples harvested following euthanasia. In EXP 2, 64 pigs (10.6 kg BW) were placed individually into pens and fed diets containing 7.5% soybean oil or PSO, 10% SDEW or TP-SDEW, and diets without or with 3 mg 15-ADON/kg diet in a 2 × 2 × 2 factorial arrangement. Performance was measured at the end of the 28-d feeding period with biological samples harvested following euthanasia. In EXP 1, dietary treatment did not affect pig performance, apparent ileal digestibility of amino acids (AAs), apparent total tract digestibility (ATTD) of gross energy (GE) or nitrogen (N), ileal crypt depth, or villi height:crypt depth ratio (P > 0.05). The effects of feeding TP-SDEW on protein damage in the plasma and liver (P < 0.05) were variable. In EXP 2, there were no three-way interactions and only one two-way interactions among dietary treatments on parameters evaluated. There was no effect of feeding TP-SDEW on ATTD of GE or N, intestinal morphology, or on oxidative markers in the plasma, liver, or ileum (P > 0.05). There was no effect of feeding diets containing added 15-ADON on ATTD of GE, ileal AA digestibility, intestinal morphology, oxidative markers in the plasma, liver, or ileum, or pig performance (P > 0.05). Feeding pigs diets containing PSO resulted in reduced ATTD of GE and N, plasma vitamin E concentration, and pig performance (P < 0.01) but did not affect intestinal morphology or oxidative markers in the liver or ileum (P > 0.05). In conclusion, it was difficult to induce protein oxidation in SDEW and when achieved there were limited effects on performance, digestibility, intestinal morphology, and oxidative status. Furthermore, singly adding 15-A-DON to a diet had no effect on the animal. At last, adding PSO reduces animal performance, but has limited effect on digestibility, intestinal morphology, and oxidative status in nursery pigs.
Collapse
Affiliation(s)
- Victoria C Wilson
- Department of Animal Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Susan P McCormick
- USDA-ARS National Center for Agriculture Utilization Research, Peoria, IL 61604, USA
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, Iowa 50011, USA
| |
Collapse
|
17
|
Moazamian A, Gharagozloo P, Aitken RJ, Drevet JR. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Sperm telomeres, oxidative stress, and infertility. Reproduction 2022; 164:F125-F133. [PMID: 35938805 DOI: 10.1530/rep-22-0189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
In brief Oxidative stress is recognized as an underlying driving factor of both telomere dysfunction and human subfertility/infertility. This review briefly reassesses telomere integrity as a fertility biomarker before proposing a novel, mechanistic rationale for the role of oxidative stress in the seemingly paradoxical lengthening of sperm telomeres with aging. Abstract The maintenance of redox balance in the male reproductive tract is critical to sperm health and function. Physiological levels of reactive oxygen species (ROS) promote sperm capacitation, while excess ROS exposure, or depleted antioxidant defenses, yields a state of oxidative stress which disrupts their fertilizing capacity and DNA structural integrity. The guanine moiety is the most readily oxidized of the four DNA bases and gets converted to the mutagenic lesion 8-hydroxy-deoxyguanosine (8-OHdG). Numerous studies have also confirmed oxidative stress as a driving factor behind accelerated telomere shortening and dysfunction. Although a clear consensus has not been reached, clinical studies also appear to associate telomere integrity with fertility outcomes in the assisted reproductive technology setting. Intriguingly, while sperm cellular and molecular characteristics make them more susceptible to oxidative insult than any other cell type, they are also the only cell type in which telomere lengthening accompanies aging. This article focuses on the oxidative stress response pathways to propose a mechanism for the explanation of this apparent paradox.
Collapse
Affiliation(s)
- Aron Moazamian
- CellOxess LLC, Ewing, New Jersey, USA.,Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| | | | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Joël R Drevet
- Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| |
Collapse
|
18
|
Soman A, Korolev N, Nordenskiöld L. Telomeric chromatin structure. Curr Opin Struct Biol 2022; 77:102492. [PMID: 36335846 DOI: 10.1016/j.sbi.2022.102492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Eukaryotic DNA is packaged into nucleosomes, which further condenses into chromosomes. The telomeres, which form the protective end-capping of chromosomes, play a pivotal role in ageing and cancer. Recently, significant advances have been made in understanding the nucleosomal and telomeric chromatin structure at the molecular level. In addition, recent studies shed light on the nucleosomal organisation at telomeres revealing its ultrastructural organisation, the atomic structure at the nucleosome level, its dynamic properties, and higher-order packaging of telomeric chromatin. Considerable advances have furthermore been made in understanding the structure, function and organisation of shelterin, telomerase and CST complexes. Here we discuss these recent advances in the organisation of telomeric nucleosomes and chromatin and highlight progress in the structural understanding of shelterin, telomerase and CST complexes.
Collapse
Affiliation(s)
- Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
19
|
Biological Functions of the DNA Glycosylase NEIL3 and Its Role in Disease Progression Including Cancer. Cancers (Basel) 2022; 14:cancers14235722. [PMID: 36497204 PMCID: PMC9737245 DOI: 10.3390/cancers14235722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
The accumulation of oxidative DNA base damage can severely disrupt the integrity of the genome and is strongly associated with the development of cancer. DNA glycosylase is the critical enzyme that initiates the base excision repair (BER) pathway, recognizing and excising damaged bases. The Nei endonuclease VIII-like 3 (NEIL3) is an emerging DNA glycosylase essential in maintaining genome stability. With an in-depth study of the structure and function of NEIL3, we found that it has properties related to the process of base damage repair. For example, it not only prefers the base damage of single-stranded DNA (ssDNA), G-quadruplex and DNA interstrand crosslinks (ICLs), but also participates in the maintenance of replication fork stability and telomere integrity. In addition, NEIL3 is strongly associated with the progression of cancers and cardiovascular and neurological diseases, is incredibly significantly overexpressed in cancers, and may become an independent prognostic marker for cancer patients. Interestingly, circNEIL3, a circular RNA of exon-encoded origin by NEIL3, also promotes the development of multiple cancers. In this review, we have summarized the structure and the characteristics of NEIL3 to repair base damage. We have focused on NEIL3 and circNEIL3 in cancer development, progression and prognosis.
