1
|
Uguen M, Liu T, James LI, Frye SV. Tudor-Containing Methyl-Lysine and Methyl-Arginine Reader Proteins: Disease Implications and Chemical Tool Development. ACS Chem Biol 2025; 20:33-47. [PMID: 39718819 DOI: 10.1021/acschembio.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer. The development of chemical tools for this family will not only lead to a deeper understanding of the biological functions of Tudor domains but also lay the foundation for therapeutic discoveries. In this review, we discuss the role of several Tudor domain-containing proteins in a range of relevant diseases and progress toward the development of chemical tools such as peptides, peptidomimetics, or small-molecules that bind Tudor domains. Overall, we highlight how Tudor domains are promising targets for therapeutic development and would benefit from the development of novel chemical tools.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tongkun Liu
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Magot A, Reignier A, Binois O, Bedat-Millet AL, Davion JB, Debergé L, Ghorab K, Guyant L, Laheranne É, Laforet P, Lefeuvre C, Mallaret M, Michaud M, Omar C, Nadaj-Pakleza A, Nicolas G, Noury JB, Pegat A, Péré M, Salort-Campana E, Sole G, Spinazzi M, Tard C, Vuillerot C, Péréon Y. Spinal muscular atrophy is also a disorder of spermatogenesis. Orphanet J Rare Dis 2024; 19:476. [PMID: 39707482 DOI: 10.1186/s13023-024-03494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) patients benefit from pre-mRNA splicing modifiers targeting the SMN2 gene, which aims to increase functional SMN production. The animal toxicity affecting spermatogenesis associated with one such treatment raised questions about male SMA patients' spermatogenesis. METHODS This descriptive, cross-sectional study was conducted from June 2022 to July 2023. The study involved adult male patients with genetically confirmed SMA type 2 (SMA2) or SMA3 from 13 French neuromuscular centers. The patients' general data, motor severity, urological history, exposure to certain factors, parenthood, and spermogram results were obtained. All patients were enrolled prior to exposure to risdiplam. FINDINGS Sixty-eight patients were enrolled ( 36 SMA2 and 32 SMA3 patients). Forty-one patients had fertility data (parenthood history and spermogram analyses) and underwent 33 spermograms. Fertility disorders were identified in 27 of the 41 patients (65·9%, 95%CI 51·3-80·4%) in particular SMA2 patients: 19 cases (90.5%, CI 77·9-100%) (SMA3: 8 cases (40%, CI 18·5-61·5%). Among the patients with available spermograms, 81% (27/33) had abnormal sperm concentration; 30% presented azoospermia. These abnormalities were significantly associated with SMA type (more prevalent in SMA2 patients, p < 0·001), disease motor severity, which included age at the loss of walking ability and wheelchair use duration (p < 0·001). The Motor Function Measure (MFM) determined that the sperm counts were also correlated with disease severity (p < 0·01). INTERPRETATION The fertility disorders were correlated with SMA severity and were particularly evident in SMA2 patients. In the latter, sperm concentration positively correlated with MFM. This study is the first one to link fertility disorders with spermogram abnormalities in SMA males. Understanding spermatogenesis in SMA is crucial, especially with new therapies such as risdiplam. Consequently, conducting systematic spermogram studies prior to SMA treatment is recommended.
Collapse
Affiliation(s)
- Armelle Magot
- Centre de Référence Des Maladies Neuromusculaires AOC, CHU de Nantes, Filnemus, Euro-NMD, Hôtel Dieu, Nantes, France.
| | - Arnaud Reignier
- Service de Médecine Et Biologie de La Reproduction, Gynécologie Médicale, CHU de Nantes, Nantes, France
| | - Olivier Binois
- Service de Biologie de La Reproduction-CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, Clamart, France
| | - Anne Laure Bedat-Millet
- Centre de Référence Des Maladies Neuromusculaires Nord/Est/Ile de France, Services de Neurologie Et Neurophysiologie, CHU Charles Nicolle, Rouen, France
| | - Jean-Baptiste Davion
- Centre de Référence Des Maladies Neuromusculaires Nord/Est/Ile de France, CHU Lille, Lille, France
| | - Louise Debergé
- Centre de Référence Des Maladies Neuromusculaires AOC, Service de Neurologie Et Des Maladies Neuromusculaires, CHU de Bordeaux, FILNEMUS, Euro-NMD, Bordeaux, France
| | - Karima Ghorab
- Centre de Référence Des Maladies Neuromusculaires AOC, CHU de Limoges, Limoges, France
| | - Lucie Guyant
- Service de Neurophysiologie Et Service de Génétique Clinique, CHU de Rouen, Rouen, France
| | - Émilie Laheranne
- Centre de Référence Des Maladies Neuromusculaires AOC, Service de Neurologie Et Des Maladies Neuromusculaires, CHU de Bordeaux, FILNEMUS, Euro-NMD, Bordeaux, France
| | - Pascal Laforet
- Service de Neurologie, CHU Raymond Poincaré, APHP, Garches, France
- Université de Versailles Saint Quentin en Yvelines, Garches, France
| | - Claire Lefeuvre
- Service de Neurologie, CHU Raymond Poincaré, APHP, Garches, France
- Université de Versailles Saint Quentin en Yvelines, Garches, France
| | - Martial Mallaret
- Centre de Référence Des Maladies Neuromusculaires, Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Maud Michaud
- Service de Neurologie, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile de France, CHRU Central, Nancy, France
| | - Chahla Omar
- Service de Neurologie, CHU Raymond Poincaré, APHP, Garches, France
- Université de Versailles Saint Quentin en Yvelines, Garches, France
| | - Aleksandra Nadaj-Pakleza
- Centre de Référence Des Maladies Neuromusculaires Nord/Est/Ile de France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, EURO-NMD, Paris, France
| | - Guillaume Nicolas
- Service de Neurologie, CHU Raymond Poincaré, APHP, Garches, France
- Université de Versailles Saint Quentin en Yvelines, Garches, France
| | - Jean Baptiste Noury
- Centre de Référence Des Maladies Neuromusculaires AOC, Inserm, LBAI, UMR1227, CHRU de Brest, Brest, France
| | - Antoine Pegat
- Service ENMG Et de Pathologies Neuromusculaires, Centre de Référence Des Maladies Neuromusculaires PACA-Réunion-Rhône Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Morgane Péré
- Plateforme de Méthodologie Et de Biostatistique, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | | - Guilhem Sole
- Centre de Référence Des Maladies Neuromusculaires AOC, Service de Neurologie Et Des Maladies Neuromusculaires, CHU de Bordeaux, FILNEMUS, Euro-NMD, Bordeaux, France
| | - Marco Spinazzi
- Centre de Référence Des Maladies Neuromusculaires AOC, Service de Neurologie, CHU d'Angers, Angers, France
| | - Céline Tard
- Centre de Référence Des Maladies Neuromusculaires Nord/Est/Ile de France, CHU Lille, Lille, France
| | - Carole Vuillerot
- Centre de Référence Des Maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, U1172, CHU de Lille, Lille, France
