1
|
Trasser M, Bohl-Viallefond G, Barragán-Borrero V, Diezma-Navas L, Loncsek L, Nordborg M, Marí-Ordóñez A. PTGS is dispensable for the initiation of epigenetic silencing of an active transposon in Arabidopsis. EMBO Rep 2024; 25:5780-5809. [PMID: 39511423 PMCID: PMC11624286 DOI: 10.1038/s44319-024-00304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Transposable elements (TEs) are repressed in plants through transcriptional gene silencing (TGS), maintained epigenetic silencing marks such as DNA methylation. However, the mechanisms by which silencing is first installed remain poorly understood in plants. Small interfering (si)RNAs and post-transcriptional gene silencing (PTGS) are believed to mediate the initiation of TGS by guiding the first deposition of DNA methylation. To determine how this silencing installation works, we took advantage of ÉVADÉ (EVD), an endogenous retroelement in Arabidopsis, able to recapitulate true de novo silencing with a sequence of PTGS followed by a TGS. To test whether PTGS is required for TGS, we introduce active EVD into RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6) mutants, an essential PTGS component. EVD activity and silencing are monitored across several generations. In the absence of PTGS, silencing of EVD is still achieved through installation of RNA-directed DNA methylation (RdDM). Our study shows that PTGS is dispensable for de novo EVD silencing. Although we cannot rule out that PTGS might facilitate TGS, or control TE activity, initiation of epigenetic silencing can take place in its absence.
Collapse
Affiliation(s)
- Marieke Trasser
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Grégoire Bohl-Viallefond
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Verónica Barragán-Borrero
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Laura Diezma-Navas
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Lukas Loncsek
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Arturo Marí-Ordóñez
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria.
| |
Collapse
|
2
|
Benetatos L, Benetatou A, Vartholomatos G. Epialleles and epiallelic heterogeneity in hematological malignancies. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:139. [PMID: 35834015 DOI: 10.1007/s12032-022-01737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/22/2022] [Indexed: 10/17/2022]
Abstract
DNA methylation has a well-established role in the pathogenesis, prognosis, and response to treatment in all the spectra of hematological malignancies. However, most of the data reported involve average DNA methylation observed in a sample. The emergence of bisulfite sequencing methods such as enhanced reduced representation that permit analyze adjacent CpGs led to exciting findings. Among these are the epialleles shift and the resulting epigenetic heterogeneity observed in leukemias and lymphomas. Epialleles seem to have an influential role as the cause of mutations that characterize leukemias, may stratify groups with different prognosis and response to treatment, and may be redistributed in the genome at different time points of the disease promoting activation of alternate transcriptional networks. Epiallelic shift may be responsible for the intratumor heterogeneity observed within the cells of the same tumor which increases with disease aggressiveness. It may also responsible for the interpatient heterogeneity explaining why blood cancers exhibit different behavior among different patients. Understanding better epiallelic conformation and the consequent chromatin conformational changes and the pathways that may be affected will permit deeper understanding of hematological malignancies pathogenesis and treatment.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, Preveza General Hospital, Selefkias 2, 48100, Preveza, Greece.
| | | | | |
Collapse
|
3
|
Bente H, Foerster AM, Lettner N, Mittelsten Scheid O. Polyploidy-associated paramutation in Arabidopsis is determined by small RNAs, temperature, and allele structure. PLoS Genet 2021; 17:e1009444. [PMID: 33690630 PMCID: PMC7978347 DOI: 10.1371/journal.pgen.1009444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/19/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Paramutation is a form of non-Mendelian inheritance in which the expression of a paramutable allele changes when it encounters a paramutagenic allele. This change in expression of the paramutable alleles is stably inherited even after segregation of both alleles. While the discovery of paramutation and studies of its underlying mechanism were made with alleles that change plant pigmentation, paramutation-like phenomena are known to modulate the expression of other traits and in other eukaryotes, and many cases have probably gone undetected. It is likely that epigenetic mechanisms are responsible for the phenomenon, as paramutation forms epialleles, genes with identical sequences but different expression states. This could account for the intergenerational inheritance of the paramutated allele, providing profound evidence that triggered epigenetic changes can be maintained over generations. Here, we use a case of paramutation that affects a transgenic selection reporter gene in tetraploid Arabidopsis thaliana. Our data suggest that different types of small RNA are derived from paramutable and paramutagenic epialleles. In addition, deletion of a repeat within the epiallele changes its paramutability. Further, the temperature during the growth of the epiallelic hybrids determines the degree and timing of the allelic interaction. The data further make it plausible why paramutation in this system becomes evident only in the segregating F2 population of tetraploid plants containing both epialleles. In summary, the results support a model for polyploidy-associated paramutation, with similarities as well as distinctions from other cases of paramutation.