Collapse
|
20
|
Large mammal telomere length variation across ecoregions. BMC Ecol Evol 2022; 22:105. [PMID: 36038827 PMCID: PMC9426267 DOI: 10.1186/s12862-022-02050-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Telomere length provides a physiological proxy for accumulated stress in animals. While there is a growing consensus over how telomere dynamics and their patterns are linked to life history variation and individual experience, knowledge on the impact of exposure to different stressors at a large spatial scale on telomere length is still lacking. How exposure to different stressors at a regional scale interacts with individual differences in life history is also poorly understood. To better understand large-scale regional influences, we investigated telomere length variation in moose (Alces alces) distributed across three ecoregions. We analyzed 153 samples of 106 moose representing moose of both sexes and range of ages to measure relative telomere lengths (RTL) in white blood cells. Results We found that average RTL was significantly shorter in a northern (montane) and southern (sarmatic) ecoregion where moose experience chronic stress related to severe summer and winter temperatures as well as high anthropogenic land-use compared to the boreal region. Our study suggests that animals in the northern boreal forests, with relatively homogenous land use, are less disturbed by environmental and anthropogenic stressors. In contrast, animals in areas experiencing a higher rate of anthropogenic and environmental change experience increased stress. Conclusion Although animals can often adapt to predictable stressors, our data suggest that some environmental conditions, even though predictable and ubiquitous, can generate population level differences of long-term stress. By measuring RTL in moose for the first time, we provide valuable insights towards our current understanding of telomere biology in free-ranging wildlife in human-modified ecosystems. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02050-5.
Collapse
|
21
|
Precioso M, Molina-Morales M, Dawson DA, Burke TA, Martínez JG. Effects of long-term ethanol storage of blood samples on the estimation of telomere length. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractTelomeres, DNA structures located at the end of eukaryotic chromosomes, shorten with each cellular cycle. The shortening rate is affected by factors associated with stress, and, thus telomere length has been used as a biomarker of ageing, disease, and different life history trade-offs. Telomere research has received much attention in the last decades, however there is still a wide variety of factors that may affect telomere measurements and to date no study has thoroughly evaluated the possible long-term effect of a storage medium on telomere measurements. In this study we evaluated the long-term effects of ethanol on relative telomere length (RTL) measured by qPCR, using blood samples of magpies collected over twelve years and stored in absolute ethanol at room temperature. We firstly tested whether storage time had an effect on RTL and secondly we modelled the effect of time of storage (from 1 to 12 years) in differences in RTL from DNA extracted twice in consecutive years from the same blood sample. We also tested whether individual amplification efficiencies were influenced by storage time, and whether this could affect our results. Our study provides evidence of an effect of storage time on telomere length measurements. Importantly, this effect shows a pattern of decreasing loss of telomere sequence with storage time that stops after approximate 4 years of storage, which suggests that telomeres may degrade in blood samples stored in ethanol. Our method to quantify the effect of storage time could be used to evaluate other storage buffers and methods. Our results highlight the need to evaluate the long-term effects of storage on telomere measurements, particularly in long-term studies.
Collapse
|
22
|
Elsakrmy N, Aouida M, Hindi N, Moovarkumudalvan B, Mohanty A, Ali R, Ramotar D. C. elegans ribosomal protein S3 protects against H2O2-induced DNA damage and suppresses spontaneous mutations in yeast. DNA Repair (Amst) 2022; 117:103359. [DOI: 10.1016/j.dnarep.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
23
|
Herrera-Moreno JF, Estrada-Gutierrez G, Wu H, Bloomquist TR, Rosa MJ, Just AC, Lamadrid-Figueroa H, Téllez-Rojo MM, Wright RO, Baccarelli AA. Prenatal lead exposure, telomere length in cord blood, and DNA methylation age in the PROGRESS prenatal cohort. ENVIRONMENTAL RESEARCH 2022; 205:112577. [PMID: 34921825 DOI: 10.1016/j.envres.2021.112577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lead is a ubiquitous pollutant with deleterious effects on human health and remains a major current public health concern in developing countries. This heavy metal may interfere with nucleic acids via oxidative stress or epigenetic changes that affect biological markers of aging, e.g., telomere length and DNA methylation (DNAm). Telomere shortening associates with biological age in newborns, and DNA methylation at specific CpG sites can be used to calculate "epigenetic clocks". OBJECTIVE The aim of this study was to examine the associations of prenatal lead exposures with telomere length and DNA-methylation-based predictors of age in cord blood. DESIGN The study included 507 mother-child pairs from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study, a birth cohort in Mexico City. Maternal blood (second trimester, third trimester and at delivery) and bone lead levels (one month postpartum) were measured using inductively coupled plasma-mass spectrometry and X-ray fluorescence, respectively. Cord blood leukocyte telomere length was measured using quantitative PCR and apparent age by DNA methylation biomarkers, i.e., Horvath's DNA methylation age and the Knight's predictor of gestational age. RESULTS Average maternal age was 28.5 ± 5.5 years, and 51.5% reported low socioeconomic status. Children's mean telomere length was 1.2 ± 1.3 relative units, and mean DNA methylation ages using the Horvath's and Knight's clocks were -2.6 ± 0.1 years and 37.9 ± 1.4 weeks (mean ± SD), respectively. No significant associations were found between maternal blood and bone lead concentrations with telomere length and DNAm age in newborns. CONCLUSION We found no associations of prenatal lead exposure with telomere length and DNA methylation age biomarkers.