- Centre de Référence PACA Réunion Rhône Alpes, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, L'Escale, Service de Médecine Physique Et de Réadaptation Pédiatrique, Bron, France
- NeuroMyogen Institute, CNRS UMR 5310-INSERM U1217, University of Lyon, Lyon, France
| | - Yann Péréon
- Centre de Référence Des Maladies Neuromusculaires AOC, CHU de Nantes, Filnemus, Euro-NMD, Hôtel Dieu, Nantes, France
| |
Collapse
|
3
|
Glendening AM, Stephens C, Vuruputoor VS, Stern DL, Hogenhout SA, Mathers TC, Chaganti T, Pauloski N, Cernak TA, Wegrzyn JL, Fetter KC. Genomes of two invasive Adelges species (hemlock woolly adelgid and pineapple gall adelgid) enable characterization of nicotinic acetylcholine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624573. [PMID: 39605547 PMCID: PMC11601503 DOI: 10.1101/2024.11.21.624573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Two invasive hemipteran adelgids cause widespread damage to North American conifers. Adelges tsugae (the hemlock woolly adelgid) has decimated Tsuga canadensis and Tsuga caroliniana (the Eastern and Carolina hemlocks, respectively). A. tsugae was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly. A. abietis, introduced from Europe, makes "pineapple" galls on several North American spruce species, and weakens trees, increasing their susceptibility to other stresses. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects and the development of more selective chemical treatments could improve control methods and minimize ecological damage. Whole genome sequencing was performed on both species to aid in development of targeted pest control solutions and improve species conservation. The assembled A. tsugae and A. abietis genomes are 220.75 Mbp and 253.16 Mbp, respectively, each consisting of nine chromosomes and both genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 14,118 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis across 29 Hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family expansions in A. abietis included ABC transporters and carboxypeptidases involved in carbohydrate metabolism, while both species showed contractions in core histone families and oxidoreductase pathways. Gene family expansions in A. tsugae highlighted families associated with the regulation of cell differentiation and development (survival motor protein, SMN; juvenile hormone acid methyltransferase JHAMT) as well as those that may be involved in the suppression of plant immunity (clip domain serine protease-D, CLIPD; Endoplasmic reticulum aminopeptidase 1, ERAP1). Among the analyzed gene families, Nicotinic acetylcholine receptors (nAChRs) maintained consistent copy numbers and structural features across species, a finding particularly relevant given their role as targets for current forestry management insecticides. Detailed phylogenetic analysis of nAChR subunits across adelgids and other ecologically important insects revealed remarkable conservation in both sequence composition and predicted structural features, providing crucial insights for the development of more selective pest control strategies.
Collapse
Affiliation(s)
- A M Glendening
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - Cole Stephens
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA, 20147
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Tesko Chaganti
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
- Canton High School, Canton, MI, USA 48187
| | - Nicole Pauloski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Tim A Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Karl C Fetter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| |
Collapse
|
4
|
Palmer EM, Snoddy CA, York PM, Davis SM, Hunter MF, Krishnan N. Enhanced Age-Dependent Motor Impairment in Males of Drosophila melanogaster Modeling Spinocerebellar Ataxia Type 1 Is Linked to Dysregulation of a Matrix Metalloproteinase. BIOLOGY 2024; 13:854. [PMID: 39596808 PMCID: PMC11591802 DOI: 10.3390/biology13110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Over the past two decades, Drosophila melanogaster has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. In this study, pan-neuronal expression of human Ataxin-1 with long polyQ repeat of 82 amino acids was driven using an elav-GAL4 driver line. This would essentially model the polyQ disease spinocerebellar ataxia type 1 (SCA1). Longevity and behavioral analysis of male flies expressing human Ataxin-1 revealed compromised lifespan and accelerated locomotor activity deficits both in diurnal activity and negative geotaxis response compared to control flies. Interestingly, this decline in motor response was coupled to an enhancement of matrix metalloproteinase 1 (dMMP1) expression together with declining expression of extracellular matrix (ECM) fibroblast growth factor (FGF) signaling by hedgehog (Hh) and branchless (bnl) and a significant decrease in expression of survival motor neuron gene (dsmn) in old (30 d) flies. Taken together, our results indicate a role for dysregulation of matrix metalloproteinase in polyQ disease with consequent impact on ECM signaling factors, as well as SMN at the neuromuscular junction causing overt physiological and behavioral deficits.
Collapse
Affiliation(s)
| | | | | | | | | | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
5
|
Grass T, Dokuzluoglu Z, Buchner F, Rosignol I, Thomas J, Caldarelli A, Dalinskaya A, Becker J, Rost F, Marass M, Wirth B, Beyer M, Bonaguro L, Rodriguez-Muela N. Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation. Cell Rep Med 2024; 5:101659. [PMID: 39067446 PMCID: PMC11384962 DOI: 10.1016/j.xcrm.2024.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Whether neurodevelopmental defects underlie postnatal neuronal death in neurodegeneration is an intriguing hypothesis only recently explored. Here, we focus on spinal muscular atrophy (SMA), a neuromuscular disorder caused by reduced survival of motor neuron (SMN) protein levels leading to spinal motor neuron (MN) loss and muscle wasting. Using the first isogenic patient-derived induced pluripotent stem cell (iPSC) model and a spinal cord organoid (SCO) system, we show that SMA SCOs exhibit abnormal morphological development, reduced expression of early neural progenitor markers, and accelerated expression of MN progenitor and MN markers. Longitudinal single-cell RNA sequencing reveals marked defects in neural stem cell specification and fewer MNs, favoring mesodermal progenitors and muscle cells, a bias also seen in early SMA mouse embryos. Surprisingly, SMN2-to-SMN1 conversion does not fully reverse these developmental abnormalities. These suggest that early neurodevelopmental defects may underlie later MN degeneration, indicating that postnatal SMN-increasing interventions might not completely amend SMA pathology in all patients.
Collapse
Affiliation(s)
- Tobias Grass
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany.