Collapse
Affiliation(s)
- Heinrich Bente
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Andrea M. Foerster
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Nicole Lettner
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
4
|
Nowicka A, Tokarz B, Zwyrtková J, Dvořák Tomaštíková E, Procházková K, Ercan U, Finke A, Rozhon W, Poppenberger B, Otmar M, Niezgodzki I, Krečmerová M, Schubert I, Pecinka A. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:68-84. [PMID: 31733119 DOI: 10.1111/tpj.14612] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison. In addition, there is emerging evidence that epigenetic inhibitors cause genomic instability, but the nature of this damage and its repair remain unclear. To bridge these gaps, we compared the effects of 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC), zebularine and 3-deazaneplanocin A (DZNep) on TGS and DNA damage repair. The most effective inhibitor of TGS was DAC, followed by DZNep, zebularine and AC. We confirmed that all inhibitors induce DNA damage and suggest that this damage is repaired by multiple pathways with a critical role of homologous recombination and of the SMC5/6 complex. A strong positive link between the degree of cytidine analog-induced DNA demethylation and the amount of DNA damage suggests that DNA damage is an integral part of cytidine analog-induced DNA demethylation. This helps us to understand the function of DNA methylation in plants and opens the possibility of using epigenetic inhibitors in biotechnology.
Collapse
Affiliation(s)
- Anna Nowicka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, PL-30 239, Krakow, Poland
| | - Barbara Tokarz
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, PL-31 425, Krakow, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Eva Dvořák Tomaštíková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Klára Procházková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Ugur Ercan
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Andreas Finke
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Miroslav Otmar
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Igor Niezgodzki
- Biogeosystem Modelling Group, ING PAN - Institute of Geological Sciences Polish Academy of Sciences, Research Center in Krakow, Senacka 1, PL-31 002, Krakow, Poland
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, DE-06466, Gatersleben, OT, Germany
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| |
Collapse
|
5
|
Ma K, Sun L, Cheng T, Pan H, Wang J, Zhang Q. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume. FRONTIERS IN PLANT SCIENCE 2018; 9:41. [PMID: 29441078 PMCID: PMC5797549 DOI: 10.3389/fpls.2018.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/09/2018] [Indexed: 05/23/2023]
Abstract
Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume. We used amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80%) was detected in 96 accessions of P. mume. And the relative hemi-methylation level (15.77%) was higher than the relative full methylation level (14.03%). The epigenetic diversity (I∗ = 0.575, h∗ = 0.393) was higher than the genetic diversity (I = 0.484, h = 0.319). The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.