Collapse
Affiliation(s)
- José F Herrera-Moreno
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Effect of oxidative stress on telomere maintenance in aortic smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166397. [PMID: 35346819 DOI: 10.1016/j.bbadis.2022.166397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) and telomere dysfunction are both associated with aging and the development of age-related diseases. Although there is evidence for a direct relationship between ROS and telomere dysfunction as well as an independent association of oxidative stress and telomere attrition with age-related disorders, there has not been sufficient exploration of how the interaction between oxidative stress and telomere function may contribute to the pathophysiology of cardiovascular diseases (CVD). To better understand the complex relationships between oxidative stress, telomerase biology and pathophysiology, we examined the telomere biology of aortic smooth muscle cells (ASMCs) isolated from mutant mouse models of oxidative stress. We discovered that telomere lengths were significantly shorter in ASMCs isolated from superoxide dismutase 2 heterozygous (Sod2+/-) mice, which exhibit increased arterial stiffness with aging, and the observed telomere attrition occurred over time. Furthermore, the telomere erosion occurred even though telomerase activity increased. In contrast, telomeres remained stable in wild-type and superoxide dismutase 1 heterozygous (Sod1+/-) mice, which do not exhibit CVD phenotypes. The data indicate that mitochondrial oxidative stress, in particular elevated superoxide levels and decreased hydrogen peroxide levels, induces telomere erosion in the ASMCs of the Sod2+/- mice. This reduction in telomere length occurs despite an increase in telomerase activity and correlates with the onset of disease phenotype. Our results suggest that the oxidative stress caused by imbalance in mitochondrial ROS, from deficient SOD2 activity as a model for mitochondrial dysfunction results in telomere dysfunction, which may contribute to pathogenesis of CVD.
Collapse
|
25
|
Gupta A, Hwang BJ, Benyamien-Roufaeil D, Jain S, Liu S, Gonzales R, Brown RA, Zalzman M, Lu AL, Lu AL. Mammalian MutY Homolog (MYH or MUTYH) is Critical for Telomere Integrity under Oxidative Stress. OBM GERIATRICS 2022; 6:196. [PMID: 35812693 PMCID: PMC9267527 DOI: 10.21926/obm.geriatr.2202196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Telomeres consist of special features and proteins to protect the ends of each chromosome from deterioration and fusion. The telomeric DNA repeats are highly susceptible to oxidative damage that can accelerate telomere shortening and affect telomere integrity. Several DNA repair factors including MYH/MUTYH DNA glycosylase, its interacting partners Rad9/Rad1/Hus1 checkpoint clamp, and SIRT6 aging regulator, are associated with the telomeres. MYH prevents C:G to A:T mutation by removing adenine mispaired with a frequent oxidative DNA lesion, 8-oxoguanine. Here, we show that hMYH knockout (KO) human HEK-293T cells are more sensitive to H2O2 treatment, have higher levels of DNA strand breaks and shorter telomeres than the control hMYH +/+ cells. SIRT6 foci increase at both the global genome and at telomeric regions in H2O2-treated hMYH +/+ cells. However, in untreated hMYH KO HEK-293T cells, SIRT6 foci only increase at the global genome, but not at the telomeric regions. In addition, the hMYH KO HEK-293T cells have increased extra-chromosomal and intra-chromosomal telomeres compared to the control cells, even in the absence of H2O2 treatment. After H2O2 treatment, the frequency of extra-chromosomal telomeres increased in control HEK-293T cells. Remarkably, in H2O2-treated hMYH KO cells, the frequencies of extra-chromosomal telomeres, intra-chromosomal telomeres, and telomere fusions are further increased. We further found that the sensitivity to H2O2 and shortened telomeres of hMYH KO cells, are restored by expressing wild-type hMYH, and partially rescued by expressing hMYHQ324H mutant (defective in Hus1 interaction only), but not by expressing hMYHV315A mutant (defective in both SIRT6 and Hus1 interactions). Thus, MYH interactions with SIRT6 and Hus1 are critical for maintaining cell viability and telomeric stability. Therefore, the failure to coordinate 8-oxoG repair is detrimental to telomere integrity.
Collapse
Affiliation(s)
- Aditi Gupta
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bor-Jang Hwang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Sara Jain
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sophie Liu
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rex Gonzales
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert A Brown
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michal Zalzman
- University of Maryland School of Medicine; The Center for Stem Cell Biology and Regenerative Medicine; Marlene and Stewart Greenbaum Cancer Center, Baltimore, MD 21201, USA
| | - A-Lien Lu
- University of Maryland School of Medicine; Marlene and Stewart Greenbaum Cancer Center, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 2022; 73:101507. [PMID: 34736994 PMCID: PMC8920518 DOI: 10.1016/j.arr.2021.101507] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Short telomeres confer risk of degenerative diseases. Chronic psychological stress can lead to disease through many pathways, and research from in vitro studies to human longitudinal studies has pointed to stress-induced telomere damage as an important pathway. However, there has not been a comprehensive model to describe how changes in stress physiology and neuroendocrine pathways can lead to changes in telomere biology. Critically short telomeres or the collapse of the telomere structure caused by displacement of telomere binding protein complex shelterin elicit a DNA damage response and lead to senescence or apoptosis. In this narrative review, we summarize the key roles glucocorticoids, reactive oxygen species (ROS) and mitochondria, and inflammation play in mediating the relationship between psychological stress and telomere maintenance. We emphasis that these mediators are interconnected and reinforce each other in positive feedback loops. Telomere length has not been studied across the lifespan yet, but the initial setting point at birth appears to be the most influential point, as it sets the lifetime trajectory, and is influenced by stress. We describe two types of intergenerational stress effects on telomeres - prenatal stress effects on telomeres during fetal development, and 'telotype transmission" -the directly inherited transmission of short telomeres from parental germline. It is clear that the initial simplistic view of telomere length as a mitotic clock has evolved into a far more complex picture of both transgenerational telomere influences, and of interconnected molecular and cellular pathways and networks, as hallmarks of aging where telomere maintenance is a key player interacting with mitochondria. Further mechanistic investigations testing this comprehensive model of stress mediators shaping telomere biology and the telomere-mitochondrial nexus will lead to better understanding from cell to human lifespan aging, and could lead to anti-aging interventions.