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Felix Buchner
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Ines Rosignol
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Joshua Thomas
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Antonio Caldarelli
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Anna Dalinskaya
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Jutta Becker
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering, TUD, Dresden, Germany
| | - Michele Marass
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, Cologne, Germany
| | - Marc Beyer
- Systems Medicine, DZNE, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE & University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, DZNE, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, DZNE, Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
6
|
Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches. Front Cell Neurosci 2024; 17:1307636. [PMID: 38259504 PMCID: PMC10801191 DOI: 10.3389/fncel.2023.1307636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by the depletion of the ubiquitously expressed survival motor neuron (SMN) protein. While the genetic cause of SMA has been well documented, the exact mechanism(s) by which SMN depletion results in disease progression remain elusive. A wide body of evidence has highlighted the involvement and dysregulation of autophagy in SMA. Autophagy is a highly conserved lysosomal degradation process which is necessary for cellular homeostasis; defects in the autophagic machinery have been linked with a wide range of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. The pathway is particularly known to prevent neurodegeneration and has been suggested to act as a neuroprotective factor, thus presenting an attractive target for novel therapies for SMA patients. In this review, (a) we provide for the first time a comprehensive summary of the perturbations in the autophagic networks that characterize SMA development, (b) highlight the autophagic regulators which may play a key role in SMA pathogenesis and (c) propose decreased autophagic flux as the causative agent underlying the autophagic dysregulation observed in these patients.
Collapse
Affiliation(s)
| | - Maria Dimitriadi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
7
|
Garcia-Vaquero ML, Heim M, Flix B, Pereira M, Palin L, Marques TM, Pinto FR, de Las Rivas J, Voigt A, Besse F, Gama-Carvalho M. Analysis of asymptomatic Drosophila models for ALS and SMA reveals convergent impact on functional protein complexes linked to neuro-muscular degeneration. BMC Genomics 2023; 24:576. [PMID: 37759179 PMCID: PMC10523761 DOI: 10.1186/s12864-023-09562-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) share phenotypic and molecular commonalities, including the fact that they can be caused by mutations in ubiquitous proteins involved in RNA metabolism, namely SMN, TDP-43 and FUS. Although this suggests the existence of common disease mechanisms, there is currently no model to explain the resulting motor neuron dysfunction. In this work we generated a parallel set of Drosophila models for adult-onset RNAi and tagged neuronal expression of the fly orthologues of the three human proteins, named Smn, TBPH and Caz, respectively. We profiled nuclear and cytoplasmic bound mRNAs using a RIP-seq approach and characterized the transcriptome of the RNAi models by RNA-seq. To unravel the mechanisms underlying the common functional impact of these proteins on neuronal cells, we devised a computational approach based on the construction of a tissue-specific library of protein functional modules, selected by an overall impact score measuring the estimated extent of perturbation caused by each gene knockdown. RESULTS Transcriptome analysis revealed that the three proteins do not bind to the same RNA molecules and that only a limited set of functionally unrelated transcripts is commonly affected by their knock-down. However, through our integrative approach we were able to identify a concerted effect on protein functional modules, albeit acting through distinct targets. Most strikingly, functional annotation revealed that these modules are involved in critical cellular pathways for motor neurons, including neuromuscular junction function. Furthermore, selected modules were found to be significantly enriched in orthologues of human neuronal disease genes. CONCLUSIONS The results presented here show that SMA and ALS disease-associated genes linked to RNA metabolism functionally converge on neuronal protein complexes, providing a new hypothesis to explain the common motor neuron phenotype. The functional modules identified represent promising biomarkers and therapeutic targets, namely given their alteration in asymptomatic settings.
Collapse
Affiliation(s)
- Marina L Garcia-Vaquero
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
- Department of Medicine and Cytometry General Service-15 Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), CIBERONC, 16 37007, Salamanca, Spain
| | - Marjorie Heim
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Barbara Flix
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Marcelo Pereira
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Lucile Palin
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Tânia M Marques
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Francisco R Pinto
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Javier de Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007, Salamanca, Spain
| | - Aaron Voigt
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH RWTH Aachen University, 52074, Aachen, Germany
| | - Florence Besse
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Margarida Gama-Carvalho
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal.
| |
Collapse
|
8
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
9
|
Grice SJ, Liu JL. Motor defects in a Drosophila model for spinal muscular atrophy result from SMN depletion during early neurogenesis. PLoS Genet 2022; 18:e1010325. [PMID: 35877682 PMCID: PMC9352204 DOI: 10.1371/journal.pgen.1010325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common autosomal recessive neurodegenerative disease, and is characterised by spinal motor neuron loss, impaired motor function and, often, premature death. Mutations and deletions in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA; however, the mechanisms underlying the selectivity of motor neuron degeneration are not well understood. Although SMA is degenerative in nature, SMN function during embryonic and early postnatal development appears to be essential for motor neuron survival in animal models and humans. Notwithstanding, how developmental defects contribute to the subversion of postnatal and adult motor function remains elusive. Here, in a Drosophila SMA model, we show that neurodevelopmental defects precede gross locomotor dysfunction in larvae. Furthermore, to specifically address the relevance of SMN during neurogenesis and in neurogenic cell types, we show that SMN knockdown using neuroblast-specific and pan-neuronal drivers, but not differentiated neuron or glial cell drivers, impairs adult motor function. Using targeted knockdown, we further restricted SMN manipulation in neuroblasts to a defined time window. Our aim was to express specifically in the neuronal progenitor cell types that have not formed synapses, and thus a time that precedes neuromuscular junction formation and maturation. By restoring SMN levels in these distinct neuronal population, we partially rescue the larval locomotor defects of Smn mutants. Finally, combinatorial SMN knockdown in immature and mature neurons synergistically enhances the locomotor and survival phenotypes. Our in-vivo study is the first to directly rescue the motor defects of an SMA model by expressing Smn in an identifiable population of Drosophila neuroblasts and developing neurons, highlighting that neuronal sensitivity to SMN loss may arise before synapse establishment and nerve cell maturation. Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality and leads to the degeneration of the nerves that control muscle function. Loss-of-function mutations in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA, but how low levels of SMN protein cause the neuronal dysfunction is not known. Although SMA is a disease of nerve degeneration, SMN function during nerve cell development may be important, particularly in severe forms of SMA. Nevertheless, how the defects during development and throughout early life contribute to the disease is not well understood. We have previously demonstrated that SMN protein becomes enriched in neuroblasts, which are the cells that divide to produce neurons. In the present study, motor defects observed in our fly model for SMA could be rescued by restoring SMN in neuroblasts alone. In addition, we show that knocking down SMN in healthy flies within the same cell type causes impaired motor function. The present study shows that the manipulation of SMN in a developmentally important cell type can cause motor defects, indicating that a period of abnormal neurodevelopment may contribute to SMA.