Collapse
Affiliation(s)
- Kaifeng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Pietzenuk B, Markus C, Gaubert H, Bagwan N, Merotto A, Bucher E, Pecinka A. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol 2016; 17:209. [PMID: 27729060 PMCID: PMC5059998 DOI: 10.1186/s13059-016-1072-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/23/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The mobilization of transposable elements (TEs) is suppressed by host genome defense mechanisms. Recent studies showed that the cis-regulatory region of Arabidopsis thaliana COPIA78/ONSEN retrotransposons contains heat-responsive elements (HREs), which cause their activation during heat stress. However, it remains unknown whether this is a common and potentially conserved trait and how it has evolved. RESULTS We show that ONSEN, COPIA37, TERESTRA, and ROMANIAT5 are the major families of heat-responsive TEs in A. lyrata and A. thaliana. Heat-responsiveness of COPIA families is correlated with the presence of putative high affinity heat shock factor binding HREs within their long terminal repeats in seven Brassicaceae species. The strong HRE of ONSEN is conserved over millions of years and has evolved by duplication of a proto-HRE sequence, which was already present early in the evolution of the Brassicaceae. However, HREs of most families are species-specific, and in Boechera stricta, the ONSEN HRE accumulated mutations and lost heat-responsiveness. CONCLUSIONS Gain of HREs does not always provide an ultimate selective advantage for TEs, but may increase the probability of their long-term survival during the co-evolution of hosts and genomic parasites.
Collapse
Affiliation(s)
- Björn Pietzenuk
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Present address: Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Catarine Markus
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540000, Brazil
| | - Hervé Gaubert
- Department of Plant Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
- Present address: The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Navratan Bagwan
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Present address: Cardiovascular proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, 28029, Spain
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540000, Brazil
| | - Etienne Bucher
- UMR1345 IRHS, Université d'Angers, INRA, Université Bretagne Loire, SFR4207 QUASAV, 49045, Angers, France
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.
| |
Collapse
|
7
|
|
8
|
Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32. [DOI: 10.1016/j.semcdb.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
|
9
|
Ayyappan V, Kalavacharla V, Thimmapuram J, Bhide KP, Sripathi VR, Smolinski TG, Manoharan M, Thurston Y, Todd A, Kingham B. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.). PLoS One 2015; 10:e0132176. [PMID: 26167691 PMCID: PMC4500563 DOI: 10.1371/journal.pone.0132176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/10/2015] [Indexed: 01/12/2023] Open
Abstract
Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
| | - Venu Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
- Center for Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, Delaware, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Ketaki P. Bhide
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Venkateswara R. Sripathi
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
| | - Tomasz G. Smolinski
- Computational Intelligence and Bio(logical)informatics Laboratory (CIBiL), Delaware State University, Dover, Delaware, United States of America
| | - Muthusamy Manoharan
- Department of Agriculture, University of Arkansas, Pine Bluff, Arkansas, United States of America
| | - Yaqoob Thurston
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
| | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
| | - Bruce Kingham
- Sequencing and Genotyping Center, Delaware Biotechnology Institute, Newark, Delaware, United States of America
| |
Collapse
|
10
|
Kuhlmann M, Finke A, Mascher M, Mette MF. DNA methylation maintenance consolidates RNA-directed DNA methylation and transcriptional gene silencing over generations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:269-81. [PMID: 25070184 DOI: 10.1111/tpj.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 05/22/2023]
Abstract
In plants, 24 nucleotide short interfering RNAs serve as a signal to direct cytosine methylation at homologous DNA regions in the nucleus. If the targeted DNA has promoter function, this RNA-directed DNA methylation may result in transcriptional gene silencing. In a genetic screen for factors involved in RNA-directed transcriptional silencing of a ProNOS-NPTII reporter transgene in Arabidopsis thaliana, we captured alleles of DOMAINS REARRANGED METHYLTRANSFERASE 2, the gene encoding the DNA methyltransferase that is mainly responsible for de novo DNA methylation in the context of RNA-directed DNA methylation. Interestingly, methylation of the reporter gene ProNOS was not completely erased in these mutants, but persisted in the symmetric CG context, indicating that RNA-directed DNA methylation had been consolidated by DNA methylation maintenance. Taking advantage of the segregation of the transgenes giving rise to ProNOS short interfering RNAs and carrying the ProNOS-NPTII reporter in our experimental system, we found that ProNOS DNA methylation maintenance was first evident after two generations of ongoing RNA-directed DNA methylation, and then increased in extent with further generations. As ProNOS DNA methylation had already reached its final level in the first generation of RNA-directed DNA methylation, our findings suggest that establishment of DNA methylation at a particular region may be divided into distinct stages. An initial phase of efficient, but still fully reversible, de novo DNA methylation and transcriptional gene silencing is followed by transition to efficient maintenance of cytosine methylation in a symmetric sequence context accompanied by persistence of gene silencing.