Collapse
|
27
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Impact of Chromatin Dynamics and DNA Repair on Genomic Stability and Treatment Resistance in Pediatric High-Grade Gliomas. Cancers (Basel) 2021; 13:cancers13225678. [PMID: 34830833 PMCID: PMC8616465 DOI: 10.3390/cancers13225678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, due in great part to treatment resistance driven by complex DNA repair mechanisms. pHGGs have recently been divided into molecular subtypes based on mutations affecting the N-terminal tail of the histone variant H3.3 and the ATRX/DAXX histone chaperone that deposits H3.3 at repetitive heterochromatin loci that are of paramount importance to the stability of our genome. This review addresses the functions of H3.3 and ATRX/DAXX in chromatin dynamics and DNA repair, as well as the impact of mutations affecting H3.3/ATRX/DAXX on treatment resistance and how the vulnerabilities they expose could foster novel therapeutic strategies. Abstract Despite their low incidence, pediatric high-grade gliomas (pHGGs), including diffuse intrinsic pontine gliomas (DIPGs), are the leading cause of mortality in pediatric neuro-oncology. Recurrent, mutually exclusive mutations affecting K27 (K27M) and G34 (G34R/V) in the N-terminal tail of histones H3.3 and H3.1 act as key biological drivers of pHGGs. Notably, mutations in H3.3 are frequently associated with mutations affecting ATRX and DAXX, which encode a chaperone complex that deposits H3.3 into heterochromatic regions, including telomeres. The K27M and G34R/V mutations lead to distinct epigenetic reprogramming, telomere maintenance mechanisms, and oncogenesis scenarios, resulting in distinct subgroups of patients characterized by differences in tumor localization, clinical outcome, as well as concurrent epigenetic and genetic alterations. Contrasting with our understanding of the molecular biology of pHGGs, there has been little improvement in the treatment of pHGGs, with the current mainstays of therapy—genotoxic chemotherapy and ionizing radiation (IR)—facing the development of tumor resistance driven by complex DNA repair pathways. Chromatin and nucleosome dynamics constitute important modulators of the DNA damage response (DDR). Here, we summarize the major DNA repair pathways that contribute to resistance to current DNA damaging agent-based therapeutic strategies and describe the telomere maintenance mechanisms encountered in pHGGs. We then review the functions of H3.3 and its chaperones in chromatin dynamics and DNA repair, as well as examining the impact of their mutation/alteration on these processes. Finally, we discuss potential strategies targeting DNA repair and epigenetic mechanisms as well as telomere maintenance mechanisms, to improve the treatment of pHGGs.
Collapse
|
29
|
Sanford SL, Welfer GA, Freudenthal BD, Opresko PL. How DNA damage and non-canonical nucleotides alter the telomerase catalytic cycle. DNA Repair (Amst) 2021; 107:103198. [PMID: 34371388 PMCID: PMC8526386 DOI: 10.1016/j.dnarep.2021.103198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Telomeres at the ends of linear chromosomes are essential for genome maintenance and sustained cellular proliferation, but shorten with each cell division. Telomerase, a specialized reverse transcriptase with its own integral RNA template, compensates for this by lengthening the telomeric 3' single strand overhang. Mammalian telomerase has the unique ability to processively synthesize multiple GGTTAG repeats, by translocating along its product and reiteratively copying the RNA template, termed repeat addition processivity (RAP). This unusual form of processivity is distinct from the nucleotide addition processivity (NAP) shared by all other DNA polymerases. In this review, we focus on the minimally active human telomerase catalytic core consisting of the telomerase reverse transcriptase (TERT) and the integral RNA (TR), which catalyzes DNA synthesis. We review the mechanisms by which oxidatively damaged nucleotides, and anti-viral and anti-cancer nucleotide drugs affect the telomerase catalytic cycle. Finally, we offer perspective on how we can leverage telomerase's unique properties, and advancements in understanding of telomerase catalytic mechanism, to selectively manipulate telomerase activity with therapeutics, particularly in cancer treatment.
Collapse
Affiliation(s)
- Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Griffin A Welfer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
30
|
Parolini M, De Felice B, Mondellini S, Caprioli M, Possenti CD, Rubolini D. Prenatal exposure to triclosan induced brain telomere shortening in a wild bird species. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103718. [PMID: 34329803 DOI: 10.1016/j.etap.2021.103718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Exposure to the antimicrobial agent Triclosan (TCS) induces oxidative stress in diverse organisms, including birds. However, whether TCS-induced oxidative stress effectively translates into detrimental effects is still unclear. The present study examined whether prenatal TCS exposure induces oxidative stress and telomere shortening in the brain and the liver of near-term embryos of the yellow-legged gull (Larus michahellis). Prenatal TCS exposure caused a significant overproduction of reactive oxygen species (ROS) in the brain, but no oxidative damage occurred. Telomeres of TCS-exposed embryos had brain telomeres 30 % shorter compared to controls, probably because the relatively modest antioxidant defenses of this organ during prenatal development cannot counteract the impact of the TCS-induced ROS. No telomere shortening was observed in the liver. Our results demonstrated that prenatal exposure to TCS in wild bird species can modulate the oxidative status and induce telomere shortening in the brain of the yellow-legged gull embryos.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy.
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Simona Mondellini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy; Department of Animal Ecology I and BayCEER, University of Bayreuth, Universitaetsstraße 30, 95447, Bayreuth, Germany
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
31
|
Dhillon VS, Deo P, Chua A, Thomas P, Fenech M. Sleep duration, Health Promotion Index (HPI), sRAGE and ApoE-ε4 genotype are associated with telomere length (TL) in healthy elderly Australians. J Gerontol A Biol Sci Med Sci 2021; 77:243-249. [PMID: 34508574 DOI: 10.1093/gerona/glab264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Significant alterations in sleep duration and/or quality of sleep become more pronounced as people get older. Poor sleep in elderly people is associated with adverse health outcomes and cellular ageing. We examined the relationship between TL and sleep duration, Health Promotion Index (HPI), and tested whether the presence of ApoE-ε4 allele impacts both sleep and TL. The present study was carried out in 174 healthy elderly subjects (21% male; mean age 53.79 years) from South Australia. Lymphocyte telomere length (TL) was measured by real-time qPCR and ApoE genotype was determined by TaqMan assay. HPI was calculated from a questionnaire regarding 8 lifestyle habits, including sleeping hours. Multivariate regression analysis was used to establish these associations adjusted for specified confounders. TL was found to be inversely associated with age (r = - 0.199; p = 0.008) and BMI (r = - 0.121; p = 0.11), and was significantly shorter in participants who slept for <7 hours (p = 0.001) relative to those sleeping ≥7 hours. TL was positively correlated with HPI (r = 0.195; p = 0.009). ApoE-ε4 allele carriers who slept for less than 7 hours had shortest TL (p = 0.01) compared to non-carriers. Plasma sRAGE level was significantly (p = 0.001) lower in individuals who sleep <7 hours and ApoE-ϵ4 carriers. Our results suggest that inadequate sleep duration or poor HPI is associated with shorter TL in cognitively normal elderly people and that carriage of APOE-ε4 genotype may influence the extent of these effects.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Ann Chua
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Phil Thomas
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia.,Centre of Healthy Ageing and Wellness, Faculty of Health Sciences Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103633. [PMID: 33711516 DOI: 10.1016/j.etap.2021.103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
33
|
Significance of base excision repair to human health. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:163-193. [PMID: 34507783 DOI: 10.1016/bs.ircmb.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative and alkylating DNA damage occurs under normal physiological conditions and exogenous exposure to DNA damaging agents. To counteract DNA base damage, cells have evolved several defense mechanisms that act at different levels to prevent or repair DNA base damage. Cells combat genomic lesions like these including base modifications, abasic sites, as well as single-strand breaks, via the base excision repair (BER) pathway. In general, the core BER process involves well-coordinated five-step reactions to correct DNA base damage. In this review, we will uncover the current understanding of BER mechanisms to maintain genomic stability and the biological consequences of its failure due to repair gene mutations. The malfunction of BER can often lead to BER intermediate accumulation, which is genotoxic and can lead to different types of human disease. Finally, we will address the use of BER intermediates for targeted cancer therapy.