Collapse
Affiliation(s)
- Stuart J. Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (SJG); , (J-LL)
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- School of Life Science and Technology, Shanghai, Tech University, Shanghai, China
- * E-mail: (SJG); , (J-LL)
| |
Collapse
|
10
|
Farrugia M, Vassallo N, Cauchi RJ. Disruption of Smn in glia impacts survival but has no effect on neuromuscular function in Drosophila. Neuroscience 2022; 491:32-42. [DOI: 10.1016/j.neuroscience.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
11
|
Protein expression reveals a molecular sexual identity of avian primordial germ cells at pre-gonadal stages. Sci Rep 2021; 11:19236. [PMID: 34584135 PMCID: PMC8478952 DOI: 10.1038/s41598-021-98454-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022] Open
Abstract
In poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy. Many proteins were found to be differentially abundant in chicken male and female PGCs indicating their early sexual identity. Many of the proteins more highly expressed in male PGCs were encoded by genes localised to the Z sex chromosome. This suggests that the known lack of dosage compensation of the transcription of Z-linked genes between sexes persists at the protein level in PGCs, and that this may be a key factor of their autonomous sex differentiation. We also found that globally, protein differences do not closely correlate with transcript differences indicating a selective translational mechanism in PGCs. Male and female PGC expressed protein sets were associated with differential biological processes and contained proteins known to be biologically relevant for male and female germ cell development, respectively. We also discovered that female PGCs have a higher capacity to uptake proteins from the cell culture medium than male PGCs. This study presents the first evidence of an early predetermined sex specific cell fate of chicken PGCs and their sexual molecular specificities which will enable the development of more precise sex-specific in vitro culture conditions for the preservation of avian genetic resources.
Collapse
|
12
|
Chang WF, Peng M, Hsu J, Xu J, Cho HC, Hsieh-Li HM, Liu JL, Lu CH, Sung LY. Effects of Survival Motor Neuron Protein on Germ Cell Development in Mouse and Human. Int J Mol Sci 2021; 22:ijms22020661. [PMID: 33440839 PMCID: PMC7827477 DOI: 10.3390/ijms22020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/24/2022] Open
Abstract
Survival motor neuron (SMN) is ubiquitously expressed in many cell types and its encoding gene, survival motor neuron 1 gene (SMN1), is highly conserved in various species. SMN is involved in the assembly of RNA spliceosomes, which are important for pre-mRNA splicing. A severe neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of SMN1 that specifically occurred in humans. We previously reported that SMN plays roles in stem cell biology in addition to its roles in neuron development. In this study, we investigated whether SMN can improve the propagation of spermatogonia stem cells (SSCs) and facilitate the spermatogenesis process. In in vitro culture, SSCs obtained from SMA model mice showed decreased growth rate accompanied by significantly reduced expression of spermatogonia marker promyelocytic leukemia zinc finger (PLZF) compared to those from heterozygous and wild-type littermates; whereas SMN overexpressed SSCs showed enhanced cell proliferation and improved potency. In vivo, the superior ability of homing and complete performance in differentiating progeny was shown in SMN overexpressed SSCs in host seminiferous tubule of transplant experiments compared to control groups. To gain insights into the roles of SMN in clinical infertility, we derived human induced pluripotent stem cells (hiPSCs) from azoospermia patients (AZ-hiPSCs) and from healthy control (ct-hiPSCs). Despite the otherwise comparable levels of hallmark iPCS markers, lower expression level of SMN1 was found in AZ-hiPSCs compared with control hiPSCs during in vitro primordial germ cell like cells (PGCLCs) differentiation. On the other hand, overexpressing hSMN1 in AZ-hiPSCs led to increased level of pluripotent markers such as OCT4 and KLF4 during PGCLC differentiation. Our work reveal novel roles of SMN in mammalian spermatogenesis and suggest new therapeutic targets for azoospermia treatment.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Jing Hsu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA;
| | - Huan-Chieh Cho
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan;
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK;
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chung-Hao Lu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 105, Taiwan
- Correspondence: (C.-H.L.); (L.-Y.S.)
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (C.-H.L.); (L.-Y.S.)
| |
Collapse
|
13
|
Maccallini P, Bavasso F, Scatolini L, Bucciarelli E, Noviello G, Lisi V, Palumbo V, D'Angeli S, Cacchione S, Cenci G, Ciapponi L, Wakefield JG, Gatti M, Raffa GD. Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development. PLoS Genet 2020; 16:e1008815. [PMID: 32453722 PMCID: PMC7289441 DOI: 10.1371/journal.pgen.1008815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease. We explored the functional relationships between TGS1 and SMN using Drosophila as model organism. TGS1 is an enzyme that modifies the structure of the 5’-end of several RNAs, including telomerase RNA and the small nuclear RNAs (snRNAs) that are required for messenger RNA maturation. The SMN protein regulates snRNAs biogenesis and mutations in human SMN cause Spinal Muscular Atrophy (SMA), a devastating disorder characterized by neurodegeneration, progressive paralysis and death. We show that mutations in the Drosophila TGS1 (dTgs1) gene cause lethality, which is rescued by a human TGS1 transgene. We also show that the dTgs1 protein physically interacts with all subunits of the Smn complex, and that downregulation of either dTgs1 or Smn leads to a reduced Drosophila eye size. Notably, overexpression of dTgs1 partially rescues the eye defects caused by Smn knockdown, and vice versa, indicating that these genes cooperate in eye development. These results suggest that the eye model can be exploited for screens aimed at detection of chemical and genetic modifiers of the eye mutant phenotype elicited by dTgs1 and Smn deficiency, providing new clues about SMA pathogenesis and potential therapies.
Collapse
Affiliation(s)
- Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gemma Noviello
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Veronica Lisi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Simone D'Angeli
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - James G. Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
- * E-mail: (MG); (GDR)
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- * E-mail: (MG); (GDR)
| |
Collapse
|
14
|
Chang WF, Xu J, Lin TY, Hsu J, Hsieh-Li HM, Hwu YM, Liu JL, Lu CH, Sung LY. Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance. Int J Mol Sci 2020; 21:ijms21030794. [PMID: 31991812 PMCID: PMC7037566 DOI: 10.3390/ijms21030794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (T.-Y.L.); (J.H.)
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA;
| | - Tzu-Ying Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (T.-Y.L.); (J.H.)
| | - Jing Hsu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (T.-Y.L.); (J.H.)
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
| | - Yuh-Ming Hwu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Obstetrics and Gynecology, Mackay Medical College, New Taipei City 252, Taiwan
- Department of Obstetrics and Gynecology, Mackay Junior College of Medicine, Nursing, and Management, Taipei 11260, Taiwan
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 2JD, UK;
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chung-Hao Lu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Correspondence: (C.-H.L.); (L.-Y.S.)
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (T.-Y.L.); (J.H.)