Collapse
Affiliation(s)
- Markus Kuhlmann
- Research Group Epigenetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Gatersleben, Germany
| | | | | | | |
Collapse
|
11
|
Juriloff DM, Harris MJ, Mager DL, Gagnier L. Epigenetic mechanism causes Wnt9b deficiency and nonsyndromic cleft lip and palate in the A/WySn mouse strain. ACTA ACUST UNITED AC 2014; 100:772-88. [DOI: 10.1002/bdra.23320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/11/2014] [Accepted: 08/29/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Diana M. Juriloff
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Muriel J. Harris
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Dixie L. Mager
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
- Terry Fox Laboratory; British Columbia Cancer Agency; Vancouver British Columbia Canada
| | - Liane Gagnier
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
- Terry Fox Laboratory; British Columbia Cancer Agency; Vancouver British Columbia Canada
| |
Collapse
|
12
|
Prendergast JGD, Chambers EV, Semple CAM. Sequence-level mechanisms of human epigenome evolution. Genome Biol Evol 2014; 6:1758-71. [PMID: 24966180 PMCID: PMC4122940 DOI: 10.1093/gbe/evu142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage.
Collapse
Affiliation(s)
| | - Emily V Chambers
- The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Colin A M Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, United Kingdom
| |
Collapse
|
13
|
Jones AL, Sung S. Mechanisms underlying epigenetic regulation in Arabidopsis thaliana. Integr Comp Biol 2014; 54:61-7. [PMID: 24808013 DOI: 10.1093/icb/icu030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In plants, epigenetic regulation mediates both the proper development of the plant and responses to environmental cues. Changes in epigenetic states employ DNA methylation, histone modification, and regulatory RNAs. In Arabidopsis thaliana, DNA methylation as a repressive mark is often associated with constitutively silenced loci, such as repetitive sequences, transposons, and heterochromatin. These sequences regularly give rise to small interfering RNAs, which direct DNA methylation through the RNA-directed DNA methylation (RdDM) pathway. For example, FWA locus is silenced in sporophytes and enriched with DNA methylation. Its methylated state is stable and passes to the next generation. This is an example of meiotically inherited epigenetic states. There are also epigenetic changes that can be inherited mitotically and are subsequently erased in the next generation. In this review, we use the vernalization-mediated epigenetic silencing of FLOWERING LOCUS C (FLC) as an example for this type of mitotically stable epigenetic state. Here, we discuss mechanisms of epigenetic changes that can result in meiotically or mitotically stable states with an emphasis on FWA and FLC as two examples.
Collapse
Affiliation(s)
- Ashley L Jones
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Pecinka A, Liu CH. Drugs for Plant Chromosome and Chromatin Research. Cytogenet Genome Res 2014; 143:51-9. [DOI: 10.1159/000360774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Geoghegan JL, Spencer HG. The evolutionary potential of paramutation: A population-epigenetic model. Theor Popul Biol 2013; 88:9-19. [DOI: 10.1016/j.tpb.2013.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
16
|
K?í?ová K, Depicker A, Kova?ík A. Epigenetic switches of tobacco transgenes associate with transient redistribution of histone marks in callus culture. Epigenetics 2013; 8:666-76. [PMID: 23770973 PMCID: PMC3857346 DOI: 10.4161/epi.24613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022] Open
Abstract
In plants, silencing is usually accompanied by DNA methylation and heterochromatic histone marks. We studied these epigenetic modifications in different epialleles of 35S promoter (P35S)-driven tobacco transgenes. In locus 1, the T-DNA was organized as an inverted repeat, and the residing neomycin phosphotransferase II reporter gene (P35S-nptII) was silenced at the posttranscriptional (PTGS) level. Transcriptionally silenced (TGS) epialleles were generated by trans-acting RNA signals in hybrids or in a callus culture. PTGS to TGS conversion in callus culture was accompanied by loss of the euchromatic H3K4me3 mark in the transcribed region of locus 1, but this change was not transmitted to the regenerated plants from these calli. In contrast, cytosine methylation that spread from the transcribed region into the promoter was maintained in regenerants. Also, the TGS epialleles generated by trans-acting siRNAs did not change their active histone modifications. Thus, both TGS and PTGS epialleles exhibit euchromatic (H3K4me3 and H3K9ac) histone modifications despite heavy DNA methylation in the promoter and transcribed region, respectively. However, in the TGS locus (271), abundant heterochromatic H3K9me2 marks and DNA methylation were present on P35S. Heterochromatic histone modifications are not automatically installed on transcriptionally silenced loci in tobacco, suggesting that repressive histone marks and cytosine methylation may be uncoupled. However, transient loss of euchromatic modifications may guide de novo DNA methylation leading to formation of stable repressed epialleles with recovered eukaryotic marks. Compilation of available data on epigenetic modification of inactivated P35S in different systems is provided.