Collapse
|
34
|
Impact of Snoring on Telomere Shortening in Adolescents with Atopic Diseases. Genes (Basel) 2021; 12:genes12050766. [PMID: 34069972 PMCID: PMC8157836 DOI: 10.3390/genes12050766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022] Open
Abstract
Atopic diseases can impose a significant burden on children and adolescents. Telomere length is a cellular marker of aging reflecting the impact of cumulative stress exposure on individual health. Since elevated oxidative stress and inflammation burden induced by chronic atopy and snoring may impact telomere length, this study aimed to investigate whether snoring would moderate the relationship between atopic diseases and telomere length in early adolescence. We surveyed 354 adolescents and their parents. Parents reported the adolescents' history of atopic diseases, recent snoring history as well as other family sociodemographic characteristics. Buccal swab samples were also collected from the adolescents for telomere length determination. Independent and combined effects of atopic diseases and snoring on telomere length were examined. Among the surveyed adolescents, 174 were reported by parents to have atopic diseases (20 had asthma, 145 had allergic rhinitis, 53 had eczema, and 25 had food allergy). Shorter TL was found in participants with a history of snoring and atopic diseases (β = -0.34, p = 0.002) particularly for asthma (β = -0.21, p = 0.007) and allergic rhinitis (β = -0.22, p = 0.023). Our findings suggest that snoring in atopic patients has important implications for accelerated telomere shortening. Proper management of atopic symptoms at an early age is important for the alleviation of long-term health consequences at the cellular level.
Collapse
|
35
|
The effect of Telomere Lengthening on Genetic Diseases. JOURNAL OF CONTEMPORARY MEDICINE 2021. [DOI: 10.16899/jcm.756562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Baquero JM, Benítez-Buelga C, Rajagopal V, Zhenjun Z, Torres-Ruiz R, Müller S, Hanna BMF, Loseva O, Wallner O, Michel M, Rodríguez-Perales S, Gad H, Visnes T, Helleday T, Benítez J, Osorio A. Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Sci Rep 2021; 11:3490. [PMID: 33568707 PMCID: PMC7876102 DOI: 10.1038/s41598-021-82917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most common oxidative DNA lesion is 8-oxoguanine which is mainly recognized and excised by the 8-oxoG DNA glycosylase 1 (OGG1), initiating the base excision repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress (OS) which disrupts telomere homeostasis triggering genome instability. In the present study, we have investigated the effects of inactivating BER in OS conditions, by using a specific inhibitor of OGG1 (TH5487). We have found that in OS conditions, TH5487 blocks BER initiation at telomeres causing an accumulation of oxidized bases, that is correlated with telomere losses, micronuclei formation and mild proliferation defects. Moreover, the antimetabolite methotrexate synergizes with TH5487 through induction of intracellular reactive oxygen species (ROS) formation, which potentiates TH5487-mediated telomere and genome instability. Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Juan Miguel Baquero
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carlos Benítez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden.
| | - Varshni Rajagopal
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Zhao Zhenjun
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, 08036, Barcelona, Spain
| | - Sarah Müller
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Bishoy M F Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Helge Gad
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Torkild Visnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Javier Benítez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), 28029, Madrid, Spain
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
- Spanish Network on Rare Diseases (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
37
|
D'Amico AM, Vasquez KM. The multifaceted roles of DNA repair and replication proteins in aging and obesity. DNA Repair (Amst) 2021; 99:103049. [PMID: 33529944 DOI: 10.1016/j.dnarep.2021.103049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Efficient mechanisms for genomic maintenance (i.e., DNA repair and DNA replication) are crucial for cell survival. Aging and obesity can lead to the dysregulation of genomic maintenance proteins/pathways and are significant risk factors for the development of cancer, metabolic disorders, and other genetic diseases. Mutations in genes that code for proteins involved in DNA repair and DNA replication can also exacerbate aging- and obesity-related disorders and lead to the development of progeroid diseases. In this review, we will discuss the roles of various DNA repair and replication proteins in aging and obesity as well as investigate the possible mechanisms by which aging and obesity can lead to the dysregulation of these proteins and pathways.
Collapse
Affiliation(s)
- Alexandra M D'Amico
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
38
|
Godhamgaonkar AA, Sundrani DP, Joshi SR. Role of maternal nutrition and oxidative stress in placental telomere attrition in women with preeclampsia. Hypertens Pregnancy 2021; 40:63-74. [PMID: 33406938 DOI: 10.1080/10641955.2020.1869248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:Maternal nutrition influences the growth and development of the fetus and influences pregnancy outcome. We have earlier demonstrated altered maternal nutrition and increased oxidative stress in women with preeclampsia. Oxidative stress is known to be associated with reduced telomere length and short telomere aggregates. Increased telomere attrition leads to increased cellular senescence and tissue ageing. Methods:The present review focuses on the role of maternal nutrition and oxidative stress in telomere attrition in preeclampsia. Results and Conclusion:Future studies need to examine the association between maternal nutritional status in early pregnancy, oxidative stress and telomere attrition in preeclampsia.