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (C.-H.L.); (L.-Y.S.)
| |
Collapse
|
15
|
Aquilina B, Cauchi RJ. Modelling motor neuron disease in fruit flies: Lessons from spinal muscular atrophy. J Neurosci Methods 2018; 310:3-11. [DOI: 10.1016/j.jneumeth.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/25/2022]
|
16
|
Genetic screen identifies a requirement for SMN in mRNA localisation within the Drosophila oocyte. BMC Res Notes 2018; 11:378. [PMID: 29895323 PMCID: PMC5998591 DOI: 10.1186/s13104-018-3496-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023] Open
Abstract
Objective Spinal muscular atrophy (SMA) results from insufficient levels of the survival motor neuron (SMN) protein. Drosophila is conducive to large-scale genetic-modifier screens which can reveal novel pathways underpinning the disease mechanism. We tested the ability of a large collection of genomic deletions to enhance SMN-dependent lethality. To test our design, we asked whether our study can identify loci containing genes identified in previous genetic screens. Our objective was to find a common link between genes flagged in independent screens, which would allow us to expose novel functions for SMN in vivo. Results Out of 128 chromosome deficiency lines, 12 (9.4%) were found to consistently depress adult viability when crossed to SMN loss-of-function heterozygotes. In their majority, the enhancing deletions harboured genes that were previously identified as genetic modifiers, hence, validating the design of the screen. Importantly, gene overlap allowed us to flag genes with a role in post-transcriptional regulation of mRNAs that are crucial for determining the axes of the oocyte and future embryo. We find that SMN is also required for the correct localisation of gurken and oskar mRNAs in oocytes. These findings extend the role of SMN in oogenesis by identifying a key requirement for mRNA trafficking. Electronic supplementary material The online version of this article (10.1186/s13104-018-3496-1) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Szunyogova E, Zhou H, Maxwell GK, Powis RA, Francesco M, Gillingwater TH, Parson SH. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Sci Rep 2016; 6:34635. [PMID: 27698380 PMCID: PMC5048144 DOI: 10.1038/srep34635] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA.
Collapse
Affiliation(s)
- Eva Szunyogova
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Gillian K. Maxwell
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rachael A. Powis
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Muntoni Francesco
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Thomas H. Gillingwater
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon H. Parson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Dimitriadi M, Derdowski A, Kalloo G, Maginnis MS, O'Hern P, Bliska B, Sorkaç A, Nguyen KCQ, Cook SJ, Poulogiannis G, Atwood WJ, Hall DH, Hart AC. Decreased function of survival motor neuron protein impairs endocytic pathways. Proc Natl Acad Sci U S A 2016; 113:E4377-86. [PMID: 27402754 PMCID: PMC4968725 DOI: 10.1073/pnas.1600015113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.
Collapse
Affiliation(s)
- Maria Dimitriadi
- Department of Neuroscience, Brown University, Providence, RI 02912; Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Aaron Derdowski
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912
| | - Geetika Kalloo
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Melissa S Maginnis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Patrick O'Hern
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Bryn Bliska
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Altar Sorkaç
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Ken C Q Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - George Poulogiannis
- Chester Beatty Labs, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Walter J Atwood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, RI 02912;
| |
Collapse
|
19
|
Borg RM, Fenech Salerno B, Vassallo N, Bordonne R, Cauchi RJ. Disruption of snRNP biogenesis factors Tgs1 and pICln induces phenotypes that mirror aspects of SMN-Gemins complex perturbation in Drosophila, providing new insights into spinal muscular atrophy. Neurobiol Dis 2016; 94:245-58. [PMID: 27388936 DOI: 10.1016/j.nbd.2016.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 01/27/2023] Open
Abstract
The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA.
Collapse
Affiliation(s)
- Rebecca M Borg
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta; Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France
| | - Benji Fenech Salerno
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Rémy Bordonne
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.
| |
Collapse
|
20
|
Ottesen EW, Howell MD, Singh NN, Seo J, Whitley EM, Singh RN. Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy. Sci Rep 2016; 6:20193. [PMID: 26830971 PMCID: PMC4735745 DOI: 10.1038/srep20193] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of survival motor neuron (SMN), a multifunctional protein essential for higher eukaryotes. While SMN is one of the most scrutinized proteins associated with neurodegeneration, its gender-specific role in vertebrates remains unknown. We utilized a mild SMA model (C/C model) to examine the impact of low SMN on growth and development of mammalian sex organs. We show impaired testis development, degenerated seminiferous tubules, reduced sperm count and low fertility in C/C males, but no overt sex organ phenotype in C/C females. Underscoring an increased requirement for SMN expression, wild type testis showed extremely high levels of SMN protein compared to other tissues. Our results revealed severe perturbations in pathways critical to C/C male reproductive organ development and function, including steroid biosynthesis, apoptosis, and spermatogenesis. Consistent with enhanced apoptosis in seminiferous tubules of C/C testes, we recorded a drastic increase in cells with DNA fragmentation. SMN was expressed at high levels in adult C/C testis due to an adult-specific splicing switch, but could not compensate for low levels during early testicular development. Our findings uncover novel hallmarks of SMA disease progression and link SMN to general male infertility.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Elizabeth M Whitley
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
21
|
Fuller HR, Mandefro B, Shirran SL, Gross AR, Kaus AS, Botting CH, Morris GE, Sareen D. Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development. Front Cell Neurosci 2016; 9:506. [PMID: 26793058 PMCID: PMC4707261 DOI: 10.3389/fncel.2015.00506] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons, and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts, whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably, UBA1 was significantly decreased in SMA motor neurons, supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons, including beta III-tubulin and UCHL1, were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts, highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons, and for the identification of novel biomarker and therapeutic targets for SMA.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic HospitalOswestry, UK; Institute for Science and Technology in Medicine, Keele UniversityStaffordshire, UK
| | - Berhan Mandefro
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA; iPSC Core, The David and Janet Polak Foundation Stem Cell Core LaboratoryLos Angeles, CA, USA
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews Fife, UK
| | - Andrew R Gross
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Anjoscha S Kaus
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews Fife, UK
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic HospitalOswestry, UK; Institute for Science and Technology in Medicine, Keele UniversityStaffordshire, UK
| | - Dhruv Sareen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA; iPSC Core, The David and Janet Polak Foundation Stem Cell Core LaboratoryLos Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| |
Collapse
|
22
|
Huo Q, Kayikci M, Odermatt P, Meyer K, Michels O, Saxena S, Ule J, Schümperli D. Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: evidence for involvement of splicing regulatory proteins. RNA Biol 2015; 11:1430-46. [PMID: 25692239 PMCID: PMC4601534 DOI: 10.1080/15476286.2014.996494] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.