Collapse
Affiliation(s)
- Kate?ina K?í?ová
- Institute of Biophysics, Academy of Sciences; Královopolská, Brno, Czech Republic
| | - Ann Depicker
- Department of Plant Systems Biology; VIB; Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent, Belgium
| | - Ale? Kova?ík
- Institute of Biophysics, Academy of Sciences; Královopolská, Brno, Czech Republic
| |
Collapse
|
17
|
Pecinka A, Mittelsten Scheid O. Stress-induced chromatin changes: a critical view on their heritability. PLANT & CELL PHYSIOLOGY 2012; 53:801-8. [PMID: 22457398 PMCID: PMC3345370 DOI: 10.1093/pcp/pcs044] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/17/2012] [Indexed: 05/19/2023]
Abstract
The investigation of stress responses has been a focus of plant research, breeding and biotechnology for a long time. Insight into stress perception, signaling and genetic determinants of resistance has recently been complemented by growing evidence for substantial stress-induced changes at the chromatin level. These affect specific sequences or occur genome-wide and are often correlated with transcriptional regulation. The majority of these changes only occur during stress exposure, and both expression and chromatin states typically revert to the pre-stress state shortly thereafter. Other changes result in the maintenance of new chromatin states and modified gene expression for a longer time after stress exposure, preparing an individual for developmental decisions or more effective defence. Beyond this, there are claims for stress-induced heritable chromatin modifications that are transmitted to progeny, thereby improving their characteristics. These effects resemble the concept of Lamarckian inheritance of acquired characters and represent a challenge to the uniqueness of DNA sequence-based inheritance. However, with the growing insight into epigenetic regulation and transmission of chromatin states, it is worth investigating these phenomena carefully. While genetic changes (mainly transposon mobility) in response to stress-induced interference with chromatin are well documented and heritable, in our view there is no unambiguous evidence for transmission of exclusively chromatin-controlled stress effects to progeny. We propose a set of criteria that should be applied to substantiate the data for stress-induced, chromatin-encoded new traits. Well-controlled stress treatments, thorough phenotyping and application of refined genome-wide epigenetic analysis tools should be helpful in moving from interesting observations towards robust evidence.
Collapse
Affiliation(s)
- Ales Pecinka
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | | |
Collapse
|
18
|
Schmitz RJ, Ecker JR. Epigenetic and epigenomic variation in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2012; 17:149-54. [PMID: 22342533 PMCID: PMC3645451 DOI: 10.1016/j.tplants.2012.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana (Arabidopsis) is ideally suited for studies of natural phenotypic variation. This species has also provided an unparalleled experimental system to explore the mechanistic link between genetic and epigenetic variation, especially with regard to cytosine methylation. Using high-throughput sequencing methods, genotype to epigenotype to phenotype observations can now be extended to plant populations. We review the evidence for induced and spontaneous epigenetic variants that have been identified in Arabidopsis in the laboratory and discuss how these experimental observations could explain existing variation in the wild.
Collapse
Affiliation(s)
- Robert J Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|