Collapse
Affiliation(s)
- Aditi A Godhamgaonkar
- Mother and Child Health, Interactive Research School of Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University) , Pune, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School of Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University) , Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School of Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University) , Pune, India
| |
Collapse
|
39
|
Obesity, oxidative DNA damage and vitamin D as predictors of genomic instability in children and adolescents. Int J Obes (Lond) 2021; 45:2095-2107. [PMID: 34158611 PMCID: PMC8380542 DOI: 10.1038/s41366-021-00879-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND/OBJECTIVES Epidemiological evidence indicates obesity in childhood and adolescence to be an independent risk factor for cancer and premature mortality in adulthood. Pathological implications from excess adiposity may begin early in life. Obesity is concurrent with a state of chronic inflammation, a well-known aetiological factor for DNA damage. In addition, obesity has been associated with micro-nutritional deficiencies. Vitamin D has attracted attention for its anti-inflammatory properties and role in genomic integrity and stability. The aim of this study was to determine a novel approach for predicting genomic instability via the combined assessment of adiposity, DNA damage, systemic inflammation, and vitamin D status. SUBJECTS/METHODS We carried out a cross-sectional study with 132 participants, aged 10-18, recruited from schools and paediatric obesity clinics in London. Anthropometric assessments included BMI Z-score, waist and hip circumference, and body fat percentage via bioelectrical impedance. Inflammation and vitamin D levels in saliva were assessed by enzyme-linked immunosorbent assay. Oxidative DNA damage was determined via quantification of 8-hydroxy-2'-deoxyguanosine in urine. Exfoliated cells from the oral cavity were scored for genomic instability via the buccal cytome assay. RESULTS As expected, comparisons between participants with obesity and normal range BMI showed significant differences in anthropometric measures (p < 0.001). Significant differences were also observed in some measures of genomic instability (p < 0.001). When examining relationships between variables for all participants, markers of adiposity positively correlated with acquired oxidative DNA damage (p < 0.01) and genomic instability (p < 0.001), and negatively correlated with vitamin D (p < 0.01). Multiple regression analyses identified obesity (p < 0.001), vitamin D (p < 0.001), and oxidative DNA damage (p < 0.05) as the three significant predictors of genomic instability. CONCLUSIONS Obesity, oxidative DNA damage, and vitamin D deficiency are significant predictors of genomic instability. Non-invasive biomonitoring and predictive modelling of genomic instability in young patients with obesity may contribute to the prioritisation and severity of clinical intervention measures.
Collapse
|
40
|
Eckhardt F, Pauliny A, Rollings N, Mutschmann F, Olsson M, Kraus C, Kappeler PM. Stress-related changes in leukocyte profiles and telomere shortening in the shortest-lived tetrapod, Furcifer labordi. BMC Evol Biol 2020; 20:160. [PMID: 33261558 PMCID: PMC7709289 DOI: 10.1186/s12862-020-01724-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Life history theory predicts that during the lifespan of an organism, resources are allocated to either growth, somatic maintenance or reproduction. Resource allocation trade-offs determine the evolution and ecology of different life history strategies and define an organisms' position along a fast-slow continuum in interspecific comparisons. Labord's chameleon (Furcifer labordi) from the seasonal dry forests of Madagascar is the tetrapod species with the shortest reported lifespan (4-9 months). Previous investigations revealed that their lifespan is to some degree dependent on environmental factors, such as the amount of rainfall and the length of the vegetation period. However, the intrinsic mechanisms shaping such a fast life history remain unknown. Environmental stressors are known to increase the secretion of glucocorticoids in other vertebrates, which, in turn, can shorten telomeres via oxidative stress. To investigate to what extent age-related changes in these molecular and cellular mechanisms contribute to the relatively short lifetime of F. labordi, we assessed the effects of stressors indirectly via leukocyte profiles (H/L ratio) and quantified relative telomere length from blood samples in a wild population in Kirindy Forest. We compared our findings with the sympatric, but longer-lived sister species F. cf. nicosiai, which exhibit the same annual timing of reproductive events, and with wild-caught F. labordi that were singly housed under ambient conditions. RESULTS We found that H/L ratios were consistently higher in wild F. labordi compared to F. cf. nicosiai. Moreover, F. labordi already exhibited relatively short telomeres during the mating season when they were 3-4 months old, and telomeres further shortened during their post-reproductive lives. At the beginning of their active season, telomere length was relatively longer in F. cf. nicosiai, but undergoing rapid shortening towards the southern winter, when both species gradually die off. Captive F. labordi showed comparatively longer lifespans and lower H/L ratios than their wild counterparts. CONCLUSION We suggest that environmental stress and the corresponding accelerated telomere attrition have profound effects on the lifespan of F. labordi in the wild, and identify physiological mechanisms potentially driving their relatively early senescence and mortality.
Collapse
Affiliation(s)
- Falk Eckhardt
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Angela Pauliny
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Nicky Rollings
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Mats Olsson
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Cornelia Kraus
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany. .,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
41
|
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 2020; 15:e0242279. [PMID: 33186409 PMCID: PMC7665817 DOI: 10.1371/journal.pone.0242279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023] Open
Abstract
Heat waves are known for their disastrous mass die-off effects due to dehydration and cell damage, but little is known about the non-lethal consequences of surviving severe heat exposure. Severe heat exposure can cause oxidative stress which can have negative consequences on animal cognition, reproduction and life expectancy. We investigated the current oxidative stress experienced by a mesic mouse species, the four striped field mouse, Rhabdomys dilectus through a heat wave simulation with ad lib water and a more severe temperature exposure with minimal water. Wild four striped field mice were caught between 2017 and 2019. We predicted that wild four striped field mice in the heat wave simulation would show less susceptibility to oxidative stress as compared to a more severe heat stress which is likely to occur in the future. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers for oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defense. Incubator heat stress was brought about by increasing the body temperatures of animals to 39-40.8°C for 6 hours. A heat wave (one hot day, followed by a 3-day heatwave) was simulated by using temperature cycle that wild four striped field mice would experience in their local habitat (determined through weather station data using temperature and humidity), with maximal ambient temperature of 39°C. The liver and kidney demonstrated no changes in the simulated heat wave, but the liver had significantly higher SOD activity and the kidney had significantly higher lipid peroxidation in the incubator experiment. Dehydration significantly contributed to the increase of these markers, as is evident from the decrease in body mass after the experiment. The brain only showed significantly higher lipid peroxidation following the simulated heat wave with no significant changes following the incubator experiment. The significant increase in lipid peroxidation was not correlated to body mass after the experiment. The magnitude and duration of heat stress, in conjunction with dehydration, played a critical role in the oxidative stress experienced by each tissue, with the results demonstrating the importance of measuring multiple tissues to determine the physiological state of an animal. Current heat waves in this species have the potential of causing oxidative stress in the brain with future heat waves to possibly stress the kidney and liver depending on the hydration state of animals.