Collapse
Key Words
- ESE, exonic splicing enhancer
- FCS, fetal calf serum
- MN, motoneuron
- NMD, nonsense-mediated mRNA decay
- NMJ, neuromuscular junction, PCR
- RT, reverse transcription
- SMA, Spinal Muscular Atrophy
- SMN, Survival Motor Neuron
- Spinal Muscular Atrophy
- TcRβ, T-cell receptor β chain
- exon junction microarray
- hz, heterozygote, LCM
- laser capture microdissection
- major spliceosome
- minor spliceosome
- motoneurons
- neurodegerative disease
- polymerase chain reaction, qPCR
- real-time (quantitative) PCR
- sh, short hairpin
- snRNA, small nuclear ribonucleic acid
- snRNP assembly
- snRNP, small nuclear ribonucleoprotein
- splicing
- splicing regulators
Collapse
Affiliation(s)
- Qing Huo
- a Institute of Cell Biology ; University of Bern ; Bern , Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Borg RM, Bordonne R, Vassallo N, Cauchi RJ. Genetic Interactions between the Members of the SMN-Gemins Complex in Drosophila. PLoS One 2015; 10:e0130974. [PMID: 26098872 PMCID: PMC4476591 DOI: 10.1371/journal.pone.0130974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
The SMN-Gemins complex is composed of Gemins 2–8, Unrip and the survival motor neuron (SMN) protein. Limiting levels of SMN result in the neuromuscular disorder, spinal muscular atrophy (SMA), which is presently untreatable. The most-documented function of the SMN-Gemins complex concerns the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Despite multiple genetic studies, the Gemin proteins have not been identified as prominent modifiers of SMN-associated mutant phenotypes. In the present report, we make use of the Drosophila model organism to investigate whether viability and motor phenotypes associated with a hypomorphic Gemin3 mutant are enhanced by changes in the levels of SMN, Gemin2 and Gemin5 brought about by various genetic manipulations. We show a modifier effect by all three members of the minimalistic fly SMN-Gemins complex within the muscle compartment of the motor unit. Interestingly, muscle-specific overexpression of Gemin2 was by itself sufficient to depress normal motor function and its enhanced upregulation in all tissues leads to a decline in fly viability. The toxicity associated with increased Gemin2 levels is conserved in the yeast S. pombe in which we find that the cytoplasmic retention of Sm proteins, likely reflecting a block in the snRNP assembly pathway, is a contributing factor. We propose that a disruption in the normal stoichiometry of the SMN-Gemins complex depresses its function with consequences that are detrimental to the motor system.
Collapse
Affiliation(s)
- Rebecca M. Borg
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta GC
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France
| | - Rémy Bordonne
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta GC
| | - Ruben J. Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta GC
- * E-mail:
| |
Collapse
|
24
|
Grice SJ, Sleigh JN, Motley WW, Liu JL, Burgess RW, Talbot K, Cader MZ. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet 2015; 24:4397-406. [PMID: 25972375 PMCID: PMC4492401 DOI: 10.1093/hmg/ddv176] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - William W Motley
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA and
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK,
| |
Collapse
|
25
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
26
|
Edens BM, Ajroud-Driss S, Ma L, Ma YC. Molecular mechanisms and animal models of spinal muscular atrophy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:685-92. [PMID: 25088406 DOI: 10.1016/j.bbadis.2014.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/27/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is characterized by the degeneration of spinal motor neurons and muscle atrophy. Although the genetic cause of SMA has been mapped to the Survival Motor Neuron1 (SMN1) gene, mechanisms underlying selective motor neuron degeneration in SMA remain largely unknown. Here we review the latest developments and our current understanding of the molecular mechanisms underlying SMA pathogenesis, focusing on the animal model systems that have been developed, as well as new diagnostic and treatment strategies that have been identified using these model systems. This article is part of a special issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Brittany M Edens
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital of Chicago Research Center, IL 60611, Chicago
| | | | - Long Ma
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Yong-Chao Ma
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital of Chicago Research Center, IL 60611, Chicago.
| |
Collapse
|
27
|
Grice SJ, Liu JL, Webber C. Synergistic interactions between Drosophila orthologues of genes spanned by de novo human CNVs support multiple-hit models of autism. PLoS Genet 2015; 11:e1004998. [PMID: 25816101 PMCID: PMC4376901 DOI: 10.1371/journal.pgen.1004998] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023] Open
Abstract
Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates mechanisms through which synergistic effects resulting from large structural variation can contribute to human disease.
Collapse
Affiliation(s)
- Stuart J. Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caleb Webber
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Staropoli JF, Li H, Chun SJ, Allaire N, Cullen P, Thai A, Fleet CM, Hua Y, Bennett CF, Krainer AR, Kerr D, McCampbell A, Rigo F, Carulli JP. Rescue of gene-expression changes in an induced mouse model of spinal muscular atrophy by an antisense oligonucleotide that promotes inclusion of SMN2 exon 7. Genomics 2015; 105:220-8. [PMID: 25645699 DOI: 10.1016/j.ygeno.2015.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/25/2015] [Indexed: 01/09/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by disruption of the survival motor neuron 1 (SMN1) gene, partly compensated for by the paralogous gene SMN2. Exon 7 inclusion is critical for full-length SMN protein production and occurs at a much lower frequency for SMN2 than for SMN1. Antisense oligonucleotide (ASO)-mediated blockade of an intron 7 splicing silencer was previously shown to promote inclusion of SMN2 exon 7 in SMA mouse models and mediate phenotypic rescue. However, downstream molecular consequences of this ASO therapy have not been defined. Here we characterize the gene-expression changes that occur in an induced model of SMA and show substantial rescue of those changes in central nervous system tissue upon intracerebroventricular administration of an ASO that promotes inclusion of exon 7, with earlier administration promoting greater rescue. This study offers a robust reference set of preclinical pharmacodynamic gene expression effects for comparison of other investigational therapies for SMA.