Collapse
Affiliation(s)
- Paul J. Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - M. K. Oosthuizen
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - C. Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Nigel C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
42
|
Balzano E, Pelliccia F, Giunta S. Genome (in)stability at tandem repeats. Semin Cell Dev Biol 2020; 113:97-112. [PMID: 33109442 DOI: 10.1016/j.semcdb.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Repeat sequences account for over half of the human genome and represent a significant source of variation that underlies physiological and pathological states. Yet, their study has been hindered due to limitations in short-reads sequencing technology and difficulties in assembly. A important category of repetitive DNA in the human genome is comprised of tandem repeats (TRs), where repetitive units are arranged in a head-to-tail pattern. Compared to other regions of the genome, TRs carry between 10 and 10,000 fold higher mutation rate. There are several mutagenic mechanisms that can give rise to this propensity toward instability, but their precise contribution remains speculative. Given the high degree of homology between these sequences and their arrangement in tandem, once damaged, TRs have an intrinsic propensity to undergo aberrant recombination with non-allelic exchange and generate harmful rearrangements that may undermine the stability of the entire genome. The dynamic mutagenesis at TRs has been found to underlie individual polymorphism associated with neurodegenerative and neuromuscular disorders, as well as complex genetic diseases like cancer and diabetes. Here, we review our current understanding of the surveillance and repair mechanisms operating within these regions, and we describe how alterations in these protective processes can readily trigger mutational signatures found at TRs, ultimately resulting in the pathological correlation between TRs instability and human diseases. Finally, we provide a viewpoint to counter the detrimental effects that TRs pose in light of their selection and conservation, as important drivers of human evolution.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Franca Pelliccia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Simona Giunta
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy.
| |
Collapse
|
43
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
44
|
An ordered assembly of MYH glycosylase, SIRT6 protein deacetylase, and Rad9-Rad1-Hus1 checkpoint clamp at oxidatively damaged telomeres. Aging (Albany NY) 2020; 12:17761-17785. [PMID: 32991318 PMCID: PMC7585086 DOI: 10.18632/aging.103934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 01/24/2023]
Abstract
In the base excision repair pathway, MYH/MUTYH DNA glycosylase prevents mutations by removing adenine mispaired with 8-oxoG, a frequent oxidative lesion. MYH glycosylase activity is enhanced by Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp and SIRT6 histone/protein deacetylase. Here, we show that MYH, SIRT6, and 9-1-1 are recruited to confined oxidatively damaged regions on telomeres in mammalian cells. Using different knockout cells, we show that SIRT6 responds to damaged telomeres very early, and then recruits MYH and Hus1 following oxidative stress. However, the recruitment of Hus1 to damaged telomeres is partially dependent on SIRT6. The catalytic activities of SIRT6 are not important for SIRT6 response but are essential for MYH recruitment to damaged telomeres. Compared to wild-type MYH, the recruitment of hMYHV315A mutant (defective in both SIRT6 and Hus1 interactions), but not hMYHQ324H mutant (defective in Hus1 interaction only), to damaged telomeres is severely reduced. The formation of MYH/SIRT6/9-1-1 complex is of biological significance as interrupting their interactions can increase cell's sensitivity to H2O2 and/or elevate cellular 8-oxoG levels after H2O2 treatment. Our results establish that SIRT6 acts as an early sensor of BER enzymes and both SIRT6 and 9-1-1 serve critical roles in DNA repair to maintain telomere integrity.
Collapse
|
45
|
Kroustallaki P, Lirussi L, Carracedo S, You P, Esbensen QY, Götz A, Jobert L, Alsøe L, Sætrom P, Gagos S, Nilsen H. SMUG1 Promotes Telomere Maintenance through Telomerase RNA Processing. Cell Rep 2020; 28:1690-1702.e10. [PMID: 31412240 DOI: 10.1016/j.celrep.2019.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 05/28/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022] Open
Abstract
Telomerase biogenesis is a complex process where several steps remain poorly understood. Single-strand-selective uracil-DNA glycosylase (SMUG1) associates with the DKC1-containing H/ACA ribonucleoprotein complex, which is essential for telomerase biogenesis. Herein, we show that SMUG1 interacts with the telomeric RNA component (hTERC) and is required for co-transcriptional processing of the nascent transcript into mature hTERC. We demonstrate that SMUG1 regulates the presence of base modifications in hTERC, in a region between the CR4/CR5 domain and the H box. Increased levels of hTERC base modifications are accompanied by reduced DKC1 binding. Loss of SMUG1 leads to an imbalance between mature hTERC and its processing intermediates, leading to the accumulation of 3'-polyadenylated and 3'-extended intermediates that are degraded in an EXOSC10-independent RNA degradation pathway. Consequently, SMUG1-deprived cells exhibit telomerase deficiency, leading to impaired bone marrow proliferation in Smug1-knockout mice.