Collapse
Affiliation(s)
- John F Staropoli
- Division of Genetics and Genomics, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, USA
| | - Huo Li
- Division of Genetics and Genomics, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, USA
| | - Seung J Chun
- Neuroscience Drug Discovery, Isis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Norm Allaire
- Division of Genetics and Genomics, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, USA
| | - Patrick Cullen
- Neuroscience Drug Discovery, Isis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Alice Thai
- Division of Genetics and Genomics, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, USA
| | - Christina M Fleet
- Division of Genetics and Genomics, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, USA
| | - Yimin Hua
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - C Frank Bennett
- Neuroscience Drug Discovery, Isis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Doug Kerr
- Division of Genetics and Genomics, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, USA
| | - Alexander McCampbell
- Division of Genetics and Genomics, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, USA
| | - Frank Rigo
- Neuroscience Drug Discovery, Isis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - John P Carulli
- Division of Genetics and Genomics, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Aughey GN, Grice SJ, Shen QJ, Xu Y, Chang CC, Azzam G, Wang PY, Freeman-Mills L, Pai LM, Sung LY, Yan J, Liu JL. Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism. Biol Open 2014; 3:1045-56. [PMID: 25326513 PMCID: PMC4232762 DOI: 10.1242/bio.201410165] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The essential metabolic enzyme CTP synthase (CTPsyn) can be compartmentalised to form an evolutionarily-conserved intracellular structure termed the cytoophidium. Recently, it has been demonstrated that the enzymatic activity of CTPsyn is attenuated by incorporation into cytoophidia in bacteria and yeast cells. Here we demonstrate that CTPsyn is regulated in a similar manner in Drosophila tissues in vivo. We show that cytoophidium formation occurs during nutrient deprivation in cultured cells, as well as in quiescent and starved neuroblasts of the Drosophila larval central nervous system. We also show that cytoophidia formation is reversible during neurogenesis, indicating that filament formation regulates pyrimidine synthesis in a normal developmental context. Furthermore, our global metabolic profiling demonstrates that CTPsyn overexpression does not significantly alter CTPsyn-related enzymatic activity, suggesting that cytoophidium formation facilitates metabolic stabilisation. In addition, we show that overexpression of CTPsyn only results in moderate increase of CTP pool in human stable cell lines. Together, our study provides experimental evidence, and a mathematical model, for the hypothesis that inactive CTPsyn is incorporated into cytoophidia.
Collapse
Affiliation(s)
- Gabriel N Aughey
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Stuart J Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Qing-Ji Shen
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Yichi Xu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | - Ghows Azzam
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Pei-Yu Wang
- Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan, Republic of China Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan, Republic of China
| | - Luke Freeman-Mills
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Li-Mei Pai
- Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan, Republic of China Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan, Republic of China Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan, Republic of China
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan, Republic of China Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | - Jun Yan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
30
|
SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct 2014; 220:1539-53. [PMID: 24633826 DOI: 10.1007/s00429-014-0743-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/28/2014] [Indexed: 01/02/2023]
Abstract
Survival motor neuron (SMN) is the determining factor in spinal muscular atrophy, the most common genetic cause of childhood mortality. We have previously found that SMN regulates stem cell division, proliferation and differentiation in Drosophila. However, it is unknown whether a similar effect exists in vertebrates. Here, we show that SMN is enriched in highly proliferative embryonic stem cells (ESCs) in mice and reduction of SMN impairs the pluripotency of ESCs. Moreover, we find that SMN reduction activates ERK signaling and affects neuronal differentiation in vitro. Teratomas with reduced SMN grow more slowly and show weaker signals of neuronal differentiation than those with a normal level of SMN. Finally, we show that over-expression of SMN is protective for ESCs from retinoic acid-induced differentiation. Taken together, our results suggest that SMN plays a role in the maintenance of pluripotent ESCs and neuronal differentiation in mice.
Collapse
|
31
|
The Gemin associates of survival motor neuron are required for motor function in Drosophila. PLoS One 2013; 8:e83878. [PMID: 24391840 PMCID: PMC3877121 DOI: 10.1371/journal.pone.0083878] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/09/2013] [Indexed: 12/13/2022] Open
Abstract
Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.
Collapse
|
32
|
Sleigh JN, Barreiro-Iglesias A, Oliver PL, Biba A, Becker T, Davies KE, Becker CG, Talbot K. Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet 2013; 23:855-69. [PMID: 24067532 DOI: 10.1093/hmg/ddt477] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron pathology is still debated. In longitudinal studies of exon-level changes in SMA mouse model tissues, designed to determine the contribution of splicing dysfunction to the disease, we have previously shown that a generalized defect in splicing is unlikely to play a causative role in SMA. Nevertheless, we identified a small subset of genes that were alternatively spliced in the spinal cord compared with control mice before symptom onset, indicating a possible mechanistic role in disease. Here, we have performed functional studies of one of these genes, chondrolectin (Chodl), known to be highly expressed in motor neurons and important for correct motor axon outgrowth in zebrafish. Using in vitro and in vivo models of SMA, we demonstrate altered expression of Chodl in SMA mouse spinal motor neurons, show that Chodl has distinct effects on cell survival and neurite outgrowth and that increasing the expression of chodl can rescue motor neuron outgrowth defects in Smn-depleted zebrafish. Our findings thus link the dysregulation of Chodl to the pathophysiology of motor neuron degeneration in SMA.
Collapse
Affiliation(s)
- James N Sleigh
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The neuroprotective drug riluzole acts via small conductance Ca2+-activated K+ channels to ameliorate defects in spinal muscular atrophy models. J Neurosci 2013; 33:6557-62. [PMID: 23575853 DOI: 10.1523/jneurosci.1536-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal muscular atrophy (SMA), a recessive neuromuscular disorder, is caused by diminished function of the Survival Motor Neuron (SMN) protein. To define the cellular processes pertinent to SMA, parallel genetic screens were undertaken in Drosophila and Caenorhabditis elegans SMA models to identify modifiers of the SMN loss of function phenotypes. One class of such genetic modifiers was the small conductance, Ca(2+)-activated K(+) (SK) channels. SK channels allow efflux of potassium ions when intracellular calcium increases and can be activated by the neuroprotective drug riluzole. The latter is the only drug with proven, albeit modest, efficacy in the treatment of amyotrophic lateral sclerosis. It is unclear if riluzole can extend life span or ameliorate symptoms in SMA patients as previous studies were limited and of insufficient power to draw any conclusions. The critical biochemical target of riluzole in motor neuron disease is not known, but the pharmacological targets of riluzole include SK channels. We examine here the impact of riluzole in two different SMA models. In vertebrate neurons, riluzole treatment restored axon outgrowth caused by diminished SMN. Additionally, riluzole ameliorated the neuromuscular defects in a C. elegans SMA model and SK channel function was required for this beneficial effect. We propose that riluzole improves motor neuron function by acting on SK channels and suggest that SK channels may be important therapeutic targets for SMA patients.
Collapse
|
34
|
White-Cooper H, Caporilli S. Transcriptional and post-transcriptional regulation of Drosophila germline stem cells and their differentiating progeny. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:47-61. [PMID: 23696351 DOI: 10.1007/978-94-007-6621-1_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter we will concentrate on the transcriptional and translational regulations that govern the development and differentiation of male germline cells. Our focus will be on the processes that occur during differentiation, that distinguish the differentiating population of cells from their stem cell parents. We discuss how these defining features are established as cells transit from a stem cell character to that of a fully committed differentiating cell. The focus will be on how GSCs differentiate, via spermatogonia, to spermatocytes. We will achieve this by first describing the transcriptional activity in the differentiating spermatocytes, cataloguing the known transcriptional regulators in these cells and then investigating how the transcription programme is set up by processes in the progentior cells. This process is particularly interesting to study from a stem cell perspective as the male GSCs are unipotent, so lineage decisions in differentiating progeny of stem cells, which occurs in many other stem cell systems, do not impinge on the behaviour of these cells.