Collapse
Affiliation(s)
- Penelope Kroustallaki
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Lisa Lirussi
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Panpan You
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Q Ying Esbensen
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Alexandra Götz
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Laure Jobert
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway; Department of Computer Science, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway; Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway; K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway
| | - Sarantis Gagos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway.
| |
Collapse
|
46
|
Piekna-Przybylska D, Bambara RA, Maggirwar SB, Dewhurst S. G-quadruplex ligands targeting telomeres do not inhibit HIV promoter activity and cooperate with latency reversing agents in killing latently infected cells. Cell Cycle 2020; 19:2298-2313. [PMID: 32807015 DOI: 10.1080/15384101.2020.1796268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Altered telomere maintenance mechanism (TMM) is linked to increased DNA damage at telomeres and telomere uncapping. We previously showed that HIV-1 latent cells have altered TMM and are susceptible to ligands that target G-quadruplexes (G4) at telomeres. Susceptibility of latent cells to telomere targeting could potentially be used to support approaches to eradicate HIV reservoirs. However, G4 ligands also target G-quadruplexes in promoters blocking gene transcription. Since HIV promoter sequence can form G-quadruplexes, we investigated whether G4 ligands interfere with HIV-1 promoter activity and virus reactivation from latency, and whether telomere targeting could be combined with latency reversing agents (LRAs) to promote elimination of HIV reservoirs. Our results indicate that Sp1 binding region in HIV-1 promoter can adopt G4 structures in duplex DNA, and that in vitro binding of Sp1 to G-quadruplex is blocked by G4 ligand, suggesting that agents targeting telomeres interfere with virus reactivation. However, our studies show that G4 agents do not affect HIV-1 promoter activity in cell culture, and do not interfere with latency reversal. Importantly, primary memory CD4 + T cells infected with latent HIV-1 are more susceptible to combined treatment with LRAs and G4 ligands, indicating that drugs targeting TMM may enhance killing of HIV reservoirs. Using a cell-based DNA repair assay, we also found that HIV-1 infected cells have reduced efficiency of DNA mismatch repair (MMR), and base excision repair (BER), suggesting that altered TMM in latently infected cells could be associated with accumulation of DNA damage at telomeres and changes in telomeric caps.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| | - Robert A Bambara
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University , Washington, DC, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| |
Collapse
|
47
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
48
|
Bloom SI, Tuluca A, Ives SJ, Reynolds TH. High-fat diet induced obesity and age influence the telomere shelterin complex and telomerase gene expression in mouse adipose tissue. Physiol Rep 2020; 8:e14461. [PMID: 32512652 PMCID: PMC7280005 DOI: 10.14814/phy2.14461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity and aging are linked to inflammation and increased risk of chronic disease. Telomeres are the endcaps of chromosomes that are regulated by telomerase, the enzyme that elongates telomeres, as well as a protein complex known as shelterin. Telomere dysfunction is associated with inflammation, aging, and disease. However, the effect of high-fat diet (HFD) induced obesity and advancing age on the shelterin complex and telomerase in adipose tissue is unknown. The present study investigated the effects of obesity and aging on C57BL/6J mice adipose tissue mRNA expression of shelterin complex genes. Young (YG) mice (3 mo) were randomly assigned to be fed either a high-fat diet (YG + HFD; 60% kcal from fat) or a low-fat diet (YG + LFD; 10% kcal from fat). A subset of mice were aged until 16 months. Body weight and epididymal white adipose tissue (EWAT) weight increased with age or a HFD. There was a trend for increased Terf2 expression, as expression was increased in HFD + YG by ~47% and aged mice by ~80%. Pot1b expression was increased in aged mice by ~35%-60% compared to YG, independent of diet. mTert, the gene that codes for the catalytic subunit of telomerase, was significantly elevated in aged mice. Changes in telomere associated gene expression was accompanied by changes in expression of inflammatory markers Mcp1 and Tnfα. These findings suggest obesity and age impact expression of shelterin complex and telomerase related genes in adipose, perhaps altering telomere function in adipose tissue thereby increasing inflammation and risk of chronic disease.
Collapse
Affiliation(s)
- Samuel I. Bloom
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUTUSA
| | - Andrei Tuluca
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
- College of MedicineCentral Michigan UniversityMount PleasantMIUSA
| | - Stephen J. Ives
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Thomas H. Reynolds
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| |
Collapse
|
49
|
Bonafè M, Sabbatinelli J, Olivieri F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res Rev 2020; 59:101027. [PMID: 32068123 DOI: 10.1016/j.arr.2020.101027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Telomere shortening accompanies mammalian aging in vivo, and the burden of senescent cells with short telomeres and a senescence-associated secretory phenotype (SASP) increases with aging. The release into the cytoplasm and the extracellular vesicle-mediated intercellular exchange of telomeric TTAGGG repeats could exert an anti-inflammatory activity by preventing the activation of the misplaced nucleic acid-sensing pathway. Many pharmacological and genetic strategies have been developed to prevent telomere shortening or to achieve telomere elongation. Recently, it was demonstrated that telomere elongation can be obtained - without genetic manipulation - by culturing mice embryonic stem cells into appropriate media. Based on this observation, we hypothesize that environmental factors could affect the initial length of telomeres by modulating the activity of telomerase during the early stages of pregnancy. Therefore, organisms with longer telomeres could exploit the anti-inflammatory activity of telomeric sequences over an extended time span, eventually delaying the development and progression of age-related diseases.
Collapse
Affiliation(s)
- Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
50
|
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020; 29:101398. [PMID: 31926624 PMCID: PMC6926346 DOI: 10.1016/j.redox.2019.101398] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Chemical modifications of DNA and RNA regulate genome functions or trigger mutagenesis resulting in aging or cancer. Oxidations of macromolecules, including DNA, are common reactions in biological systems and often part of regulatory circuits rather than accidental events. DNA alterations are particularly relevant since the unique role of nuclear and mitochondrial genome is coding enduring and inheritable information. Therefore, an alteration in DNA may represent a relevant problem given its transmission to daughter cells. At the same time, the regulation of gene expression allows cells to continuously adapt to the environmental changes that occur throughout the life of the organism to ultimately maintain cellular homeostasis. Here we review the multiple ways that lead to DNA oxidation and the regulation of mechanisms activated by cells to repair this damage. Moreover, we present the recent evidence suggesting that DNA damage caused by physiological metabolism acts as epigenetic signal for regulation of gene expression. In particular, the predisposition of guanine to oxidation might reflect an adaptation to improve the genome plasticity to redox changes.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Niccolo' Roda
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|