Collapse
|
35
|
Sabra M, Texier P, El Maalouf J, Lomonte P. The tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated histone H3 lysine 79. J Cell Sci 2013; 126:3664-77. [DOI: 10.1242/jcs.126003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a muscular disease characterized by the death of motoneurons, and is a major genetic cause of infant mortality. Mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), are responsible for the disease due to compensation deficit. SMN belongs to the Tudor domain protein family, whose members are known to interact with methylated arginine (R) or lysine (K) residues. SMN has well-defined roles in the metabolism of small non-coding ribonucleoproteins (snRNPs) and spliceosome activity. We previously showed that SMN relocated to damaged interphase centromeres, together with the Cajal body-associated proteins coilin and fibrillarin, during the so-called interphase centromere damage response (iCDR). Here we reveal that SMN is a chromatin-binding protein that specifically interacts with methylated histone H3K79, a gene expression- and splicing-associated histone modification. SMN relocation to damaged centromeres requires its functional Tudor domain and activity of the H3K79 methyltransferase DOT1-L. In vitro pull-down assays showed that SMN interacts with H3K79me1,2 via its functional Tudor domain. Chromatin immunoprecipitation confirmed that SMN binds to H3K79me1,2-containing chromatin in iCDR-induced cells. These data reveal a novel SMN property in the detection of specific chromatin modifications, and shed new light on the involvement of a putative epigenetic dimension to the occurrence of SMA.
Collapse
|
36
|
Abstract
Gems or 'Gemini of Cajal bodies' are spherical nuclear aggregates of SMN (survival of motor neurons) complexes that frequently overlap Cajal bodies. Although described and characterized in mammalian tissues, gems have not been reported in invertebrates. Stimulation of gem formation in the fruitfly Drosophila melanogaster was investigated through the constitutive overexpression of a fluorescently tagged transgene of a DEAD-box SMN complex member, Gemin3, in wild-type tissues. Although expression was predominantly cytoplasmic in the larval brain cells, Gemin3 was found enriched in multiple discrete bright foci in the nuclei of several tissues including epidermis, muscle and gut. Similar to their mammalian counterparts, Drosophila gems contained endogenous SMN and at times overlapped with Cajal bodies. These findings support the hypothesis that gems are storage sites for excess nuclear SMN complexes and their frequent association with Cajal bodies might imply recruitment for nuclear ribonucleoprotein assembly reactions.
Collapse
|
37
|
Cauchi RJ. Conserved requirement for DEAD-box RNA helicase Gemin3 in Drosophila oogenesis. BMC Res Notes 2012; 5:120. [PMID: 22361416 PMCID: PMC3392723 DOI: 10.1186/1756-0500-5-120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 02/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background DEAD-box RNA helicase Gemin3 is an essential protein since its deficiency is lethal in both vertebrates and invertebrates. In addition to playing a role in transcriptional regulation and RNA silencing, as a core member of the SMN (survival of motor neurons) complex, Gemin3 is required for the biogenesis of spliceosomal snRNPs (small nuclear ribonucleoproteins), and axonal mRNA metabolism. Studies in the mouse and C. elegans revealed that loss of Gemin3 function has a negative impact on ovarian physiology and development. Findings This work reports on the generation and characterisation of gemin3 mutant germline clones in Drosophila adult females. Gemin3 was found to be required for the completion of oogenesis and its loss led to egg polarity defects, oocyte mislocalisation, and abnormal chromosome morphology. Canonical Cajal bodies were absent in the majority of gemin3 mutant egg chambers and histone locus bodies displayed an atypical morphology. snRNP distribution was perturbed so that on gemin3 loss, snRNP cytoplasmic aggregates (U bodies) were only visible in wild type. Conclusions These findings establish a conserved requirement for Gemin3 in Drosophila oogenesis. Furthermore, in view of the similarity to the phenotypes described previously in smn mutant germ cells, the present results confirm the close functional relationship between SMN and Gemin3 on a cellular level.
Collapse
Affiliation(s)
- Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida MSD 2080, Malta G.C.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The aim is to review the most relevant findings published during the last year concerning clinical, genetic, pathogenic, and therapeutic advances in motor neuron disease, neuropathies, and neuromuscular junction disorders. RECENT FINDINGS Studies on animal and cell models have improved the understanding of how mutated survival motor neuron protein in spinal muscular atrophy governs the pathogenetic processes. New phenotypes of SOD1 mutations have been described. Moreover, animal models enhanced the insight into the pathogenetic background of sporadic and familial amyotrophic lateral sclerosis. Novel treatment options for motor neuron disease have been described in humans and animal models. Considerable progress has been achieved also in elucidating the genetic background of many forms of inherited neuropathies and high clinical and genetic heterogeneity has been demonstrated. Mutations in MuSK and GFTP1 have been shown to cause new types of congenital myasthenic syndromes. A third type of autoantibodies (Lrp4) has been detected to cause myasthenia gravis. SUMMARY Advances in the clinical and genetic characterization of motor neuron diseases, neuropathies, and neuromuscular transmission defects have important implications on the fundamental understanding, diagnosis, and management of these disorders. Identification of crucial steps of the pathogenetic process may provide the basis for the development of novel therapeutic strategies.
Collapse
|
39
|
Buckingham M, Liu JL. U bodies respond to nutrient stress in Drosophila. Exp Cell Res 2011; 317:2835-44. [DOI: 10.1016/j.yexcr.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
40
|
Grice SJ, Sleigh JN, Liu JL, Sattelle DB. Invertebrate models of spinal muscular atrophy: insights into mechanisms and potential therapeutics. Bioessays 2011; 33:956-65. [PMID: 22009672 DOI: 10.1002/bies.201100082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Invertebrate genetic models with their tractable neuromuscular systems are effective vehicles for the study of human nerve and muscle disorders. This is exemplified by insights made into spinal muscular atrophy (SMA) using the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. For speed and economy, these invertebrates offer convenient, whole-organism platforms for genetic screening as well as RNA interference (RNAi) and chemical library screens, permitting the rapid testing of hypotheses related to disease mechanisms and the exploration of new therapeutic routes and drug candidates. Here, we discuss recent developments encompassing synaptic physiology, RNA processing, and screening of compound and genome-scale RNAi libraries, showcasing the importance of invertebrate SMA models.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|